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biomarker associated with
immunotherapeutic response
in head and neck squamous
cell carcinoma
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University, Guangzhou, China
Backgrounds: Immunotherapy is effective in a subset of head and neck squamous

cell carcinoma (HNSCC). However, the unfavorable response rate and inadequate

biomarkers for stratifying patients have primarily limited its clinical application.

Considering transcriptional factors (TFs) play essential roles in regulating immune

activity during HNSCC progression, we comprehensively analyzed the expression

alterations of TFs and their prognostic values.

Methods: Gene expression datasets and clinical information of HNSCC were

obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus

(GEO) repository. Then, Brain abundant membrane attached signal protein 1

(BASP1) was screened out of differentially expressed TFs by univariate and

multivariate survival analysis. Tumor immune dysfunction and exclusion (TIDE)

was applied to analyze the response to immunotherapy of BASP1high/low patients.

Meanwhile, GO, KEGG and GSEA analyses were used to enrich the pathways

between the BASP1high and BASP1low groups. Single-sample gene set enrichment

analysis (ssGSEA), CIBERSORT, EPIC and quanTiseq algorithms were applied to

explore immune infiltrations. Also, immune cycle analysis was conducted by

ssGSEA. Additionally, lipid peroxidation, glutathione and reactive oxygen species

were performed to detect the ferroptosis alternations.

Results: BASP1 was upregulated and associated with poor survival in HNSCC

patients. BASP1high patients exhibited better response rates to anti-PD-1

immunotherapy and higher expressions of immune checkpoint inhibitors. GO,

KEGG and GSEA analyses indicated that the expression of BASP1 was related to

several immune-related pathways and immunogenic ferroptosis signature. The

infiltration of activated CD8+ T cells was authenticated to be decreased in

BASP1high patients. Furthermore, BASP1 was identified to be positively correlated

with T cell dysfunction and immune escape. Moreover, silencing BASP1 triggered

ferroptosis in HNSCC cells, representing as increased LDH, lipid peroxidation and

ROS levels, and reduced glutathione synthesis
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Conclusions: We demonstrated that BASP1 suppressed immunogenic ferroptosis

to induce immunosuppressive tumormicroenvironment. BASP1 plays a critical role

in immune response, and might be a promising classifier for selecting HNSCC

patients who benefit from current immunotherapy.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is the 7th

most common malignant tumor worldwide with high mortality (1).

Immune checkpoint inhibitors (ICIs) therapies that recover T cell

cytotoxicity effect towards tumor cells have achieved remarkable

progress in multiple cancers (2–4). The programmed cell death 1

(PD-1) antibodies, pembrolizumab and nivolumab, have been

approved for the first-line treatment of recurrent/metastatic

HNSCC patients since 2019. Although the responses seem to be

durable to those who benefit from these agents, only a subset of

HNSCC patients is expected to respond to ICIs for the lack of reliable

predictive biomarkers (5, 6). Hence, the importance of developing

reliable predictive biomarkers for immunotherapy and ideal

therapeutic strategies for personalized clinical management of

HNSCC patients has been highlighted (7).

HNSCC tumors exhibit high heterogeneity of tumor

microenvironment (TME) and evade immune surveillance by a

number of different mechanisms (8). The immune cells in the TME

consist of tumor-infiltrating lymphocytes (TILs), including natural

killer (NK) cells, T cells and B cells, and myeloid-lineage cells,

including dendritic cells, neutrophils, and macrophages. The effector

CD8+ T cells and NK cells are the main components of immune killing

and tumor cell elimination, while Treg cells and M2 macrophages are

responsible for immune suppression and tumor progression. Molecular

signatures and biomarkers have been constructed as classifiers to

identify immune phenotypes of HNSCC tumors for predicting ICIs

therapy response, including epithelial-mesenchymal transition (EMT),

ferroptosis, etc. (9, 10). However, HNSCC patients who might respond

to ICIs therapy have not yet been identified.

Transcription factors (TFs) play a leading role in the initiation of

cancer progression via regulating the expressions of cancer hallmarks

genes (11), such as DNA damage and repair, EMT, and immune

response, and are potential prognostic biomarkers and therapeutic

targets for developing anticancer drugs (12). Our study has

demonstrated that SPDEF could transcriptionally activate NR4A1

to suppress the HNSCC progression (13). Additionally, a recent study

has mentioned that TYRO3 is a predictive biomarker for patient

stratification in breast cancers to suppress immune therapeutic

outcomes by limiting tumoral ferroptosis (14). TCF7 has been

recognized as a practical marker to predict positive clinical

outcomes in patients treated with anti-PD-1 therapy (15). However,

the prognostic prediction values and biological functions of TFs in

HNSCC remain unclear.
02
In this study, we comprehensively explored the aberrantly

expressed TFs in HNSCC and their correlation with the survival of

HNSCC patients. We identified that BASP1 was upregulated with

poor prognosis, and correlated with positive response to ICIs therapy.

We then performed functional enrichment and immune cell

infiltration analyses between the BASP1high and BASP1low patients.

Our results indicated that BASP1 was associated with immune cell

infiltration and ferroptosis in HNSCC and could predict prognosis

and anti-PD-1 therapeutic response, which might offer a novel

therapeutic strategy for HNSCC patients.
Materials and methods

Datasets and data preprocessing

RNA sequencing (RNA-seq, count and TPM values) and clinical

data were downloaded from the HNSC dataset of The Cancer

Genome Atlas (TCGA) database and calculated using

TCGAbiolinks R package (16). Transcripts per kilobase million

(TPM) values of RNA-seq data were used to compare the

differences in gene expression between normal (n=44) and tumor

(n=502) samples (17). Cases with insufficient or missing data were

deleted from subsequent data processing. GSE30784, GSE103322,

GSE41613 and GSE65858 were downloaded from the Gene

Expression Omnibus (GEO) repository with GEOquery R package

(18–22). GSE30784 and GSE103322 were used to analyze differential

expression genes, while GSE41613 and GSE65858 were used to

validate survival analyses. Furthermore, The TFs list was collected

from AnimalTFDB 3.0 (http://bioinfo.life.hust.edu.cn/AnimalTFDB/)

(23). Genes encoding immunomodulators and chemokines and gene

signatures of TILs were obtained from TISIDB (http://cis.hku.hk/

TISIDB). Ferroptosis scores referred to previous study (24).
Differential expression analysis of TFs

To obtain genes differentially expressed between tumor and

normal tissue, differentially expressed genes (DEGs, adjusted P-

value < 0.05, |log2FC| > 1) were screened by DEseq2 package with

the raw count data of HNSCC samples. The limma package was used

to analyze the differentially expressed TFs (DE-TFs) in GSE30784 and

GSE103322 with the threshold set at false discovery rate (FDR) < 0.05

& |log2FC| >1 and FDR < 0.05 & |log2FC| > 0.4, respectively. The
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intersection of three DE-TFs sets was achieved and the Venn plot was

drawn with Venngram package.
Prognosis analysis

Univariate Cox regression and the Kaplan-Meier method were

used to assess the prognostic role of DE-TFs in the overall survival

(OS) of HNSCC patients. The continuous variable of DE-TFs TPM

data was used in the univariate Cox regression. Then, candidates with

p < 0.05 were entered into stepwise multivariate Cox proportional

hazard regression models. High and low groups based on BASP1

expression (BASP1high and BASP1low) were applied to perform

Kaplan–Meier curves analysis, employing survminer and survival

packages. The best cut-off points were evaluated by the “surv-

cutpoint” function in the survminer R package. The log-rank P-

value and hazard ratio (HR) with 95% confidence intervals were

calculated and the survival analysis outcomes were presented as forest

plots, tables and Kaplan-Meier plots, respectively.
Gene function analysis

DEGs (adjusted P-value < 0.05) between low- and high- BASP1

expression groups were identified by the DESeq2 package. Then,

DEGs with a significant correlation with BASP1 (p < 0.05, |r| > 0.2)

were included in the Gene Ontology (GO), Kyoto Encyclopedia of

Genes and Genomes (KEGG) and Gene set enrichment analysis

(GSEA) analyses using ClusterProfiler package (25). The adjusted p

< 0.05 was set in GO and KEGG analysis, and bubble plot and bar plot

were applied to show the outcomes. Furthermore, the “gmt” file of the

hallmark gene set (h.all.v7.5.1.entrez.gmt) was obtained from

Molecular Signatures Database (MSigDB, https://www.gsea-msigdb.

org/gsea/index.jsp). FDR < 0.05, and normalized enrichment score (|

NES|) > 1 were considered significantly different and shown by

enrichplot package.
Immune features analysis

The Tumor Immune Dysfunction and Exclusion (TIDE, http://

tide.dfci.harvard.edu/) (26) algorithm was employed to evaluate the

exclusion of CTLs. And the evaluation of BASP1 as a biomarker was

obtained from the TIDE website. Additionally, ssGSEA was used to

assess the cancer immunity cycle based on the gene expression of each

sample (27).
Estimation of tumor microenvironment

We used multiple methods to infer the tumor microenvironment

based on the transcriptional profiles. The cibersort and cibersort-abs

(https://cibersort.stanford.edu/) method and LM22 gene signature,

including 22 immune cell types, were used to quantify the proportions

of immune cells in HNSCC samples. Additionally, quanTiseq,

MCPcounter, EPIC, and ssGSEA which were integrated into

immunedeconv package and GSVA package (28), were also used to
Frontiers in Oncology 03
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related scores were separated into BASP1high and BASP1low groups.
Cell culture

The HNSCC cell lines purchased from the American Type

Culture Collection (ATCC, Manassas, VA, USA) and the Japanese

Collection of Research Bioresources (JCRB, Tokyo, Japan) were

maintained in our laboratory. HSC3 and HSC4 cells were cultured

in DMEM/F12 medium (DMEM and F12 were 1:1 mixed) and MEM

medium (Gibco, Grand Island, NY, USA), respectively, supplemented

with 10% fetal bovine serum (FBS, BI, Kibbutz Beit Haemek, Israel).

Cells were cultured in 5% CO2 at 37°C. The cells proved to be free

from mycoplasma or cell cross-contamination.
Transfection of small interfering RNA

The BASP1-siRNAs were bought from GenePharma (Shanghai,

China). The sequences were as follows: NC: 5’-UUCUCCGAA

CGUGUCACGUTT-3’, 5’-UUCUCCGAACGUGUCACGUTT-3’; si-

1: 5’-GAGGCAAGCUCAGCAAGAATT-3’, 5’-UUCUUGCUGA

GCUUGCCUCTT-3’; si-2: 5’-GAGAAAGCCAAGGAGAAAGTT-3’,

5’-CUUUCUCCUUGGCUUUCUCTT-3’. For siRNA transfection,

HSC3 and HSC4 cells were seeded at 2.5 × 105 cells per well on 6-

well plates and transfected with siRNA and Lipofectamine 3000

(Invitrogen, Waltham, MA, USA) reagent when close to 60%

concentration, following the recommended instructions. After 24

hours, the transfected cells were harvested for further study.
Cytotoxicity assays

Cytotoxicity was measured by the Cytotoxicity Detection Kit

(LDH) (Roche, Mannheim, Germany) according to the

manufacturer’s instructions. Briefly, the transfected cells were

seeded in black 96-well plates (Corning, NY, USA) at 2,000 - 3,000

cells per well for 24 hours. Cell supernatant was collected and

centrifuged at 400g for 5 min and discarded cell precipitation. 100

ml cell supernatant per well was added to a black 96-well plate. Then,

100 ml LDH Reaction Mixture was added to the supernatant. The

mixture was incubated at room temperature away from light for

30 min. The absorbance (490 nm) was measured with a

multifunctional microplate reader (BioTek, USA). The BCA

quantitative method was performed to normalize the number of

cells per well.
Western blot

Cells were washed with icy phosphate-buffered saline (PBS,

Pleasanton, CA, USA) and lysed with lysis buffer (CWBIO, Beijing,

China) containing 1% protease inhibitor Cocktail (CWBIO) and 1%

phosphatase inhibitors (CWBIO). All protein lysates were centrifuged

with 10000g at 4°C for 15 min to remove cell precipitates. Protein

concentration was measured using the BCA Protein Assay Kit
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(Thermo Fisher Scientific, Waltham, MA, USA). Then, loading buffer

was added to the proteins and cooked at 99°C for denaturation.

Proteins were loaded on a 10% SDS PAGE Gel and transferred onto a

PVDF membrane (Millipore, Boston, MA, USA). After being blocked

with milk, the membranes were incubated with indicated primary

antibody at 4°C overnight. The primary antibodies were listed

as fol lows: BASP1 (Bioss , Bei j ing, China, 1:1000) and

GAPDH (Proteintech, Rosemont, IL, USA, 1:2000). The HRP-

linked secondary antibody (CST, Danvers, MA, USA 1:3000)

was incubated at room temperature for one hour. The

chemiluminescence signals were detected by ChemiDoc Touch

Imaging System (Bio-Rad, Berkeley, CA, USA).
Quantitative RT-PCR

Following the manufacturer’s instructions, total RNA was extracted

by the RNeasy kit Mini Kit (Qiagen, Dusseldorf, Germany). Briefly, 2mg
RNA was transformed into cDNA by reverse transcription reaction

with random primers (Vazyme, Nanjing, China). The qPCR was

performed on cDNA using TransStart® SYBR Green qPCR

SuperMix (TransGen, Beijing, China) on a StepOnePlus™ Real-Time

PCR System (Thermo Fisher Scientific). The primers were listed as

follows: BASP1 forward: 5’-GCCCAGGAGACCAAAAGTGA-3’,

BASP1 reverse: 5’-CCTTGGGTGTGGAACTAGGC-3’; GAPDH

forward: 5’-CTCCTCCTGTTCGACAGTCAGC-3’, GAPDH reverse:

5’-CCCAATACGACCAAATCCGTT-3’. GAPDH was used as the

endogenous control. The DDCt was used to calculate the relative

mRNA expression.
Lipid peroxidation

Cells were stained with 5mM BODIPY C11 (Invitrogen) at 37°C

for 10 min. Then, cells were washed with PBS to remove the dye,

digested with trypsin and resuspended in 500ml PBS. After that, cells
were passed through a 40mm cell strainer (Corning) and analyzed

using the 488 nm laser of a flow cytometer (Beckman, Indianapolis,

IN, USA) and analyzed by FlowJo V10 software (BD, Franklin Lakes,

NJ, USA).
Glutathione quantification

The 5×104 cells per well were seeded in a 96-well plate and

harvested for measurement of glutathione using the GSH and GSSG

Assay Kit (Beyotime, Shanghai, China) according to the

manufacturer’s protocol. The Glutathione (GSH) and Oxidized

Glutathione (GSSG) concentrations were calculated using a

standard curve. The calculation formula is as follows: GSH = Total

Glutathione - GSSG × 2.
Reactive oxygen species detection

Cytosolic ROS (cROS) was detected by the Reactive Oxygen

Species Assay Kit (Beyotime). Cells were seeded in a 6-well cell
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culture plate and incubated with PBS containing 10mM DCFH-DA

at 37°C for 30min in darkness when the cell concentration reached

80%. Staining cells were collected and washed with PBS. DCFH-DA

was detected at the wavelengths of 488nm using flow cytometer.
Statistical analysis

All the statistical analysis was executed by R software (version

4.2.0) and GraphPad Prism software (version 8.0.1). If the data

followed Gaussian distribution, the parametric test (unpaired

student’s test, one-way ANOVA, or Pearson correlation) was

conducted. Otherwise, the nonparametric test (Wilcoxon rank test

or Spearman correlation) was performed. All data was presented as

the mean ± s.d. P < 0.05 was considered statistically significant.
Results

High BASP1 is related to poor survival of
HNSCC patients

The differentially expressed TFs between normal and HNSCC

tissues were screened out following the workflow shown in Figure 1A.

Totally, 45 differentially expressed TFs were identified in HNSCC

tissues in TCGA-HNSC, GSE103322 and GSE30784 datasets

(Figures 1B, C). Univariate Cox regression analysis identified 14

differentially expressed TFs, which were correlated with the overall

survival of HNSCC patients (Figure 1D). The multivariate Cox

regression analysis showed that only BASP1 was associated with

patients’ overall survival in either the crude model or the adjusted

Model I/II models, indicating that BASP1 was an independent risk

factor of HNSCC (Table 1).

In contrast to the normal tissues, the expressions of BASP1 were

higher in both unpaired and paired HNSCC specimens (Figure 2A).

We examined the mRNA levels of BASP1 in human oral keratinocytes

cell line (HOK) and HNSCC cell lines using qPCR, and confirmed that

BASP1 was upregulated in HNSCC cell lines (Figure 2B). The Kaplan-

Meier survival analysis illustrated those patients with high BASP1

expression levels were associated with poorer overall survival than

those with low expression levels in TCGA, GSE41613 and GSE65858

(Figures 2C–E). Meanwhile, BASP1low group had a better prognosis in

disease specific survival (DSS) (Supplementary Figure S1). Thus, these

results demonstrated that BASP1 upregulation was correlated with

unfavorable survival in HNSCC patients.
High BASP1 level exhibits better response to
anti-PD-1 immunotherapy

Then, we wondered whether BASP1 expression was associated

with immunotherapy response. The TIDE algorithm was performed

to predict the response rate to immunotherapy, which demonstrated

that patients with high BASP1 had a better prognosis in anti-PD-1

therapy in melanoma (Figure 3A). The TIDE biomarker evaluation

modular showed that BASP1 was potential to stratify immunotherapy

patients for precision therapy compared to other indicators
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B

C D

A

FIGURE 1

The expressions and prognostic values of TFs in HNSCC. (A) Workflow of identifying BASP1 in HNSCC. (B) Heatmap of differentially expressed TFs
between normal controls and HNSCC tissues in the TCGA database, GSE103322 and GSE30784. (C) Venn plot of the intersection of three cohorts of
differentially expressed TFs. (D) The forest plot of 14 TFs correlated with HNSCC overall survival in the univariate Cox regression model.
TABLE 1 Relationships between the expressions of TFs and overall survival of HNSCC patients.

Outcome
Crude Model Model I Model II

HR (95%) P-value HR (95%) P-value HR (95%) P-value

PITX2

High expression Reference Reference Reference

Low expression 0.65(0.47-0.9) 0.01 0.67(0.48-0.93) 0.017 0.93(0.29-3) 0.899

CCNA1

High expression Reference Reference Reference

Low expression 0.58(0.44-0.76) <0.0001 0.56(0.43-0.73) <0.0001 0.57(0.19-1.72) 0.316

BASP1

High expression Reference Reference Reference

Low expression 0.64(0.49-0.84) 0.001 0.63(0.48-0.83) 0.001 0.23(0.08-0.64) 0.005

BIRC5

High expression Reference Reference Reference

Low expression 0.67(0.5-0.89) 0.005 0.62(0.46-0.83) 0.001 1.46(0.59-3.62) 0.419

PLK1

High expression Reference Reference Reference

Low expression 0.64(0.47-0.88) 0.005 0.62(0.45-0.85) 0.003 0.37(0.13-1.01) 0.053

GRHL3

(Continued)
F
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(Figures 3B, C). Furthermore, the immunoinhibitors (CD276, CD274,

CSF1R, HAVCR2, IL10, KDR, PDCD1LG2, TGFB1 and TGFBR1)

were high expressed, while the immunostimulators (CD40LG,

HHLA2, KLRK1, TNFRSF13B, TNFRSF13C, TNFRSF17,

TNFRSF18, and TNFSF18) were low expressed in BASP1high

HNSCC patients (Figure 3D). Therefore, these results demonstrated

that BASP1 was correlated with immune activity, and patients with

high BASP1 levels exhibited favorable immunotherapy response rates.
BASP1 reduced the CD8+ T cells infiltration
into the tumor microenvironment of HNSCC

To elucidate the roles of BASP1 in HNSCC progression and the

mechanism of enhancing immunotherapy response, we detected the
Frontiers in Oncology 06
differentially expressed genes between BASP1high and BASP1low

groups. The GO, KEGG and GSEA analyses were performed to

examine the different pathways enrolled in the two subtypes. GO

and KEGG analysis showed that differentially expressed genes were

enriched in several oncogenic signaling pathways, such as Wnt and

MAPK signaling pathways, and immune-related signals, such as

leukocyte migration, macrophage differentiation, and monopolar

cell polarity (Figures 4A–C). Besides, GSEA demonstrated that

BASP1 was positively correlated with angiogenesis, KRAS, EMT,

hypoxia, complement and inflammatory response (Figure 4D).

TME plays a fundamental role in tumor progression and

immunotherapy response. To explore the correlation between

BASP1 expression and TME, we firstly determined the difference in

HNSCC TME cell infiltration components between BASP1 subtypes.

ESTIMATE analysis showed that the stromal and estimate scores of
TABLE 1 Continued

Outcome
Crude Model Model I Model II

HR (95%) P-value HR (95%) P-value HR (95%) P-value

High expression Reference Reference Reference

Low expression 1.42(1.07-1.87) 0.014 1.42(1.08-1.87) 0.013 1.1(0.37-3.25) 0.868

EHF

High expression Reference Reference Reference

Low expression 1.63(1.2-2.23) 0.002 1.61(1.18-2.19) 0.003 1.39(0.46-4.18) 0.556

TENM2

High expression Reference Reference Reference

Low expression 0.67(0.51-0.89) 0.006 0.69(0.52-0.91) 0.009 0.69(0.27-1.75) 0.435

HOPX

High expression Reference Reference Reference

Low expression 1.62(1.18-2.22) 0.003 1.7(1.23-2.33) 0.001 0.52(0.15-1.81) 0.307

MEIS1

High expression Reference Reference Reference

Low expression 1.62(1.23-2.14) 0.001 1.55(1.17-2.05) 0.002 2.28(0.84-6.16) 0.105

PITX1

High expression Reference Reference Reference

Low expression 1.44(1.1-1.89) 0.009 1.43(1.09-1.88) 0.01 1.25(0.4-3.94) 0.702

KLF7

High expression Reference Reference Reference

Low expression 0.58(0.41-0.83) 0.003 0.59(0.41-0.84) 0.004 0.39(0.08-1.83) 0.235

ZNF281

High expression Reference Reference Reference

Low expression 0.69(0.49-0.97) 0.033 0.66(0.47-0.93) 0.018 1.11(0.35-3.47) 0.859

PRNP

High expression Reference Reference Reference

Low expression 0.68(0.52-0.89) 0.005 0.67(0.51-0.88) 0.004 0.55(0.22-1.4) 0.214
fron
Model I adjusted for age and sex.
Model II adjusted for age, sex, alcohol history, HPV, pathologic stage, pathologic t, clinical n.
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FIGURE 2

The expression and prognosis of BASP1 in HNSCC. (A) The box plot of BASP1 expressions between normal tissues and paired/unpaired HNSCC tissues.
(B) The mRNA levels of BASP1 in HOK and HNSCC cell lines (UM1, CAL27, CAL33, HSC2, HSC3, HSC6, HSC4, HN6, and SCC4). (C-E) Kaplan-Meier
survival curve of BASP1 in HNSCC from TCGA HNSC (C), GSE41613 (D), and GSE65858 (E). * p < 0.05; **** p < 0.0001.
B

C D

A

FIGURE 3

The relationship between BASP1 expression and immunotherapy. (A) Overall survival of BASP1high group and BASP1low group in melanoma patients that
accepted anti-PD1 therapy. (B, C) The evaluation of immunotherapy biomarkers in TIDE. (D) Boxplot of the immune molecules expressions in BASP1high

and BASP1low HNSCC patients. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
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the BASP1high group were higher than the BASP1low group, yet the

immune score was not statistically significant, indicating no difference

in total immune cells infiltration between BASP1high and BASP1low

patients (Figure 5A). Then, we calculated the differences of subgroups

of immune cells according to BASP1 expressions using ssGSEA

analysis, which clarified that the activated CD8+ T cells were

reduced in BASP1high group though most immune cells were

increased in BASP1high group (Figure 5B). CIBERSORT also

confirmed that the proportion of CD8+ T cells was obviously

downregulated in BASP1high group (Figure 5C). Furthermore, the

expression of BASP1 was negatively correlated with CD8+ T cells

infiltration (Figure 5D). Given that CD8+ T cell is the critical mediator

of cytotoxic effector in killing tumor cells (29), to further illustrate the

killing power of BASP1high tumor, the quenTiseq, EPIC, and

Cibersort-ABS were applied to assess the infiltration of activated

CD8+ T cells. Similarly, all the algorithms clarified that the activated

CD8+ T cells were lower in the BASP1high group (Figure 5E). In

addition, cancer-associated fibroblasts (CAFs), which act as stromal

cell clusters and promote the recruitment and activation of

immunosuppressive cells (30), were substantially elevated in

BASP1high tumors (Figure 5F). Collectively, these results indicated

that BASP1high patients had decreased activated CD8+ T cells

infiltration and immunosuppressive TME in HNSCC.
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BASP1 inhibited the priming and activation
of CD8+ T cells

Generally speaking, immune cells kill tumor cells in a process

with seven steps, including the cancer cell antigens releasement (step

1), cancer antigen presentation (step 2), priming and activation (step

3), trafficking of immune cells to tumors (step 4), infiltration of

immune cells into tumors (step 5), recognition of cancer cells by T

cells (step 6), and killing of cancer cells (step 7) (31). To explore why

activated CD8+ T cells were reduced in the BASP1high group, we

investigated which step in the immune cycle was disrupted. The

ssGSEA was applied to score each step of the immune circulation. As

the results showed, although the release of cancer antigens (step1) and

cancer antigen presentation (step2) were enhanced in BASP1high

patients, there was no significant difference in the priming and

activation (step 3) was identified between these two groups,

indicating that the reduced CD8+ T cells infiltration was due to a

dysfunction of immune cell priming and activation activity in

BASP1high patients (Figure 6A). At the same time, a series of major

histocompatibility complex (MHC) molecules and chemokines and

their receptors were enhanced in the BASP1high group, which

excluded the possible interruption of other steps (Figures 6B–D).

Moreover, TIDE analysis of the T cell’s functional changes in TME
B

C

D

A

FIGURE 4

The signaling pathways associated with BASP1 expressions. (A, B) Bubble plot of GO analysis of differentially expressed genes between BASP1high and
BASP1low group, including biological processes (A) and molecular functions (B). (C, D) KEGG (C) and GSEA (D) analysis of differentially expressed genes
between BASP1high and BASP1low group.
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showed a positive correlation between exclusion score and BASP1

expressions, indicating that the cytotoxic function of T cells was

abnormal. The ability of tumor cells evading from immune cells was

enhanced in BASP1high patients (Figure 6E). Thus, these outcomes

demonstrated that high expression of BASP1 was correlated with T

cell dysfunction and immune escape.
The immunosuppressive effect of BASP1 is
associated with its repression effect on
ferroptosis in HNSCC

The GO enrichment analysis indicated that the differentially

expressed genes between BASP1high and BASP1low tumors were
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correlated with response to lipid metabolism, hypoxia, metal ion,

ROS metabolism and oxidoreductase activity (Figure 2A), which are

the features of ferroptosis. Considering the critical role of ferroptosis

in immune responses (32–34), we wondered whether BASP1

regulated the TME via ferroptosis in HNSCC. The ferroptosis score

showed a negative correlation with BASP1 expression (Figure 7A).

HNSCC patients with higher ferroptosis scores had better prognosis

(Figure 7B). Then, we examined the effect of BASP1 on ferroptosis in

HNSCC cells. We transiently knocked down BASP1 in HSC3 and

HSC4 cell lines using siRNAs according to the mRNA expression of

BASP1 (Figures 7C, D). LDH assays indicated that silencing BASP1

increased cell death in HNSCC cells (Figure 7E). The ROS contents

detected by fluorescent dyes DCFH-DA were obviously elevated in

the si-BASP1 groups (Figure 7F). Meanwhile, knocking down BASP1
B
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FIGURE 5

Immune characteristics in different subtypes based on BASP1 expression in HNSCC. (A) The immune score and stromal score in BASP1high group and
BASP1low group determined using ESTIMATE. (B) Boxplot of immune cells infiltration with ssGSEA score in BASP1high group and BASP1low group. (C) The
fractions of immune cells in BASP1high group and BASP1low group. (D) The correlations between BASP1 expressions and cell proportions. (E) Boxplot of
the CD8+ T cells infiltration evaluated by EPIC, CIBERSORT-ABS and quanTiseq. (F) The stromal cell fractions in TME with TIDE, MCPcounter and EPIC.
* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
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inhibited GSH synthesis (Figure 7G). Lipid peroxidation detected by

C11-BODIPY staining was substantially increased in the si-BASP1

group compared to the control group (Figure 7H). Additionally, we

analyzed the relationships between BASP1 and ferroptosis signature

genes. We found that BASP1 was positively correlated to ACSF2,

ACSL3, FTH1 and CD44, which have been reported to inhibit

ferroptosis, and negatively correlated to ALOX12, ALOX15, GLS2,

PEBP1 and GOT1, which could enhance ferroptosis (Supplementary

Figure S2). Hence, these data illustrated that BASP1 inhibited

ferroptosis in HNSCC cells.
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Discussion

In the present study, through comprehensively examining the

abnormal expressions of TFs and their correlations with HNSCC

patients’ clinical outcomes, we identified BASP1 played critical roles

in HNSCC. Patients with high BASP1 expression levels were

associated with poor prognosis and favorable anti-PD-1 therapy

responses. Mechanistically, BASP1high tumors were along with

weakened priming and activation of CD8+ T cells in TME and low

ferroptosis signature. Together, our results demonstrated that BASP1
B
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FIGURE 6

The landscape of BASP1 in the immunity cycle. (A) Characteristics of immune microcirculation in BASP1high group and BASP1low group. (B-D) Boxplot of
the antigen-presenting molecule MHC (B), chemokine (C) and chemokine receptor (D). (E) The relationship between BASP1 expression and immune
escape. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. ns, means no significance.
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could suppress tumor cell ferroptosis and induce an alteration of

immune TME, which might be a predictive biomarker for

antitumor immunotherapy.

BASP1 was initially identified as a plasma membrane-bound,

cytoplasmic and cytoskeleton-associated protein from brain extracts,

which is recognized to be essential in axon regeneration and neuronal

plasticity (35). It is also widely expressed in other tissues and could

translocate into the nucleus to interact with other TFs to drive cell

differentiation processes (36). Recently, BASP1 was found to be

aberrantly expressed in different cancers and implicated in

regulating cell proliferation, metastasis, apoptosis and angiogenesis

and acted as either a tumor suppressor or oncogene (37–40). For

instance, BASP1 hypermethylation and downregulation in

hepatocellular carcinoma were considered as a biomarker for early

detection (41). In breast cancer, BASP1 could enhance the anticancer

effects of tamoxifen treatment, and patients with high BASP1 were

associated with better prognosis (42). Besides, BASP1 upregulation

was considered as a high-risk factor in lung adenocarcinoma, cervical

cancer, as well as in HNSCC (38, 43). Nevertheless, the biological

roles and mechanism of BASP1 in regulating HNSCC progression
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remain unclear. In this study, we identified that BASP1 was

upregulated in HNSCC patients. Higher BASP1 level was correlated

with poorer survival and better anti-PD-1 immunotherapy

response rate.

TME is a vital factor for clinicians choosing immunotherapy strategies.

Most HNSCC tumors exhibit highly immunosuppressive3TME, where

immunosuppressive factors promote immunosuppressive cell recruitment

and inhibit the antitumor effects of immune-activated cells (8). Increased

infiltration of CD8+ T cells and NK cells has been recognized to be

associated with improved survival, whereas elevated infiltration of Treg

cells, M2macrophages and neutrophils are related to advanced disease and

poor clinical outcomes (44). Upregulation of immune checkpoint

inhibitors (e.g., PD-1/PD-L1) attenuates the cytolytic activity of CD8+ T

cells in HNSCC (45). Here, we found that, although there was no

significant difference in the total immune score between BASP1high and

BASP1low tumors, BASP1high ones exhibited reduced and exhausted

cytotoxic CD8+ T cells, which have critical influence on immune

checkpoint blockade therapy efficacy (46). Furthermore, the increased

immune checkpoint inhibitors and reduced immune checkpoint

stimulators in the BASP1high group also indicated an exhausted
B C

D E F
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FIGURE 7

Relationship between BASP1 and ferroptosis. (A) The correlation between ferroptosis score and BASP1 expression. (B) Survival curves of ferroptosis
scores in BASP1high group and BASP1low group. (C, D) The mRNA (C) and protein (D) levels of BASP1 in HSC3 and HSC4 cells transfected with BASP1
siRNAs. (E–H) Relative LDH (E), cROS (F), GSH (G) and lipid peroxidation (H) of HSC3 and HSC4 cells transfected with BASP1 siRNAs. * p < 0.05.
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environment (47). Moreover, step3 in the cancer-immunity cycle revealed

a blockage of T cell activation in BASP1high tumors. Thus, high BASP1

expression might negatively influence the activity of immune cells.

The immunosuppressive TME of HNSCC is governed by multiple

immune regulatory pathways, which provide the rationale for

combinatorial strategies in patients with HNSCC (45). Previous

studies mentioned that tumor cells could trigger antitumor

immunity by inducing immunogenic cell death, including

ferroptosis, necroptosis and pyroptosis. ICIs coordinated with

immunogenic cell death could achieve better outcomes even in ICI-

resistant tumors (48). We clarified that BASP1high tumors exhibited

suppressed ferroptosis signature. Silencing BASP1 could substantially

induce ferroptotic tumor cells in HNSCC. Ferroptotic cancer cells can

release several immune-stimulating signals, allowing immune cells to

infiltrate tumors (49). Furthermore, the increased immunogenicity of

ferroptotic cancer cells has been reported to induce tumor-specific

immune responses, enhancing the efficacy of anti-PD-1/PD-L1

therapy (50). Thus, we proposed that it could be possible to utilize

BASP1 as a therapeutic target or biomarker for stratification in

HNSCC immunotherapy, which needs further elucidation.

However, there are several limitations existed in this study. For

example, the prediction effect of BASP1 on the response rate to

immunotherapy was performed in melanoma, which need to be

further studied in HNSCC patients in the future. The mechanism

of BASP1 suppressing ferroptosis to influence TME in vitro and in

vivo need to be further validated.
Conclusion

In conclusion, we identified BASP1 as a poor prognostic biomarker

for HNSCC, revealed its potentiality in predicting immunotherapy

response, and offered a novel candidate for stratifying patients in

immunotherapy of HNSCC. We pointed out that combining BASP1

inhibition induced ferroptosis might be a potential therapeutic method

for overcoming immunotherapy resistance.
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