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Background and objectives: Investigations of the prognosis are vital for better

patient management and decision-making in patients with advanced metastatic

renal cell carcinoma (mRCC). The purpose of this study is to evaluate the capacity of

emerging Artificial Intelligence (AI) technologies to predict three- and five-year

overall survival (OS) for mRCC patients starting their first-line of systemic treatment.

Patients and methods: The retrospective study included 322 Italian patients with

mRCCwhounderwent systemic treatmentbetween2004and2019. Statistical analysis

included the univariate and multivariate Cox proportional-hazard model and the

Kaplan-Meier analysis for the prognostic factors’ investigation. The patients were

split into a training cohort to establish the predictive models and a hold-out cohort

to validate the results. The models were evaluated by the area under the receiver

operating characteristic curve (AUC), sensitivity, and specificity. We assessed the

clinical benefit of the models using decision curve analysis (DCA). Then, the

proposedAImodelswerecomparedwithwell-knownpre-existingprognostic systems

Results: The median age of patients in the study was 56.7 years at RCC diagnosis

and 78% of participants were male. The median survival time from the start of

systemic treatment was 29.2 months; 95% of the patients died during the follow-

up that finished by the end of 2019. The proposed predictive model, which was

constructed as an ensemble of three individual predictive models, outperformed

all well-known prognostic models to which it was compared. It also demonstrated

better usability in supporting clinical decisions for 3- and 5-year OS. The model

achieved (0.786 and 0.771) AUC and (0.675 and 0.558) specificity at sensitivity 0.90

for 3 and 5 years, respectively. We also applied explainability methods to identify

the important clinical features that were found to be partially matched with the

prognostic factors identified in the Kaplan-Meier and Cox analyses.

Conclusions:OurAImodels providebest predictive accuracy and clinical net benefits

overwell-knownprognosticmodels. As a result, they canpotentially beused in clinical

practice for providing bettermanagement formRCCpatients starting their first-line of

systemic treatment. Larger studies would be needed to validate the developedmodel

KEYWORDS

artificial intelligence, machine learning, predictive model, overall survival, metastatic
renal cell carcinoma, first-line treatment
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1 Introduction

For metastatic renal cell carcinoma (mRCC), two main prognostic

systems have been developed and validated over the years. The first of

these systems was developed by Robert J. Motzer and his colleagues,

who assessed 670 patients enrolled in clinical trials of cytokine-based

immunotherapy (or chemotherapy) at the Memorial Sloan Kettering

Cancer Center (MSKCC) (1) and further validated in (2). Multivariate

analysis showed that hemoglobin, serum lactate dehydrogenase,

corrected serum calcium level, nephrectomy status, and Karnofsky

Performance Status (KPS) were independent risk factors for the

prediction of survival. Using a combination of these individual

factors, patients were stratified as being of good, intermediate, or

poor risk, with mean survival times of 20, 10, and 4 months,

respectively. As a whole, this score is better known as the MSKCC

(or Motzer) score.

In 2009, the International Metastatic Renal Cell Carcinoma

Database Consortium (IMDC) retrospectively reviewed 645

consecutive patients from 7 different centers, treated with

molecularly targeted agents; they developed a novel prognostic

model (3) known as the IMDC (or Heng) score. This model was

subsequently externally validated (4) for patients treated with

immune checkpoint inhibitors (5) and in different treatment lines

(6, 7). According to the Heng score, independent predictors of short

overall survival (OS) are hemoglobin levels below the lower limit of

normal (LLN), corrected calcium values greater than the upper limit

of normal (ULN), KPS <80%, time from diagnosis to treatment < 1

year, neutrophils > ULN, and platelets > ULN. Patients were grouped

according to the number of prognostic factors into a good risk group

(0 factors), an intermediate risk group (1–2 factors), and a poor risk

group (3–6 factors). For the good, intermediate, and poor risk groups,

the median OS and 2-year OS were the following: not reached, 27

months, and 8.8 months; and 75%, 53%, and 7%, respectively (3).

With the continuing evolution of available technologies, studies using

Artificial Intelligence (AI) have also been introduced. Recent studies for

predicting long-term outcomes like survival and recurrence include the

following works: Byun et al. (8) applied deep learning for prediction of

prognosis of nonmetastatic clear cell renal cell carcinoma, Kim et al. (9)

applied machine learning (ML) for predicting the probability of

recurrence of renal cell carcinoma in five-years after surgery Guo et al.

(10) compared a neural network with a boosted decision tree model to

predict recurrence after curative treatment of RCC.

With the availability of multi-modal data sets that combine

clinicopathological data with molecular, genetic, and imaging

modalities, more studies for predicting long term outcomes have

been carried out. Duarte et al. (11) compared different data mining

techniques for predicting 5-year survival, based on a dataset obtained

from The Cancer Genome Atlas. Zhao et al. (12) proposed a

prognostic model by combining clinical and genetic information

that monitors the disease progression in a dynamically updated

manner. It is important to mention that availability of multi-modal

data sets is limited. In our study, we are going to develop prediction

models using only clinicopathological data. According to our

knowledge, no such studies have been conducted to predict the

survival of mRCC patients starting systemic treatment for

clinicopathological data using AI.
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The objective of the current study is to deploy an innovative machine

learning method to develop novel predictive models for mRCC patients

using Real World Data, in terms of three- and five-year survival rates

from the time they started first-line systemic treatment, and compare

these methods with available prognostic models.
2 Materials and methods

2.1 Patients

Data were collected from 342 consecutive mRCC patients who

started first-line systemic therapy (with or without combined

locoregional treatments, e.g., radiotherapy) between March 1, 2004,

and March 1, 2019. The last follow-up was December 31, 2019.

The data were retrospectively collected from the patients’

hospital records and organized in an electronic Case Report

Form (eCRF), using the REDCap platform. For each patient, the

following information was retrieved: demographics, clinical

characteristics, tumor characteristics, cancer history (including

all systemic treatment lines), number and sites of metastases, as

well as severe treatment-related adverse events (AEs), possibly

affecting treatment delivery. Laboratory examinations were

available at the beginning of each treatment line. In addition,

time intervals and episodes derived from the oncological history

were available (e.g., date of RCC diagnosis, surgery, diagnosis of

metastatic disease, and start and end of each treatment line).

Response to treatment was evaluated by the two treating

physicians, no central review having been performed given the

nature of this case series.

The data used for analysis was pseudonymized by removing all

personal information and adding random noise to dates and

numerical values, while maintaining the same clinical meaning of

the original data.

We excluded 20 patients who were alive at the follow-up cut-off

date, but had a follow-up time of less than 5 years. The remaining 322

patients were included in our study and were used for statistical

analysis, model development, and testing (Figure 1A).

This study was approved by the Ethics Committee of IRCCS

Istituti Clinici Scientifici Maugeri (Approval Number 2421 CE) on

February 23, 2020.
2.2 Statistical analysis

Statistical analysis was applied to all patients in our study. For

continuous variables, the data were presented as median and

interquartile range (IQR), and for categorical variables, as

frequencies (%). We conducted a Wilcoxon rank sum or Chi-

square-square test and Fisher’s test to compare continuous or

categorical variables, respectively. A p-value of <0.01 was

considered statistically significant. These statistical tests were

applied to compare baseline characteristics of different patient groups.

We used the univariate Cox proportional hazards model (13) to

compare the correlation between different clinical characteristics and

the overall survival from the first treatment line. Kaplan-Meier
frontiersin.org
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analysis (14) with the log-rank test was also performed for each

variable. Significant covariates (p-value < 0.01) from the univariate

Cox and Kaplan Meier analyses were included in the multivariate Cox

regression model. During the building of the model, we excluded

variables with a p-value > 0.1 under verification, with no significant

changes in the multivariate estimators of HR. A p-value < 0.01 was

considered significant for this model. We also analyzed the

association of several intermediate outcomes (number of treatment

lines; toxicity, dose reduction and response in the first treatment line)

with survival by checking statistical significance in the univariate

analyses. We further adjusted the developed multivariate Cox model

to one of them (number of treatment lines) by incorporating this

covariate into the model in a time-dependent manner. We used the R

4.1.3 gtsummary (15) and survival (16) packages and the Python

(version 3.9.0) pandas library (17) for data description and for all

statistical analyses.
2.3 Feature selection and data
preprocessing

The aim of this research is to develop a new machine learning

model that can predict OS for mRCC patients starting first-line

systemic treatment, based on their clinico-pathological factors.
Frontiers in Oncology 03
Figures 1A, B presents the study design and main groups of patient

details for the baseline and follow-up periods. For model

development, we used patient details collected at the baseline

period before treatment started. Because our data were derived

from real-world settings, we are missing values for about 5% of the

patients who didn ’ t undergo surgery, and are missing

histopathological and staging details. We applied several methods

to resolve any missing data, and this allowed us to include all patient

details in the model development. One method was based on

inference from other variables approved by medical experts. For

example, for the M stage, if the time interval between the RCC and

mRCC diagnoses was less than two months, it was considered as the

presence of metastases at diagnosis time and the M1 value was

imputed; accordingly, the M0 value was imputed in the opposite

case. The mean imputing was applied for the rest of the variables.

Standardization of all variables was done by removing the mean and

scaling to unit variance.

We used the feature extraction tool described in Ozery-Flato et al.

(18) to extract all the features and outcomes of the cohort’s patients.

The process included several steps. In the first step, we included all

demographic, histopathological, and clinical variables readily

available from before treatment. More details can be seen in

Figure 1B. Next, using date information variables, we generated

new features that indicate durations between important events, e.g.,
A

B

FIGURE 1

Flow chart of study design (A) and main groups of features and outcomes (B).
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time from diagnosis to surgery, time from diagnosis to first systemic

treatment, etc. Following that, guided by well-known clinical

knowledge approved by medical experts, we enriched the feature set

by transformations and extensions of the variables. This included type

transformation, such as converting categorical features to binary ones

by grouping their values and converting continuous variables to

binary by splitting them into groups using predefined thresholds.

For example, the categorical N stage was converted to a binary value

by grouping the N1 and N2 stages into one class, and the rest into

another. In a similar fashion, the Fuhrman grade was transformed by

grouping grade I or II vs. grade III or IV. For continuous variables of

lab tests, we generated indicators of elevating predefined thresholds

using clinically approved exam limits (e.g., low hemoglobin).

Following recent research publications (19, 20), beyond the raw

exam values, we also considered promising prognostic predictors,

namely NLR (Neutrophils Lymphocytes Relation) and PLR (Platelets

Lymphocytes Relation). We managed both the original and the

transformed variables in the features set, allowing the predictive

model to prioritize the feature importance and obtain better results.

Moreover, we enriched our feature set with nine new variables

that represent patients’ risk scores calculated according to the well-

known prognostic models of OS prediction for mRCC. The wide set

of clinicopathological characteristics available in our data set for both

diagnosis and treatment start time points allowed us to generate

patient risk scores for the long list of prognostic models. We added

five features of risk scores using the following models that predict OS

and progression-free survival (PFS) from the time of RCC diagnosis:

AJCC TNM staging system (21); SEER staging system (22); UCLA

Integrated Staging System (UICC) (23); Stage, Size, Grade, and

Necrosis model (SSIGN) (24); and Leibovich model for progression

prediction (25). In addition, we added four features of risk scores

using the following models predicting OS from the first-line of

systemic treatment for mRCC patients: MSKCC (1); IMDC (3);

International Kidney Cancer Working Group (IKCWG) model

(26); and Modified International Metastatic Renal Cell Carcinoma

Database Consortium (Modified IMDC) (19).
2.4 Development of predictive models

Prior to the development of predictive models, the cohort was

split into two mutually exclusive sets. We assigned 80% of the patients

to a training set, which was used for model generation. The remaining

20% of the data was defined as a hold-out. To ensure a good balance

of patients while splitting a small data set, we used stratification on the

outcomes and the top significant features from the univariate analysis.

We then verified the feature distribution between the training and

hold-out sets using statistical analysis methods (see Tables 1A, B).

We developed the models using a five-fold cross-validation

method on the training set. We used all the features for model

development, allowing automatic feature selection in the model.

Multicollinearity was present in the baseline clinical data, (e.g.,

correlation between M stage and time from RCC diagnosis to first-

line treatment start) and was further extended with risk scores of the

well-known prognostic models. Therefore, we used state-of-the-art

tree-based models and neural nets that work well with multicollinear
Frontiers in Oncology 04
data: eXtreme Gradient Boosting (XGBoost) (27), Random Forest

(RF) (28), and Multilayer Perceptron (MLP) (29). We applied a grid-

search method to determine the optimal parameters for predictive

models. Initially, we built the models using these three selected

methods. We then combined them in an ensemble by averaging the

predictive probabilities of the individual models. Using the

ensembling method allowed us to improve the generalization and

reduce the variance of the different models, which leads to a more

stable and robust final model. The final ensemble model was

evaluated on cross-validation and hold-out cohorts. As depicted in

Figure 2, we generated final prediction probabilities for the hold-out

set as averages of the predictions from each of the five models. These

prediction averages were further averaged in the ensemble model. For

the cross-validation set, we merged the final probabilities offive cross-

validation models into one vector before the ensembling stage.

We used the Python scikit-learn 0.24.2 package (30) to construct a

predictive machine learning model. MLP can be developed with the

open source FuseMedML (31), a PyTorch-based deep learning

framework for medical data.
2.5 Evaluation of predictive models

We evaluated the developed models in a five-fold cross-validation

on the training data set and on the hold-out data. The predictive

performance of models was quantified using receiver operating

characteristic (ROC) curve analysis, and its predictive accuracy was

assessed by the area under the ROC curve (AUC) with 95% confidence

intervals (32), and by assessing specificity at high sensitivity operation

points.We used the DeLong test (33) to assess the significance between

twoAUCs computed on the same cohort and theMcNemar test (34) to

verify the significance between model results at high sensitivity points.

The results of the latter test are important for models deployed in

clinical practice, and thus are of special interest. In addition, we

performed subgroup analysis for the ensemble model to detect sub-

cohorts in which specific models demonstrated high quality results and

were considered more reliable for these sub-populations during their

usage in clinical practice. Also, we validated the results of the ensemble

model for the sub-cohorts corresponding to low (1-2) and high (>=3)

number of treatment lines that might be associated with survival. The

FuseMedML (31) open source package was used to perform all the

above-mentioned evaluation methods and tests.

We used Shapley additive explanations (SHAP) (35) to

understand the machine learning predictive models and to explain

feature importance; these demonstrated how each feature of each

patient affects the predictive model results. We assessed the clinical

usefulness and net benefits of the developed models using Decision

Curve Analysis (DCA) (36, 37). DCA estimates the net benefit of a

model by calculating the weighted difference between the true- and

false-positive rates, where weighting between them is done with the

odds of the threshold probability of the involved clinical risk. We

compared the performance of the final ensemble model with the

performance of four well-known models applied to our data set for

survival prognosis. Specifically, we carried out comparisons with

validated MSKCC (2), IKCWG (26), validated IMDC (4), and

Modified IMDC (19).
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TABLE 1A The clinicopathological characteristics of the RCC patients from this study avaialble at the diagnosis time.

Characteristic Total, N = 3221 Train, N = 2571 Hold-Out, N = 651 p-value2

Gender 0.96

Male 252 (78%) 201 (78%) 51 (78%)

Female 70 (22%) 56 (22%) 14 (22%)

Age at diagnosis 0.56

< 65 254 (79%) 201 (78%) 53 (82%)

>= 65 68 (21%) 56 (22%) 12 (18%)

T stage 0.26

T1 45 (15%) 35 (14%) 10 (17%)

T2 66 (21%) 49 (20%) 17 (28%)

T3 189 (62%) 158 (64%) 31 (52%)

T4 7 (2.3%) 5 (2.0%) 2 (3.3%)

M stage 0.15

M0 202 (63%) 167 (65%) 35 (54%)

M1 61 (19%) 48 (19%) 13 (20%)

MX 59 (18%) 42 (16%) 17 (26%)

N stage 0.90

N0 168 (52%) 132 (51%) 36 (55%)

N1 37 (11%) 30 (12%) 7 (11%)

N2 13 (4.0%) 10 (3.9%) 3 (4.6%)

NX 104 (32%) 85 (33%) 19 (29%)

Tumor Size 0.72

0-40 mm 15 (4.8%) 12 (4.8%) 3 (4.8%)

40-70 mm 94 (30%) 78 (31%) 16 (25%)

70-100 mm 126 (40%) 97 (38%) 29 (46%)

> 100 mm 80 (25%) 65 (26%) 15 (24%)

Fuhrman Grade 0.41

Grade I 5 (1.6%) 3 (1.2%) 2 (3.3%)

Grade II 103 (34%) 81 (33%) 22 (37%)

Grade III 121 (39%) 97 (39%) 24 (40%)

Grade IV 78 (25%) 66 (27%) 12 (20%)

Microvascular Invasion 128 (42%) 103 (42%) 25 (42%) >0.99

Intra-Tumoral Necrosis 194 (63%) 158 (64%) 36 (60%) 0.57

Histology Groups 0.33

Clear Cell RCC 289 (90%) 231 (90%) 58 (89%)

Papillary RCC 25 (7.8%) 20 (7.8%) 5 (7.7%)

Chromophobe RCC 3 (0.9%) 1 (0.4%) 2 (3.1%)

Unclassified RCC 3 (0.9%) 3 (1.2%) 0 (0%)

Collecting Duct Carcinoma 2 (0.6%) 2 (0.8%) 0 (0%)

Sarcomotoid Feature 83 (26%) 70 (27%) 13 (20%) 0.23

1n (%); Median (IQR).
2Pearson’s Chi-squared test; Fisher’s exact test; Wilcoxon rank sum test.
Missing diagnostic details for 5% of patients that didn’t undergo nephrectomy are not included.
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TABLE 1B The clinicopathological characteristics avaialable at start of the first systemic treatment line and the outcomes for the RCC patients from this study.

Characteristic Total, N = 3221 Train, N = 2571 Hold-Out, N = 651 p-value2

BMI group 0.94

Normal 136 (42%) 109 (42%) 27 (42%)

Overweight 155 (48%) 124 (48%) 31 (48%)

Obese 31 (9.6%) 24 (9.3%) 7 (11%)

Karnofsky PS 0.38

80 17 (5.3%) 13 (5.1%) 4 (6.2%)

90 57 (18%) 42 (16%) 15 (23%)

100 248 (77%) 202 (79%) 46 (71%)

Kidney Metastases 56 (17%) 46 (18%) 10 (15%) 0.63

Lymphnodes Metastases 145 (45%) 119 (46%) 26 (40%) 0.36

Lung Metastases 235 (73%) 184 (72%) 51 (78%) 0.27

Brain Metastases 15 (4.7%) 11 (4.3%) 4 (6.2%) 0.51

Liver Metastases 59 (18%) 50 (19%) 9 (14%) 0.30

Bone Metastases 69 (21%) 51 (20%) 18 (28%) 0.17

Hemoglobin g/dl 13.8 (12.7, 14.7) 13.8 (12.7, 14.6) 13.9 (12.5, 15.1) 0.69

Serum Corr. Calcium mg/dl 9.8 (9.3, 10.1) 9.8 (9.3, 10.1) 9.8 (9.5, 10.1) 0.68

LDH mU/ml 233.0 (199.2, 315.0) 232.0 (200.0, 310.0) 235.0 (199.0, 337.0) 0.47

Serum Sodium (Na) mmol/l 141.0 (139.0, 144.0) 141.0 (139.0, 144.0) 142.0 (140.0, 144.0) 0.11

Creatinine 1.1 (0.9, 1.3) 1.1 (0.9, 1.3) 1.2 (1.0, 1.3) 0.069

PLR 170.3 (123.7, 218.2) 170.6 (124.0, 215.0) 168.2 (122.2, 240.0) 0.53

NLR 3.5 (2.8, 4.2) 3.5 (2.9, 4.2) 3.5 (2.6, 4.5) 0.74

Months from Dx to 1st line 12.8 (3.7, 49.6) 12.4 (3.9, 47.1) 12.9 (3.6, 56.0) 0.92

Days from Dx to Surgery 19.0 (10.0, 32.0) 18.0 (10.0, 32.0) 20.5 (10.0, 37.0) 0.85

Treatment - 1st line 0.68

VEGF/VEGFRi* - mono 273 (85%) 217 (84%) 56 (86%)

mTORi* - mono 10 (3.1%) 8 (3.1%) 2 (3.1%)

IO – IO 4 (1.2%) 3 (1.2%) 1 (1.5%)

IO - VEGF/VEGFRi* 20 (6.2%) 15 (5.8%) 5 (7.7%)

Cytotoxic Chemotherapy 15 (4.7%) 14 (5.4%) 1 (1.5%)

3y OS 125 (39%) 100 (39%) 25 (38%) 0.95

5y OS 68 (21%) 55 (21%) 13 (20%) 0.80

Number of Treatment Lines 3.0 (2.0, 3.0) 3.0 (2.0, 3.0) 0.85

Toxicity, grades 3-4 - 1st line 116 (36%) 90 (35%) 26 (40%) 0.45

Dose Reduction - 1st line 98 (30%) 75 (29%) 23 (35%) 0.33

Best Response - 1st line 0.18

Complete Response 10 (3.1%) 9 (3.5%) 1 (1.5%)

Partial Response 117 (36%) 95 (37%) 22 (34%)

Stable Disease 160 (50%) 130 (51%) 30 (46%)

Progressive Disease 35 (11%) 23 (8.9%) 12 (18%)

1n (%); Median (IQR).
2Pearson’s Chi-squared test; Fisher’s exact test; Wilcoxon rank sum test.
IO, Immuno-Oncology; i*, inhibitors.
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3 Results

3.1 Baseline characteristics and
survival analysis

The entire study cohort consisted of 322 patients. The median age of

the study group at RCC diagnosis was 56.7 years (IQR 47.3 to 63.7 years)

and 78% of participants were male. All patients were white. Clear cell

type was diagnosed in 90% of patients and 95% of patients underwent

cytoreductive nephrectomy. The median survival time from first-line of

systemic treatment was 29.2 months (IQR 16.2 to 53.0 months) and 307

(95%) patients died during the follow-up period. The median PFS time

was 8.1 months (IQR 0.5 to 37.3 months) and the median time from

diagnosis to the first line of systemic treatment was 12.8 months (IQR

3.7 to 49.6 months). As part of a first-line systemic treatment, 85% of the

patients received VEGFR/VEGFR inhibitor (VEGF/VEGFRi)

monotherapy, 6.2% received a combination of immunotherapy (IO)

and VEGF/VEGFRi (referred to here as the “IO-VEGF/VEGFRi

combination”), 4.7% received cytotoxic chemotherapy, 3.1% received

mTOR inhibitor (mTORi) monotherapy, and 1.2% received a

combination of two immunotherapies (referred to here as the “IO-IO

combination”). During the first-line treatment, 39.1% of the patients

demonstrated an objective response, and 36% experienced adverse

events of grade 3 and 4. The full summary of patient characteristics

can be found in Tables 1A, B together with the verification of balancing

between training and hold-out cohorts. Supplementary Tables 1, 2

summarize the results of the univariate analysis with respect to 3 and

5 year survival times, respectively. Significant baseline characteristics

(with p<0.01) for both outcomes include the time from Dx to first-line

treatment, age at diagnosis, Karnofsky PS, M stage, Fuhrman grade,

sarcomatoid feature, LDH, and hemoglobin and PLR values. In addition,

tumor size, microvascular invasion, lymph node and lung metastases

were found to be significant for 3 year survival, and NLRwas found to be

significant for 5 year survival times.

As a result of the univariate survival analysis, several values of

baseline clinico-pathological variables were defined as risk factors

with p<0.01 in both methods: univariate Cox regression analysis and

Kaplan–Meier log-rank tests. These variables include age at the time

of the RCC diagnosis, M stage, time from Dx to first-line treatment,
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sarcomatoid feature, Karnofsky performance score, bone and brain

metastases, hemoglobin, LDH, NLR, serum corrected calcium, and

serum sodium (Na). In addition, the Fuhrman grade was found

significant in Kaplan-Meier. Further details about the Cox

regression analysis and Kaplan–Meier log-rank can be found in

Table 2. The IO-IO category of the treatment type covariate was

found to be significant in univariate Cox regression. However, it is

excluded from the additional multivariate analysis due to its negligible

number of patients – 4.

Table 3 summarizes the results of the Cox multivariate model.

The risk factors detected by this model with p<0.01 include M stage,

brain metastases, LDH, hemoglobin, and Karnofsky performance

score. Univariate analyses demonstrated a strong association

between the intermediate outcomes (number of treatment lines;

toxicity, dose reduction and response to the treatment in first

treatment line) and survival (Table 2, Supplementary Tables 1, 2).

The results of the adjusted Cox multivariate model to number of

treatment lines are summarized in Supplementary Table 3. No major

changes were demonstrated in comparison to the unadjusted model,

except for the slight increase in the significance of the age of diagnosis

and the bone metastases, and the slight decrease in the significance of

the M stage covariate.
3.2 Model performance

We evaluated the individual models as well as the final ensemble

model in five-fold cross-validation and on hold-out cohorts. Full

results of the evaluation, including AUC with a 95% confidence

interval and DeLong and McNemar tests, are summarized in

Table 4 for individual models, the ensemble, and four well-known

prognostic models. Figure 3 presents ROC curves of the individual

and the ensemble models. Figure 4 depicts a performance comparison

between the ensemble model and the well-known prognostic models.

It can be seen that the ensemble model outperforms well-known

models for both outcomes in both cross-validation and hold-out sets.

For example, the ensemble model for three-year survival times

evaluated on the hold-out cohort obtained [AUC, 0.786 (95% CI:

0.633, 0.914)] and 0.675 specificity at sensitivity = 0.90 with
FIGURE 2

Model development flow. We built five models using training data in a cross-validation method (four folds for training, one fold for evaluation, five times
in a round-robin manner). Evaluation was done on both cross-validation and hold-out predictions; yp marks a vector of predicted probabilities.
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TABLE 2 Kaplan–Meier analysis and univariate Cox regression of overall survival (OS) starting first-line of systemic treatment for patients of this study.

Kaplan-Meier COX

Characteristic 3-year OS (%) 5-year OS (%) p-value1 HR2 95% CI2 p-value

Gender 0.12

Male 36.9 20.2 Ref Ref

Female 45.7 24.3 0.81 0.61, 1.06 0.13

Age at diagnosis <0.001

< 65 43.7 24.8 Ref Ref

>= 65 20.6 7.35 1.69 1.28, 2.24 <0.001

T stage 0.094

T1 37.8 20.0 Ref Ref

T2 54.5 30.3 0.71 0.48, 1.05 0.088

T3 34.9 19.0 1.03 0.74, 1.43 0.86

T4 28.6 14.3 1.06 0.44, 2.53 0.89

N stage 0.8

N0 40.5 23.8 Ref Ref

N1 29.7 18.9 1.01 0.70, 1.47 0.95

N2 38.5 23.1 1.05 0.60, 1.86 0.86

NX 39.4 17.3 1.12 0.87, 1.44 0.38

M stage <0.001

M0 44.6 25.2 Ref Ref

M1 14.8 4.92 2.27 1.69, 3.06 <0.001

MX 44.1 23.7 1.19 0.88, 1.60 0.26

Tumor Size 0.029

0-40 mm 26.7 13.3 Ref Ref

40-70 mm 46.8 25.5 0.66 0.38, 1.15 0.14

70-100 mm 44.4 24.6 0.66 0.38, 1.12 0.12

> 100 mm 25.0 13.7 0.95 0.55, 1.66 0.87

Fuhrman Grade <0.001

Grade I 40.0 20.0 Ref Ref

Grade II 54.4 29.1 0.48 0.20, 1.19 0.11

Grade III 38.0 24.0 0.60 0.24, 1.47 0.27

Grade IV 21.8 7.69 0.90 0.37, 2.24 0.83

Microvascular Invasion 0.046

No 46.4 23.5 Ref Ref

Yes 29.7 18.8 1.27 1.00, 1.60 0.047

Intra-Tumoral Necrosis 0.017

No 48.7 25.7 Ref Ref

Yes 34.0 19.1 1.34 1.05, 1.70 0.017

Clear Cell Carcinoma 0.5

No 36.4 24.2 Ref Ref

(Continued)
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TABLE 2 Continued

Kaplan-Meier COX

Characteristic 3-year OS (%) 5-year OS (%) p-value1 HR2 95% CI2 p-value

Yes 39.1 20.8 0.89 0.62, 1.28 0.54

Sarcomotoid Feature <0.001

No 45.4 26.1 Ref Ref

Yes 20.5 7.23 1.70 1.31, 2.20 <0.001

Treatment - 1st line <0.001

Cytotoxic Chemotherapy 53.3 26.7 Ref Ref

VEGF/VEGFRi* - mono 39.2 21.6 1.23 0.73, 2.07 0.44

mTORi* - mono 30.0 20.0 1.36 0.61, 3.02 0.46

IO - IO – – 7.84 2,56, 24.0 <0.001

IO - VEGF/VEGFRi* 35.0 15.0 1.50 0.77, 2.95 0.23

BMI group 0.10

Normal 30.9 18.4 Ref Ref

Overweight 43.9 22.6 0.79 0.62, 1.00 0.047

Obese 48.4 25.8 0.75 0.50, 1.12 0.16

Kidney Metastases 0.2

No 36.5 18.8 Ref Ref

Yes 50.0 32.1 0.82 0.61, 1.10 0.18

Lymphnodes Metastases 0.039

No 45.2 25.4 Ref Ref

Yes 31.0 15.9 1.27 1.01, 1.59 0.040

Lung Metastases 0.012

No 50.6 29.9 Ref Ref

Yes 34.5 17.9 1.38 1.07, 1.79 0.013

Brain Metastases 0.002

No 40.1 22.1 Ref Ref

Yes 13.3 Ref 2.23 1.32, 3.76 0.003

Liver Metastases 0.11

No 41.1 21.7 Ref Ref

Yes 28.8 18.6 1.27 0.95, 1.70 0.11

Bone Metastases 0.005

No 41.9 23.7 Ref Ref

Yes 27.5 11.6 1.48 1.13, 1.94 0.005

Karnofsky PS <0.001

80 Ref Ref Ref Ref

90 10.5 1.75 0.23 0.13, 0.40 <0.001

100 48.0 27.0 0.07 0.04, 0.13 <0.001

Hemoglobin < LLN <0.001

No 46.6 26.1 Ref Ref

(Continued)
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significant improvement over all well-known prognostic models

(DeLong p−value < 0.01, McNemar p-value < 0.01).

Table 5 summarizes the results of subgroup analysis using the

ensemble model for both outcomes. We detected several sub-

populations that demonstrate better discrimination performance of
Frontiers in Oncology 10
the model than in the whole cross-validation set. These groups

outperformed the overall AUC reported on cross-validation cohort

by at least 5 points and had sizes of not less than 50 patients.

Validation on these sub-populations in the hold-out set didn’t bring

reliable results due to the small size of this cohort.
TABLE 2 Continued

Kaplan-Meier COX

Characteristic 3-year OS (%) 5-year OS (%) p-value1 HR2 95% CI2 p-value

Yes 10.1 2.90 3.09 2.34, 4.07 <0.001

Serum Corr. Calcium > ULN <0.001

No 43.0 24.8 Ref Ref

Yes 21.9 6.25 1.90 1.44, 2.51 <0.001

LDH > 1.5*ULN <0.001

No 57.8 33.3 Ref Ref

Yes 25.1 12.3 2.02 1.60, 2.54 <0.001

Creatinine > ULN 0.4

No 41.7 21.1 Ref Ref

Yes 29.3 21.3 1.12 0.85, 1.46 0.43

Serum Sodium < LLN <0.001

No 39.6 21.5 Ref Ref

Yes Ref Ref 3.95 1.74, 8.97 0.001

High PLR 0.10

No 47.5 28.1 Ref Ref

Yes 32.2 15.8 1.21 0.96, 1.52 0.11

High NLR 0.007

No 42.9 26.0 Ref Ref

Yes 32.5 13.5 1.37 1.09, 1.73 0.007

Number of Treatment Lines <0.001

>=3 treatment lines 55.9 31.6 Ref Ref

1-2 treatment lines 17.9 12.4 2.25 1.79, 2.83 <0.001

Toxicity, grade 3-4 - 1st line <0.001

No 33.0 15.5 Ref. Ref.

Yes 49.1 31.0 0.63 0.49, 0.79 <0.001

Dose Reduction - 1st line <0.001

No 33.9 15.6 Ref. Ref.

Yes 50.0 33.7 0.61 0.48, 0.78 <0.001

Best Response - 1st line <0.001

Progressive Disease – – Ref. Ref.

Stable Disease 35.0 16.9 0.13 0.09, 0.20 <0.001

Partial Response 50.4 27.4 0.10 0.06, 0.15 <0.001

Complete Response 100.0 90.0 0.02 0.01, 0.06 <0.001
fron
1Log-rank test.
2HR, Hazard Ratio, CI, Confidence Interval.
IO, Immuno-Oncology; i*, inhibitors.
Bold values: Significant p-value.
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Figure 5 presents graphs of DCA for the ensemble model

compared with four well-known prognostic models for three- and

five-year overall survival. The y-axis of the decision curve represents

the net benefit, which is used to decide whether any specific clinical

decision result gives more benefit than harm. The x-axis represents

threshold probabilities that differentiate between dead and live

patients. It can be seen that the ensemble model has a higher net
Frontiers in Oncology 11
clinical benefit than the traditional models for cross-validation and

hold-out sets for both the three-year and five-year survival outcomes.

In addition, we demonstrated the validity of the developed

ensemble model in both sub-cohorts with small (1-2) and large

(more than 3) number of treatment lines by obtaining an AUC of

above 0.7 in cross-validation and hold-out data sets for both

outcomes. Detailed results can be found in Supplementary Table 4.
TABLE 3 Multivariate Cox regression of overall survival (OS) starting first-line of systemic treatment for patients of this study.

Characteristic HR1 95% CI1 p-value

Age at diagnosis

< 65 Ref. Ref.

>= 65 1.45 1.07, 1.98 0.018

M stage

M0 Ref. Ref.

M1 1.63 1.15, 2.31 0.006

MX 0.98 0.69, 1.38 0.90

Fuhrman Grade

Grade I Ref. Ref.

Grade II 0.33 0.13, 0.84 0.020

Grade III 0.41 0.16, 1.04 0.062

Grade IV 0.19 0.05, 0.72 0.014

Sarcomotoid Feature

No Ref. Ref.

Yes 2.95 1.14, 7.60 0.025

Brain Metastases

No Ref. Ref.

Yes 2.30 1.27, 4.17 0.006

Bone Metastases

No Ref. Ref.

Yes 1.45 1.09, 1.94 0.011

Karnofsky PS

80 Ref. Ref.

90 0.54 0.27, 1.05 0.068

100 0.26 0.13, 0.52 <0.001

Hemoglobin < LLN

No Ref. Ref.

Yes 1.68 1.18, 2.39 0.004

LDH > 1.5*ULN

No Ref. Ref.

Yes 1.53 1.18, 1.98 0.001
fron
1HR, Hazard Ratio; CI, Confidence Interval.
Bold values: Significant p-value.
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TABLE 4 Performance of predictive machine learning models.

Model AUC 95% CI of AUC DeLong test p-value Specificity at Sensitivity = 0.90 McNemar test p-value

3-year overall survival starting first-line of systemic treatment, cross-validation

XGBoost 0.761 0.677-0.842 0.414

Random Forest 0.787 0.708-0.861 0.420

MLP 0.768 0.690-0.841 0.414

Ensemble Model 0.781 0.702-0.856 Ref 0.439 Ref

MSKCC 0.725 0.655-0.792 0.006 0.293 <0.001

IKCWG 0.613 0.574-0.651 <0.001 0.274 <0.001

IMDC 0.663 0.587-0.738 <0.001 0.191 <0.001

Modified IMDC 0.691 0.617-0.762 <0.001 0.376 0.050

3-year overall survival starting first-line of systemic treatment, hold-out

XGBoost 0.784 0.638-0.905 0.650

Random Forest 0.772 0.614-0.902 0.475

MLP 0.792 0.639-0.920 0.500

Ensemble Model 0.786 0.633-0.914 Ref 0.675 Ref

MSKCC 0.626 0.480-0.756 <0.001 0.250 <0.001

IKCWG 0.625 0.536-0.708 0.003 0.325 0.004

IMDC 0.617 0.467-0.753 0.004 0.150 0.001

Modified IMDC 0.636 0.477-0.789 0.007 0.400 0.004

5-year overall survival starting first-line of systemic treatment, cross-validation

XGBoost 0.782 0.689-0.868 0.485

Random Forest 0.792 0.704-0.874 0.441

MLP 0.792 0.704-0.874 0.460

Ensemble Model 0.800 0.711-0.882 Ref 0.460 Ref

MSKCC 0.717 0.635-0.794 0.003 0.243 <0.001

IKCWG 0.607 0.578-0.630 <0.001 0.233 <0.001

IMDC 0.656 0.568-0.744 <0.001 0.173 <0.001

Modified IMDC 0.717 0.626-0.805 <0.001 0.322 <0.001

5-year overall survival starting first-line of systemic treatment, hold-out

XGBoost 0.753 0.582-0.899 0.481

Random Forest 0.791 0.662-0.904 0.577

MLP 0.744 0.579-0.885 0.538

Ensemble Model 0.771 0.610-0.906 Ref 0.558 Ref

MSKCC 0.671 0.532-0.797 0.163 0.212 <0.001

IKCWG 0.644 0.616-0.672 0.058 0.288 0.011

IMDC 0.642 0.493-0.780 0.026 0.135 <0.001

Modified IMDC 0.655 0.465-0.828 0.024 0.365 0.007
F
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A B

DC

FIGURE 4

Comparison of the ensemble model and four traditional models for OS prediction for three- and five-year survival (A, B) for cross-validation sets (C, D)
for the hold-out set, respectively. The area under the curve (AUC) of the ensemble model is higher than all traditional models in the four presented
settings; M-IMDC stands for Modified IMDC.
A B

DC

FIGURE 3

ROC curves of the four models: XGBoost, Random Forest, MLP, and their ensemble for prediction of three- and five-year OS (A, B) for cross-validation
sets (C, D) for the hold-out set.
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3.3 Model explainability with SHAP analysis

We used the SHAP method for explainability of the predictive

machine learning models. The SHAP summary plot presents features

ordered top-down based on their impact on the outcome (three- and

five-year survival). The SHAP values of a feature are correlated to the

possibility of survival: positive SHAP value means positive impact on

the prediction, while negative ones lead the model to predict “no
Frontiers in Oncology 14
survival”. The dot color represents the values that each feature can

take: red for high values, blue for low values, and purple for values

that are close to the average value. Figure 6 shows the SHAP

explainability for Random Forest for survival outcomes. Consider

the “Karnofsky PS’’ feature from Figure 6A as an example. We see that

this feature is important for the model since it appears in the third

position from the top. The higher (red) values of this feature are

associated with a higher likelihood of survival. Patients with lower
A B

DC

FIGURE 5

Decision curve analysis graphs showing the net benefit produced by the models across all threshold probabilities. The depicted curves were obtained
using predictions of the ensemble model compared with well-known prognostic models, as well as two additional curves that were based on two types
of extreme decisions: curves referred to as ‘All’ represent the prediction that all patients would die in three to five years after treatment start. The curve
referred to as ‘None’ represents the prediction that all the patients would be alive in three to five years after treatment starts. (A, B) show the decision
curves of predictive models for the cross-validation set for three- and five-year OS, respectively. (C, D) show the decision curves of predictive models for
the hold-out set for three- and five-year OS, respectively. The decision curve indicates that the ensemble model has a higher benefit than the prediction
that all patients will die, or none will die; it is higher than all well-known models for the reasonable range of thresholds.
TABLE 5 Subgroup analysis - performance of the ensemble model in selected subgroups for three- and five-year overall survival.

Sub-group # Patients in sub-group AUC 95% CI of AUC

3-year overall survival starting first-line of systemic treatment

Females 56 0.866 0.742-0.938

No lung metastases 73 0.849 0.742-0.919

Bone metastases 51 0.876 0.747-0.947

5-year overall survival starting first-line of systemic treatment

T stage is pT1 or pT2 84 0.852 0.754-0.917

Metastases in lymph nodes 119 0.879 0.803-0.929

Number of metastatic sites > 2 179 0.845 0.782-0.893

Hemoglobin < LLN 54 0.961 0.860-0.993
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(blue) and average (purple) feature values have stronger influence on

the negative outcome. We see that the scores of well-known

prognostic models, such as MSKCC, Modified IMDC, and IKCWG

are important discriminators in the machine learning models as they

appear at the top of the plots. This can be explained by accumulated

knowledge encoded in their scoring mechanism that was evaluated on

a large number of patients. In addition, the time between diagnosis to

systemic treatment appears to be important for both outcomes. SHAP

demonstrates that its high and average values correlate with survival,

while low values do not. This can be explained as follows. Low values

(blue points) of time from diagnosis to systemic treatment are

associated with a synchronous metastatic disease, i.e. (usually) a

more aggressive disease. High (red) values relate to patients for

whom mRCC was diagnosed metachronously during the follow-up,

possibly suggesting (at least on average) a more indolent disease.
4 Discussion

In this retrospective analysis, we developed machine-learning-

based predictive models that incorporate clinical factors for the
Frontiers in Oncology 15
individualized prediction of three- and five-year survival for mRCC

patients starting a first-line of systemic treatment. To the best of our

knowledge, these are the first AI-based prediction models that were

developed for this task. The proposed models show favorable

discrimination in cross-validation (AUC 0.781 and 0.800 for three-

and five-year survival, respectively) and hold-out cohorts (AUC 0.786

and 0.771 for three- and five-year survival, respectively), with the

demonstration of better predictive performance than well-known

prognostic models for both cohorts and outcomes. For example, the

proposed model for three-year survival outperforms the best of the

well-known models (Modified IMDC) on the same cohort; it has an

outcome with the AUC metric (0.786 vs 0.636, DeLong test p-value =

0.007) and with specificity for sensitivity=90 (0.675 vs 0.40, McNemar

test p-value = 0.004). The presentation of good specificity results in

high sensitivity operations is a good criteria for the model’s

deployment in clinical practice. Our further analysis of model

performance in the cross-validation cohort revealed that for several

specific sub-populations, our models demonstrated even better

discrimination than on the whole cross-validation cohort. For

example, low T stages, patients with metastases in lymph nodes,

large number of metastatic sites, and low hemoglobin gives better
A

B

FIGURE 6

The Shapley additive explanations summary plots of 12 top features of the Random Forest model, ordered by their impact on 3-year (A) and 5-year (B)
survival, respectively.
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discrimination for the five-year survival model. For the three-year

survival model, this validation achieved high performance for women

patients without lung metastases or with bone metastases. These

results should be regarded as hypotheses-generating and would

require both further investigations, as well as validation using larger

cohorts in future work. The decision curve analysis revealed that the

proposed model had a higher overall net benefit than four well-known

prognostic models in predicting both three-year and five-year survival

for the ranges of reasonable threshold probabilities in both cross-

validation and hold-out cohorts. The highest clinical net benefit,

meaning the highest value of benefits minus drawbacks, is clearly

significant. Therefore, using this model in clinical practice may reduce

the cases of overtreatments and the number of redundant follow-ups.

The SHAP analysis that was performed for the model’s explainability

demonstrated no significant difference in feature importance between

models for both outcomes. This analysis revealed that models for both

outcomes significantly benefited from the enriched features of risk

scores of well-known models. We can see that the scores of the

IKCWG, MSKCC, and Modified IMDCmodels appear among the top

features. In addition, for both models, LDH, PLR, Karnofsky patient

performance, hemoglobin and time from diagnosis to first-line

treatment appear to be significant. Three of these features, LDH,

Karnofsky patient performance and hemoglobin, demonstrated

significance in all of the applied methods of statistical and survival

analyses. Significance of time from diagnosis to first systemic

treatment was only missing in multivariate Cox models; the PLR

was significant only in univariate analysis for both outcomes.

(Tables 2, 3, Supplementary Tables 1-3).

The validity of the developed model is also supported by the well-

known prognostic models which include the same top risk factors as

our model. Recent works on risk factors in RCC survival (38, 39)

indicate potential new features, like time to recurrence and renal

function, wich can be investigated in future studies.

As a whole, this study suggests that a machine-learning-based

model can better predict the outcome (in terms of three- and five-year

survival) of mRCC patients, as compared to standard prognostication

systems in a real-world setting. Augmenting the care process with these

AImodels can lead to improved patient care andmanagement. Clearly,

the advantage of this model should be weighed against its practical

feasibility, to take into account several limitations of our case series.

Indeed, this is a single-institution retrospective series that included

patients treated mainly with monotherapy. These treatments were

mainly represented by “old” targeted agents, while the present standard

of treatment is represented by immune-based combinations. Thus, a

prospective validation on a larger, multicentered, series of mRCC

treated with the present standards of treatment would be warranted.

This experience opens the need for further refinements. It is

intriguing to imagine the potential of adding to the present amount of

clinical data – just a touch of more complex tumor biology with more

in-depth features such as genomic alterations or signatures to predict

the suitability of immune-based therapies, PD-L1 expression,

mutational burden, and other.

We cannot propose to substitute presently available

prognostication models with this AI-based model, but it crystal

clear in our mind that this will be the future, when we will be able

to routinely combine different levels of biological insights of the

tumors affecting our patients.
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