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Background: Ewing’s sarcoma (ES) is one of the most prevalent malignant bone

tumors worldwide. However, the molecular mechanisms of the genes and

signaling pathways of ES are still not well sufficiently comprehended. To identify

candidate genes involved in the development and progression of ES, the study

screened for key genes and biological pathways related to ES using bioinformatics

methods.

Methods: The GSE45544 and GSE17618 microarray datasets were downloaded

from the Gene Expression Omnibus (GEO) database. Differentially expressed genes

(DEGs) were identified, and functional enrichment analysis was performed. A

protein–protein interaction (PPI) network was built, and key module analysis was

performed using STRING and Cytoscape. A core-gene was gained and was

validated by the validation dataset GSE67886 and immunohistochemistry (IHC).

The diagnostic value and prognosis evaluation of ES were executed using,

respectively, the ROC approach and Cox Regression.

Results: A total of 187 DEGs, consisting of 56 downregulated genes and 131

upregulated genes, were identified by comparing the tumor samples to normal

samples. The enriched functions and pathways of the DEGs, including cell division,

mitotic nuclear division, cell proliferation, cell cycle, oocyte meiosis, and

progesterone-mediated oocyte maturation, were analyzed. There were 149

nodes and 1246 edges in the PPI network, and 15 hub genes were identified

according to the degree levels. The core gene (UBE2T) showed high expression in

ES, validated by using GSE67886 and IHC. The ROC analysis revealed UBE2T had

outstanding diagnostic value in ES (AUC= 0.75 in the training set, AUC = 0.90 in the

validation set). Kaplan-Meier (analysis of survival rate) and Cox Regression analyses

indicated that UBE2T was a sign of adverse results for sufferers with ES.

Conlusion: UBE2Twas a significant value biomarker for diagnosis and treatment of

ES, thereby presenting a novel potential therapeutic target for ES as well as a new

perspective for assessing the effect of treatment and prognostic prediction.
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Highlights
Fron
1. Ewing’s sarcoma (ES)-related DGEs were verified ground on

the GEO database and TCGA database.

2. In all 187 DEGs and 15 hub genes were closely associated

with the progression of ES.

3. One key alteration gene (UBE2T) was differently expressed

between tumor specimens and normal specimens, suggesting

that this gene may be a latent prognosis predictor for ES

stufferers.

4. Validation set and IHC confirmed that the UBE2T was

overexpressed in ES but not in normal tissues.

5. In patients with ES, UBE2T can be used as a biomarker with

important diagnostic value as well as an independent

prognosis. The discovery of UBE2T will provide a new

perspective for ES research.
1 Introduction

Ewing sarcoma (ES), an invasive ossature and soft-tissue cancer, is

a frequent malignant bone tumor, ranking second among the

pediatric population, and it also affects adolescents (1, 2). Presently,

the standard of treatment for ES involves multimodal therapy,

including surgical resection, local radiation therapy, and intensive

multiagent chemotherapy (3). Despite tremendous advances in

diagnosis, treatment, and prognosis of this illness with the

advancement of medicine, nonspecific clinical features of ES give

rise to symptoms that are unremarkable in the early stages, and high

metastasis and recurrence rates have become the main poor outcomes

of treatment(2, 4, 5). Furthermore, as the complete mechanisms of the

molecular pathology for ES tumorigenesis and progression are

unknown, there are few efficacious ways available to early diagnose

the disease, resulting in a high mortality rate and death rate. As a

result, successfully implementing diagnosis and treatment approaches

requires a thorough insight into the mechanisms of the molecular

biology underlying tumorigenesis, multiplication, and recurrence

of ES.

Affymetrix techniques and bioinformatics research have been

increasingly employed to monitor gene expression levels in recent

decades, allowing for the efficiently identification of DEGs and

functional pathways related to the tumorigenesis and development

of ES. There are many microarray data sets shared and kept in

accessible web databases. In order to the screening of additional

molecular markers, many microarray data information for identifying

ES genes can be available from the database. To evaluate DEGs

between tumor specimens and nontumor specimens, two microarray

datasets collected from the GEO (Gene Expression Omnibus) (6) data

bank were obtained and processed in this study. And to research the

latent functions of these DEGs, we applied GO (Gene Ontology) (7,

8), KEGG (Kyoto Encyclopedia of Genes and Genomes) (9) pathway

enrichment study, and PPI (protein–protein interaction) network

research. Finally, the current investigation discovered a total of 187

DEGs, 15 hub genes and 1core DEGs, and further validation

experiments, diagnostic value and prognosis analysis were carried
tiers in Oncology 02
out on core-DEGs, which discovered a valuable latent biomarker for

the diagnosis, remedy, and prognosis evaluation of ES (Figure 1).
2 Materials and methods

2.1 Microarray data

This currently study obtained two training datasets, the

GSE17618 (10) and GSE45544 (11) from the GEO data bank

(http://www.ncbi.nlm.nih.gov/geo) (6), which is a publicly

accessible functional genetic and genomic data repository for high-

throughput gene expression information, chips, and microarrays. The

GSE45544 dataset (including 20 ES and 22 noncancerous tissue

specimens) is dependent on Affymetrix GPL6244 platform data

(Affymetrix Human Gene 1.0 ST Array), whereas the GSE17618

dataset (73 specimens, ES n = 55 and normal n = 18) is built on

Affymetrix GPL570 platform data (Affymetrix Human Genome U133

Plus 2.0 Array). Furthermore, the GSE68776 (12) from the GPL570

platform (Affymetrix Human Exon 1.0 ST Array) was extracted as a

validation dataset (ES specimens n = 32; normal n = 33) to be

used later.
2.2 Identification of DEGs

The GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r) was

executed to pick out the DEGs between ES and noncancerous
FIGURE 1

This study’s flow diagram. GEO, Gene Expression Omnibus database; ES,
Ewing’s sarcoma; DEGs, Differentially expressed genes; GO, Gene
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI,
protein-protein interaction; IHC, Immunohistochemical.
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specimens. GEO2R is a web-based interactive tool that allows clients

to gain data by comparing two or more GEO series datasets to

discover DEGs from experimental results, to analyze DEGs, and to

determine highly expressed and negatively regulated DEGs between

ES samples and normal specimens. And, the adjusted P values (adj. P)

and Benjamini and Hochberg false discovering rates were employed

to provide a balance between the excavation of statistically

meaningful genes and the restrictions of false-positives. Probe sets

with no associated gene symbols were eliminated, as were genes with

multiple probe sets. |logFC (fold change)| ≥ 2 and adj. P values < 0.01

were deemed statistically meaningful.
2.3 DEG enrichment research using GO
and KEGG

The Databank for Annotation, Visualization, and Integrated

Discovery (DAVID; http://david.ncifcrf.gov) (6.8 version)(13) is a

publicly viewable laboratory biological information data bank that

incorporates analytical and statistical tools based on biological

analysis and offers a wide range with a suite of integrated

functional annotation data of proteins and genes to continue

investigating biological data information. GO is a computer-based

bioinformatics software that is mostly used to annotate genes and

research their biological processes (7). KEGG is a computer statistical

resource database that evaluates high-standard biological processes

and function systems from a wide range of molecular datasets and

discovers pathways in which DEGs may play a major role (14). The

DAVID online information system was implemented for the

functional study of DEG biology. P < 0.05 was accepted as

statistical significance.
2.4 Building and analyzing of the PPI
network and module

The PPI network was built utilizing the STRING (Search Tool

for the Retrieval of Interacting Genes, http://string-db.org) (11.0

version) (15) online database. Assessing and analyzing protein-

protein interactions may critically reveal the mechanisms of the

generation or progression of illnesses. An interaction with a

combined score > 0.4 was considered statistically significant.

Cytoscape (3 .8 .2 vers ion) is an avai lable open-source

bioinformatics software tool utilized to visualize network systems

of molecular interaction (16). And, the MCODE (Molecular

Complex Detection) (2.0 version) plugin of Cytoscape is an

application (APP) software used to search densely connected

regions in large PPI networks (17) and to verify the most major

module section (MCODE-DEGs). the following conditions for

filtering were used: MCODE scores are greater than 5, the degree

cutoff is 2, the node score cutoff is 0.2, the maximum depth is 100,

and the k-score is 2,. and the biological process investigation was

carried out with Cytoscape ClueGO (18) (version 2.5.8). Next, a

hierarchical clustering (using R the pheatmap package) of MCODE-

DEGs was implemented based on the expression profiling of

training datasets.
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2.5 Core-DEG choice and verification set
detection

The degree levels in the cytoHubba (19) Cytoscape plugin were

implemented to define the hub genes. Cytoscape ClueGO (18)

(version 2.5.8) was used to depict the biological process

investigation of core genes. Furthermore, mutant survival, including

overall survival and illness-free survival, was assessed to further

screen the hub gene core-DEG employing Kaplan-Meier methods

in the cBioPortal web tool (http://www.cbioportal.Org) (20). Then,

GSE68776 (ES n = 32, control n = 33) was used to validate the

expression of the core-DEG, which was depicted in the volcano plot

by the “ggplot2” software.
2.6 Immunohistochemistry experiment

A total of 11 paraffin-embedded Ewing’s sarcoma tissues (8 males

(72.73%) and 3 females (27.27%)) were provided by Daping Hospital

(Chongqing, China). All patients signed a written informed consent

form. 3mm tumor paraffin sections were blocked for 1 hour at room

temperature with sheep serum blocking solution (Zhongshan Jinqiao,

China), then diluted 1/100 with anti-UBE2T antibody and anti-CD99

antibody(Cohesion Biosciences, UK) at 4 °C overnight. Then, for 2

hours at room temperature, goat anti rabbit secondary antibody

(1:200 dilution; Biyuntian, China) was administered for color

development (Zhongshan Jinqiao, China), and the nucleus was

stained with hematoxylin. The results were then examined under an

optical microscope (Ningbo Konfoong, China). Besides, to assess the

area and density of stained regions, as well as the internal grating

optical density (IOD) values of IHC sections, Image Pro Plus version

6.0 software (Media Cybernetics, Rockville, MD, USA) was

employed. The signal density of a tissue region chosen at random

from five locations was counted and statistically assessed using a

blind approach.
2.7 Diagnostic value analysis of
UBE2T in the ES

The receiver operating characteristic curve (ROC) technique in

the Python package was executed to analyze core gene diagnostic

effectiveness according to the training set and validation set.
2.8 Identification of DEGs subgroups in ES

To better understand the biological phenotype of MCODE-DEGs

regulation in the tissue of ES patients, the MCODE-DEGs based on

gene expression profiles in the training dataset were grouped using

Consensus Cluster Plus (21). UMAP (version 0.2.7.0; a R software

tool) was used to do dimension reduction analysis. Following that, the

Python R package was used to do a visual analysis of the heat map and

boxplot of the differential expression of MCODE module genes.

Finally, Kaplan Meier method was used for survival analysis to

obtain the most significantly different subgroups.
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2.9 The Cox regression analyses
of core-DEG

Based on expression profiles, using the R language Python

module, a raincloud diagram (22) is utilized to graphically assess

core-DEG expression differences in C3 and C4 subgroups. Then, the

Cox regression analysis was used to further evaluate the relationship

between the core-DEG expression and prognosis using the R software

package survival and Maxstatat, and the best cutoff risk score was

calculated. In addition, the Python package was used to investigate the

association between various risk scores, patients’ survival time, status,

and gene expression changes.
2.10 Statistical analysis

For statistical analysis, R package (version 4.0.2), IBM SPSS 26.0

software and graphpad prism 8 (graphpad Software Inc, CA, USA)

were utilized. All data is provided as the means ± standard deviation

(SD). The Student’s t test and Wilcoxon rank sum test were

conducted to see if there were any differences between the sample

groups. For survival analysis, the Kaplan-Meier technique was

applied. Furthermore, ROC technology was adopted to assess the

diagnostic effectiveness of core gene, which was represented by the

Area Under Curve (AUC). The sensitivity and specificity of the gene

were calculated. When the Youden’s index was adjusted to its

maximum value, the optimum gene cut-off value was attained.

Later, the prognosis analysis was examined using Cox regression.

P<0.05 was considered statistically significant.
3 Results

3.1 Identification of DEGs in ES

After standardizing the microarray findings, DEGs (595 in

GSE45544 and 3343 in GSE17618) were discovered. According to

the Venn diagram, the overlapping section of the two datasets

included 187 genes (Figure 2A). There were 56 downregulated

genes and 131 upregulated genes in the comparison of Ewing

sarcoma tissues and noncancerous tissues (Table 1).
3.2 DEG enrichment analysis utilising GO
and KEGG

DAVID was carried out to accomplish function and passage

enrichment research to ascertain the biology classification of DEGs.

The results were visualized using the R language pack 4.1.3 version.

The DEGs were considerably enriched in the cell cycle and

Staphylococcus aureus infection, according to analyzation of the

KEGG pathway (Figure 2B). According to GO analysis, alterations

to BPs (biological processes) in DEGs were primarily enriched in cell

division, cell proliferation, cell adhesion, mitotic nuclear division,

positive regulatory process of apoptosis, and drug response (Figure

2C). ATP bound, protein bound, chromatin bound, and protein

kinase bound were considerably enriched in the DEGs’ molecular
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functions (MFs) (Figure 2D). DEGs’ CC (cell component) alterations

were primarily enriched in the spindle pole, membrane, cytoplasm,

focal adhesion, cytosol, nucleoplasm, extracellular exosome, and

nucleus (Figure 2E).
3.3 Building and analyzing of the PPI
network and module

Then, MCODE, a Cytoscape plugin tool, was executed to establish

the most meaningful module of the DEG PPI network. The PPI

network (Figure 3A) included 149 nodes and 1246 edges, with 36

genes down-regulated and 113 genes up-regulated, whereas the

MCODE network (Figure 3B) was composed of 43 nodes and 857

edges. Furthermore, the biological process analysis of MCODE-DEGs

was visualized by Cytoscape ClueGO (Figure 3C), which was

concentrated on regulation of cyclin-dependent proteins, serine/

threonine kinase activity, cytokinesis, nuclear chromosome

segregation, regulation of mitotic metaphase/anaphase transition, and

spindle organization. Besides, Hierarchical clustering discovered that

the genes expression level of the most important module significantly

distinguished the ES samples from the nontumorous samples according

to the expression profiles of training sets (Figure 3D).
3.4 Core-DEG choice and evaluation

The first fifteen hub genes, which included CCNB2, CCT2, CD44,

ECT2, FOXM1, HLA-DPA1, ITGA6, KIF20A, LYZ, MKI67, PLK1,

RFC4, TGFBR2, TYMS, and UBE2T, were defined with the degree

levels in the cytoHubba Cytoscape plugin, and an interaction network

of the hub genes was constructed, resulting in 15 nodes and 43 edges

(Figure 4A). Meanwhile, Table 2 lists the names, descriptions, and

roles of these hub genes. Then, the Cytoscape ClueGO software was

employed to investigate the biological processes of hub genes, which

were primarily concentrated on Mitosis cytokinesis, the dTMP

biological process, and the positive regulation of self-antigen

tolerance induction; these data imply that hub genes have a

significant function in regulating the cell cycle and homeostasis in

the internal environment (Figure 4B). Furthermore, the mutated

survival analyses of the hub genes was accomplished in cBioPortal

online using Kaplan-Meier method. Among the 15 hub genes, only

the survival analysis of UBE2T with and without alteration by the log-

rank test demonstrated a statistically meaningful (P < 0.05) UBE2T

alteration showed a significant lower overall and illness-free survival

(Figure 4C), and had a poorer outcome. These data suggest that

UBE2Tmay be an important biomarker in the progression of ES. As a

result, UBE2T was defined as the “core-DEG,” which will be

studied later.
3.5 Expression change of UBE2T and
CD99 in the validation data set and
IHC of ES samples

The expression of core-DEG was validated using GSE68776. The

volcanic plot displayed that 15,440 DEGs were found (up = 939,
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down = 6,435; |log2FC|≥1.5; adjusted P<0.05). UBE2T was

significantly upregulated in validation data sets (Figure 4D). Besides,

IHC was used to identify the expression of UBE2T protein in Ewing’s

sarcoma and normal tissues. The findings revealed that the UBE2T
Frontiers in Oncology 05
protein was overexpressed in ES but not in normal tissues (Figure 4E).

There was a statistically significant difference between the groups

(P<0.01) (Figure 4F). Obviously, the research data supported our

prediction. Furthermore, CD99 has a high specific diagnostic value
TABLE 1 Analyzation of the datasets identified 187 DEGs, including 131 upregulated and 56 downregulated genes, in tumor samples.

Status DEGs

Upregulated CD44 TPX2 CCNB1 TTC37 FRY GINS1 A2M SLCO2B1 ANLN LYZ BCLAF1 FOXM1 CHST15 PLIN2 CDC6 CST3 HOXD13 IFI16 ZNF146 RDX BDP1
SPDL1 CDK4 TYMS MELK ECT2 SNCA CDH11 NUF2 PDK4 STMN1 UBE2T CKS2 FAM84B KIF23 C1S PDLIM1 DKK3 ANKH NDRG1 MYLK CCNB2
MCM7 PRC1 CENPI JPH1 EPAS1 PMP22 KIAA0101 HLA-DPB1 BHLHE40 CELF2 NUP107 DLGAP5 MKI67 TM4SF1 PLPP3 PTPRM TOP2 EXO1 PDGFRA
BHLHE41 IGK///IGKC SAT1 YPEL2 HSPA1B///HSPA1A MEF2C OAT CHPT1 VAMP8 FGL2 SQRDL ZNF704 CCT2 PAPPA SMC4 GUCY1B3 CKS1B
TEAD2 GSN RHOB HLA-DPA1 EBF3 FBXO5 ZNF644 TICRR PBK PRR11 TXNIP HEATR1 ITGB3BP PRPF40A SKA3 DPT TYROBP SMC2 ASPM ATAD2
WDHD1 METTL7A BUB1B DTL TGFBR2 JAK1 LAPTM5 FAM114A1 KIF20A KCTD12 CDC5L NCAPG PLK1 RFTN1 ATP1B1 TNFSF10 CHEK1 CRYAB
KIF11 SLC40A1 CD9 RFC4 TPR BUB1 BRIP1 CAD CKAP2 CXCL12 AMICAL2 FANCI CENPF NUSAP1 IGF2BP1

Downregulated ABHD2 CD53 SORBS2 ALDH6A1 SUSD6 ITGA6 TPPP3 S100A16 SLC22A3 ADGRG1 MAN1A1 CECR1 RHOU SELPLG MGST2 TNFRSF21 SRPX IL10RA
ENTPD1 PRELP SATB1 SYNPO2 DNAJA4 TSC22D3 RCAN2 NUPR1 TAPBP PLXNC1 TOB1 MYH11 C10orf10 LRP10 DOCK9 TLE1 MGLL CD59 PTGDS
PXDC1 PEA15 SERPINB1 SERPINB6 WIPI1 RNF144B ENDOD1 ATP8A1 CA2 PPFIBP2 HLA-DMA GAS7 NEDD9 ITGA9 CTSZ CSF1R APBB1IP FRMD4B
PIK3IP1
D
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B

E

C

FIGURE 2

DEG Venn diagram; Bubble Plot of the GO and KEGG enrichment study for DEGs. (A) DEGs in the GSE17618 and GSE45544 mRNA expression profiling
datasets were filtered with a fold change > 2 and a P value < 0.01. 187 genes overlapped between the two datasets. (B–E) The P value is shown by the
progressively shifting hue, and the quantity of genes is denoted by the size of the black dots.
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in IHC of ES tissue, so it is necessary to observe the difference between

the ES sample and the control group. IHC results showed that CD99

was diffusely positive on the cell membrane of ES tissue (Figure 4G, H).
3.6 Diagnostic performance of UBE2T in the
ES training set and verification set

Figure 5 depicted diagnostic value of UBE2T in ES. UBE2T was

significantly overexpressed in ES in the training set (GES 17618 and

GSE 45544) compared to the control group (P<0.001, Figure 5A). The

Area Under Curve (AUC) of the ROC of UBE2T in diagnosing ES was

0.75, with sensitivity and specificity of 0.85 and 0.62, respectively

(Figures 5B, C). Interestingly, the core gene is also excellent in the

diagnostic evaluation of ES in the validation set (GSE68776). UBE2T

expression was considerably increased in ES (P<0.0001, Figure 5D).

The AUC of ROC was 0.90, its sensitivity was 0.94, and its specificity
Frontiers in Oncology 06
was 0.79 (Figures 5E, F). Obviously, these findings suggest that

UBE2T had excellent value for ES diagnosis.
3.7 Analysis of MCODE-DEGs subgroups
in ES

55 samples of ES with patients (after removing non-conformance

from inclusion criteria) were divided into 4 subgroups based on the

expression levels of MCODEmodule genes: C1(N=17), C3(N=12), C4

(N=13) and C2(N=13) (Figure 6A). Among the k = 2 to k = 10

clusters, K = 2 has the highest consistency, and k = 4 was the second

(Figure 6B and Supplement figure 1). UMAP analysis indicated

significant variations among the clusters (Figure 6C). Besides, The

heat map revealed that the expression pattern of the MCODE-DEGs

differed between the four subgroups (Figure 6D). In addition, Kaplan-

Meier survival analysis showed significant differences in the
D

A B

C

FIGURE 3

Construction of the PPI network, and MCODE module; Biology process analyzation and hierarchical clustering of MCODE-DEGs. (A) The Cytoscape
program was built to obtain the DEGs PPI network. Genes upregulated were highlighted in light red, whereas genes downregulated were highlighted in
light yellow. (B) The PPI network yielded the most significant module (MCODE-DEGs), having 43 nodes and 857 edges. (C) ClueGO was employed to
evaluate the biological processes of the MCODE-DEGs P < 0.01 was judged statistically meaningful. The node’s dark hue represented the rectified P value
of ontologies. The quantity of genes participating in ontologies was represented by node’s size. (D) The heat map demonstrated significantly different in
expression levels of MCODE-DEGs between the ES and control group. Red represented upregulation of genes; Blue represented downregulation.
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subgroups (Figure 6E), especially C3 and C4, while ES patients with

C3 experienced faster disease development than C4 patients. And,

expression level of 34 genes in C3 (UBE2T, PBK, CKAP2, CKS1B,

WDHD1, CHEK1, CKS2, CCNB2, NCAPG, CENPF, SMC4, SMC2,

BUB1, ECT2, MCM7, FANCI, ANLN, DTL, EXO1, CDC6, FBXO5,

TYMS, FOXM1, MKI67, CCNB1, TPX2, ATAD2, PCLAF, NUSAP1,

KIF23, TICRR, BUB1B, TOP2A and ASPM) were considerably

elevated compared to C4 (Figure 6F).
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3.8 The correlation analysis between high
expression of UBE2T and poor prognosis
in ES patients

Based on training sets, a univariate Cox regression analysis was

conducted to investigate the prognosis risk of core-DEGs in ES, and

the results suggested that UBE2T was an independent risk factor

(P<0.05, Hazard Ratio = 1.52, 95% CI) (Figure 7A). Besides, the
D

A B

E
F

G H

C

FIGURE 4

The hub genes’ connection network and biological process research; Core-DEG obtained by the cBioPortal web and verified by the GSE68776 and IHC.
(A) The hub genes were obtained by CytoHubba with 15 nodes and 43 edges. (B) ClueGO was utilized to examine the biological processes of hub genes.
The node’s dark hue represents the rectified P value of ontologies. The quantity of genes participating in ontologies is represented by node’s size. P <
0.01 was judged statistically meaningful. (C) The cBioPortal official website was employed to complete overall surviving and illness-free surviving studies
of core-DEG, P < 0.05. (D) The volcanic plot showed expression of UBE2T in validation set GSE68776, with |log2FC|≥1.5, adjusted P<0.05. (E–H) The IHC
findings revealed that the UBE2T protein (E, F) and CD99 (G, H) were overexpressed in ES but not in normal tissues, and the Student’s t test showed
significant differences. (**P<0.01, ****P<0.0001).
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Kaplan Meier survival curve demonstrated a connection between

UBE2T expression and survival. The overall survival time of patients

with high UBE2T expression was considerably shorter than low

UBE2T expression (P<0.0001) (Figure 7B). In addition, the

raincloud diagram showed that UBE2T in C3 was significantly

higher than C4 (P<0.001) (Figure 7C), and the survival time was

significantly shorter than that of C4 (P<0.005) (Figure 7D). These

results suggest that the upregulation of UBE2T expression is

associated with a worse outcome in ES patients. Furthermore, the

study of risk score and survival time revealed that patients in the high-

risk score group had considerably lower survival time than the low-

risk group (P<0.0001) (Figure 7E). The findings indicated that the

high-risk score group resulted in fast progression of disease. Figure 7F

(including upper, middle, and lower parts) depicts the association

between various risk scores, survival events, and gene expression

changes. It can be shown that when UBE2T expression is up-regulated

(Figure 7F lower part) and the risk score is increased (Figure 7F upper
Frontiers in Oncology 08
part), patients’ survival rates decline dramatically (Figure 7F middle

part). As predicted, UBE2T was regarded as a risk independent factor,

and risk scores increased as its expression rise.
4 Discussion

Ewing sarcoma, the second commonest malignant bony neoplasm

and soft-tissue malignance neoplasm in kids and teenagers, is a serious

threat to human life and health (1, 2), ES is and a highly aggressive

tumor with nonspecific clinical features (2). Patients with standard risk

and localized disease have a 70~80% survival, and patients with

metastatic disease have an approximate 30% survival (23). Previously

findings have suggested that the ES family of tumors is related to

immunophenotypic characteristics, chromosomal translocation (such as

extraosseous ES, peripheral primitive neuroectodermal neoplasm, Askin

neoplasm (24), and FET-ETS gene fusion (25, 26). Although there has
TABLE 2 Functional annotation of 15 hub genes selected by cytoHubba.

No. Gene
name Whole name Function

1 CCNB2
G2/mitotic-specific
cyclin-B2

Member of the cell cycle family and is needed for cyclin regulation during the G2/M (mitosis) transition. Sub-family of cell cycle
AB

2 CCT2
T-complex protein 1
sub-unit beta

Molecularly chaperone; aids in protein folding after ATP hydrolysis. As a component of the BBS/CCT complex, it may have a
function in the formation of BBSome, a compound related to ciliogenesis that regulates vesicle transport to the cilia.

3 CD44 CD44 antigen
hyaluronic acid receptor (HA). Its affinity for HA, as well as its affinity for other ligands including osteopontin, collagens, and
matrix metalloproteases, mediates cell-cell and cell-matrix interactions (MMPs).

4 ECT2 Protein ECT2
guanine nucleotide exchange factor (GEF) that catalyzes the conversion of GDP to GTP. boosts guanine nucleotide swap on Rho
family small GTPase members such as RHOA, RHOC, RAC1, and CDC42.

5 FOXM1
Forkhead box
protein M1

Transcriptional factor that regulates the expression of cyclin genes that are needed for DNA replication and mitosis.

6
HLA-
DPA1

HLA class II
histocompatibility
antigen, DP alpha 1
chain

Bounds peptides produced from antigens and displays them on the cell face for identification by CD4 T-cells via the endocytic
pathway of antigen presentation cells (APC).

7 ITGA6 Integrin alpha-6
Platelets have an alpha-6/beta-1 integrin receptor for laminin. Integrin alpha-6/beta-4 is a laminin receptor in epithelium cells
and performs an important structural function in the hemidesmosome (By similarity).

8 KIF20A
Kinesin-like protein
KIF20A

Mitosis kinesin is needed for cytokinesis regulated by the chromosomal passenger complex (CPC). Following PLK1
phosphorylation, implicated in PLK1 recruitment to the central spindle.

9 LYZ Lysozyme C Lysozymes are principally bacteriolysis enzymes.

10 MKI67
Proliferation marker
protein Ki-67

After nucleal envelope destruction, this protein is needed to maintain individual mitosis chromosomes disseminated in the
cytoplasm.

11 PLK1
Serine/threonine-
protein kinase PLK1;

Serine/threonine protein kinase that regulates spindle assembly and centrosome maturity, the remove of cohesins from
chromosomal arms, the deactivation of anaphase-promoting complex/cyclosome (APC/C) regulators, and the control of mitosis
and cytokinesis.

12 RFC4
Replication Factor C
subunit 4

The auxiliary proteins proliferation cell nucleal antigen (PCNA) and activator 1 are needed for the elongation of primed DNA
examples by DNA polymerase delta and epsilon.

13 TGFBR2
TGF-beta receptor
type-2

a transmembrane serine/threonine kinase that interacts with TGFBR1, the nonpromiscuous receptor for the TGF-beta cytokines
TGFB1, TGFB2, and TGFB3.

14 TYMS
Thymidylate
synthase

Adds to the route of de novo mitochondrion thymidylate biosynthesizing

15 UBE2T
Ubiquitin-
conjugating enzyme
E2T

It receives E1 compound ubiquitin and catalyzes its covalently binding with other proteins. Monoubiquitination is catalyzed.
Mitomycin-C (MMC)-induced DNA restore. Through interaction with the E3 ubiquitin-ligase FANCL and catalytic mono-
ubiquitination of FANCD2, it acts as a particular E2 ubiquitin-ligase for the Fanconi anemia complex.
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been improvement in the diagnosis of ES based on these preliminary

studies, the specific pathogenesis remains largely unknown. Thus, it is

urgent to ascertain novel biomarkers for this disease to enhance the

efficiency of diagnosis and treatment. Microarray technology is

beneficial for investigating genetic abnormalities for ES, which may be

of benefit for the corroboration of novelty biomarkers to contribute to

the improvement of early diagnosing and prediction prognosis for ES.

In the current investigation, two microarray datasets were selected

from GEO, and bioinformatics analyzation was run to discover DEGs

between ES tissues and nontumorous tissues. In all 187 DEGs were

identified through analysis and comparison of those two datasets,

including 56 downregulation genes and 131 upregulation. GO and

KEGG enrichment analyzation were used to investigate interrelations

in the DEGs. The up-regulation genes were majorly concentrated in cell

dividing, mitosis nucleus dividing, proliferation, apoptotic process,
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response to drug, and positive regulation of apoptotic process,

whereas this downregulation genes were primarily enriched in cell

adhesion (Table 3). Life involves constant changes, and the cell cycle is

required to maintain cell growth and DNA duplication, followed by cell

division (mitosis), proliferation, and apoptosis. Remarkably, the cell

cycle has an important effect on maintaining the normal process of life.

Thus, dysregulation of the cell cycle process is closely related to the

carcinogenesis or progression of tumors (27–29). In addition, recent

reports have shown that the molecular mechanism of cell adhesion has

a significant effect on collective cancer cell migrating, and mutations

and changes in cell adhesion protein expression are frequently related

to tumorous progression (30, 31). Whats more, changes in the tumor

microenvironment may affect immune cell regulation (32). Our

research findings revealed that, according to the Cytoscape ClueGO

analysis, the biological processes of hub genes gathered in Mitosis
D

A B

E

F

C

FIGURE 5

Performance of the core gene diagnostic ES in the training and verification sets. Based on the training set expression profiles (GSE17618 and GSE45544):
(A) The difference in UBE2T expression between the ES and control groups. (B) The ROC curve of patients with ES based on the UBE2T gene. (C) The
diagnostic value of the Core gene in distinguishing the ES group from the control group. According to the validation set expression profile (GSE68776):
(D) The difference in UBE2T expression between the ES and control groups. (E) The ROC curve of people with ES based on the UBE2T gene. (F) The
diagnostic value of the Core gene in distinguishing the ES group from the control group. AUC stands for Area Under the Curve; TPR stands for True
Positive Rate; and FPR stands for False Positive Rate.
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cytokinesis, the dTMP biological process, and the positive regulation of

self-antigen tolerance induction, which maintained stability of the cell

cycle and the internal environment.

Beside, In total, 15 hub genes were extracted relied on the most

significant module with the degree rank (Figure 4A). One of these hub

genes, ubiquitin-conjugating enzyme E2 T (UBE2T), catalyzes

monoubiquitination, which is a significant posttranslational

modification that affects a variety of biological activities, for

instance, immune reactions, inflammation, cell proliferation, and

cell differentiation (33–36). Interestingly, UBE2T plays an essential

part in the DNA damage pathway, and it has been demonstrated to be

correlated intimately with the development and poor prognosis of

several cancers, such as gastric cancer, hepatocellular cancer, prostate

cancer, and gallbladder cancer (37–40). Upregulation of UBE2T levels

has been disclosed to enhance gastric cancer development through
Frontiers in Oncology 10
RACK1 ubiquitination, and a novel powerful UBE2T inhibitor has

been identified to suppress gastric cancer progression by blocking

RACK1 ubiquitination after aberrant Wnt/b-catenin signaling (40).

Moreover, Sun et al. (38) discovered that UBE2T was increased in

HCC tissues, and that HCC sufferers with greater UBE2T quantities

have a worse prognosis, demonstrating that UBE2T-regulated H2AX

mono-ubiquitination may induce hepatocellular carcinoma radiation

resistance by boosting CHK1 activation. In addition, previous studies

showed that the vulnerability of anticancer drugs is based on the

involvement of proteins in ubiquitination and degradation, which

provides a theoretical basis for the development of therapeutic drugs

with genome modification (41, 42). As a result, UBE2T may be

regarded as a therapeutic potential target for ES sufferers’ therapy.

However, there are few reports on the relationship between

UBE2T and ES. Therefore, the present study analyzed several ES
D

A B

E

F

C

FIGURE 6

Prognosis identification of ES patients by clustering analysis based on MCODE-DEGs expression profifile. (A) Consensus clustering divided into 4
subgroups. (B) The CDF curve showed the consistency of clustering (K=2 the highest consistency, followed by K4). (C) UMAP dimension reduction
analysis testified the classification. (D) The heat map displayed the different expression patterns of the MCODE-DEGs in 4 clusters. (E) The survival
analysis of ES patients found significant differences among the four subgroups, P<0.05. (F) Boxplot revealed difference expression status of the MCODE-
DEGs between C3 and C4 (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001).
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datasets in the GEO data bank and discovered that UBE2T expression

was observed to be considerably greater in tumor samples than in

nontumor samples. Furthermore, validation set and IHC findings

displayed that the expression level of UBE2T was significantly higher

in the sick tissues of Ewing’s sarcoma patients than the control group,

and IHC analysis revealed that UBE2T was mostly expressed in the

cytoplasm of Ewing’s sarcoma cells (Figures 4E, F). These results are

consistent with our predictions. In addition, the investigation on the

diagnostic value of core genes in ES observed that the AUC of UBE2T

had excellent performance in both the training group and the

verification group (Figure 5). Following that, we explored the

relationship between the expression level of the UBE2T and

prognosis by Cox regression and K-M survival analasis in ES

patients according to the expression profiles of training sets. The

findings revealed that UBE2T was an independent risk factor

(Figure 7A), and patients with high expression of the UBE2T

and the high-risk score, which led to a poor prognosis, had a
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negatively correlated survival time (Figures 7B–E). As a result,

based on the above findings, this study demonstrated that UBE2T

can be seen as an important value biomarker for diagnosis and

treatment of ES, thereby providing a new potential therapeutic

target for ES as well as an important new perspective for evaluating

the effect of treatment and prognostic prediction.
5 Conclusion

In summary, the current examination found that UBE2T

expression was greater in tumor tissues from ES patients than in

non-tumor tissues and that UBE2T had an important value as a

biomarker for the diagnosis of ES. Furthermore, increased UBE2T

expression is associated with a terrible prognosis. As a result, UBE2T

can be exploited as an independent prognostic biomarker in patients

with ES. However, the existing research has drawbacks. First, consider
D
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FIGURE 7

Correlation analysis between expression of UBE2T and prognosis in ES patients of the training cohorts. (A) HR and 95% CI of the core DEGs based on a
unitvariable Cox regression analysis. (B) The Kaplan Meier survival curve demonstrated that the overall survival time of patients with UBE2T high
expression was evidently shorter than low expression (P<0.0001). (C) The raincloud diagram showed the expression of UBE2T in C3 was significantly
higher than C4 (P<0.001). (D) The K-M survival curve indicated that the survival time of C3 was significantly shorter than C4 (P<0.005). (E) The K-M
survival curve displayed that patients in the high-risk score group had considerably lower survival time than the low-risk group (P<0.0001). (F) The
distribution of risk score, survival status, and UBE2T expression level revealed that risk score increased as UBE2T expression increased, while survival rate
decreased dramatically.
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the patient sample size constraints. As a consequence, UBE2T

research should be added to the wider ES queue. Second, this study

only investigated at UBE2T expression level in tumor tissues and did

not researched UBE2T functionality in vivo or in vitro. As a result,

further tests and investigations are required to uncover the potential

mechanism of UBE2T in ES.
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TABLE 3 Enrichment investigation of positive-regulation and negative-gulation genes with DEGs in ES specimens employing GO and KEGG Pathway.

Term Description Count P value

Upregulation

GO:0051301 cell division 21 8.53E-13

GO:0007067 mitotic nuclear division 16 3.43E-10

GO:0008283 cell proliferation 14 2.61E-06

GO:0006915 apoptotic process 13 8.67E-04

GO:0042493 response to drug 11 7.52E-05

GO:0043065 positive regulation of apoptotic process 10 3.44E-04

Hsa04110 cell cycle 9 1.50E-05

Hsa05166 HTLV-I infection 8 0.008161847

Downregulation

GO:0007155 cell adhesion 9 7.67E-05

Hsa04514 cell adhesion molecules (CAMs) 4 0.015820009
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