
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Maoshan Chen,
Army Medical University, China

REVIEWED BY

Elizabeth Ortiz Sánchez,
National Institute of Cancerology
(INCAN), Mexico
Kshama Gupta,
Mayo Clinic, United States

*CORRESPONDENCE

Lei Chang
fccchangl@zzu.edu.cn
Yong Li
y.li@unsw.edu.au

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Molecular and Cellular Oncology,
a section of the journal
Frontiers in Oncology

RECEIVED 21 July 2022
ACCEPTED 27 September 2022

PUBLISHED 12 October 2022

CITATION

Zhou J, Lei N, Tian W, Guo R, Chen M,
Qiu L, Wu F, Li Y and Chang L (2022)
Recent progress of the tumor
microenvironmental metabolism in
cervical cancer radioresistance.
Front. Oncol. 12:999643.
doi: 10.3389/fonc.2022.999643

COPYRIGHT

© 2022 Zhou, Lei, Tian, Guo, Chen, Qiu,
Wu, Li and Chang. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Review
PUBLISHED 12 October 2022

DOI 10.3389/fonc.2022.999643
Recent progress of the
tumor microenvironmental
metabolism in cervical
cancer radioresistance

Junying Zhou1†, Ningjing Lei2†, Wanjia Tian1, Ruixia Guo1,
Mengyu Chen1, Luojie Qiu1, Fengling Wu1, Yong Li3,4*

and Lei Chang1*

1Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University,
Zhengzhou, China, 2School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China,
3Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia, 4St George and Sutherland
Clinical Campuses, School of Clinical Medicine, University of New South Wales (UNSW) Sydney,
Kensington, NSW, Australia
Radiotherapy is widely used as an indispensable treatment option for cervical

cancer patients. However, radioresistance always occurs and has become a big

obstacle to treatment efficacy. The reason for radioresistance is mainly

attributed to the high repair ability of tumor cells that overcome the DNA

damage caused by radiotherapy, and the increased self-healing ability of

cancer stem cells (CSCs). Accumulating findings have demonstrated that the

tumor microenvironment (TME) is closely related to cervical cancer

radioresistance in many aspects, especially in the metabolic processes. In this

review, we discuss radiotherapy in cervical cancer radioresistance, and focus

on recent research progress of the TMEmetabolism that affects radioresistance

in cervical cancer. Understanding the mechanism of metabolism in cervical

cancer radioresistance may help identify useful therapeutic targets for

developing novel therapy, overcome radioresistance and improve the

efficacy of radiotherapy in clinics and quality of life of patients.
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1 Introduction

Cervical cancer is the fourth most common malignant tumor and an important cause

of death in women (1). There is a high incidence of cervical cancer in low-income and

middle-income countries due to the low popularity of human papillomavirus (HPV)

vaccination and cervical cancer screening (1–4). In all cervical cancer, squamous cell

carcinoma accounts for 70%, followed by adenocarcinoma accounting for 20% (5). The
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standard therapies for cervical cancer include surgery,

radiotherapy (RT), chemotherapy, and immunotherapy (6).

For early-stage cervical cancer, radical surgery is the best

option (7). For patients with locally advanced cervical cancer

(LACC), concurrent chemoradiotherapy with radical surgery is

the standard treatment (8). If patients have recurrent or

metastatic cervical cancer, the standard treatment is

chemoradiotherapy combined with immunotherapy after

surgery, however the prognosis is still very poor (9, 10).

RT is the main treatment choice for LACC (11, 12). It

directly causes tumor cell DNA double-strand breaks (DSBs),

and the reactive oxygen species (ROS) induced by RT also

indirectly causes DNA damage. At the cellular level, radiation-

induced DNA damage and DSBs are fatal to cells. However, if

the ability of DNA damage repair exceeds DNA damage speed,

tumor cells will escape the effect of RT and lead to

radioresistance (13–15). Although RT improves the

therapeutic effect of cervical cancer patients greatly, the

occurrence of radioresistance is still the main challenge for

treatment failure (16, 17). Therefore, it is necessary to study

the mechanism of radioresistance to overcome this problem and

improve the efficacy of RT.

Studies have shown that tumor microenvironment (TME)

plays an important role in radioresistance of cervical cancer (12).

For instance, hypoxic TME enhanced radioresistance of cervical

cancer cells by upregulating hypoxia-inducible factor 1a (HIF-1a)
expression (12, 18). HIF-1a knockdown was found to enhance the

radiosensitivity of Hela cervical cancer cells (19). In addition,

metabolic reprogramming in TME was also reported to affect the

efficiency of RT and contribute to cervical cancer radioresistance

(20). For example, studies have shown that inhibition of glycolysis

and lactic acid production improved the response of cervical

cancer cells to single dose RT in ME180 cervical cancer cells

(20). Thus, glucose metabolism determines the effect of RT, and

metabolic reprogramming provides the key information for

clinical cancer treatment. Other studies also suggest that

metabolism reprogramming increased radioresistance of cancers

(21–23). It was reported that STAT1 upregulated the key

glycolytic enzymes lactate dehydrogenase A (LDHA) and

pyruvate kinase type M2 (PKM2), promoted the productivity of

glycolysis, and then enhanced the resistance to RT in SCC61

human squamous cell carcinoma (23). Serine/threonine kinase

AKT mediated enhancement of aerobic glycolysis was reported to

promote radioresistance of Hela cervical cancer cells (24). Thus,

metabolic reprogramming is a very important factor in cervical

cancer radioresistance and is worth of paying more attention.

This review discusses the complicated radioresistant

mechanism of cervical cancer and focuses on the recent

progress of TME metabolisms on radioresistance. The new

research perspectives in this field are able to provide novel

ideas and insights to overcome cervical cancer radioresistance

with the development of novel targeted therapy.
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2 Radiotherapy in cervical cancer
treatment and the occurrence of
radioresistance

Chemoradiotherapy is the main non-surgical treatment for

patients with LACC (25), suggesting that RT is an important

aspect in cervical cancer therapy especially in its late stages (25,

26). The main role of RT is demonstrated to destroy cancer cells

and shrink tumor sizes, which is applied for postoperative

adjuvant therapy. Fractional RT is usually used to treat cancer

patients, generally 1.8 ~ 2.0 Gy per day and 5 days per week, for a

cycle (26). Different types of cancer RT programs are not the

same, and their responses to RT are also different (27).

Various mechanisms related to how RT kills tumor cells

have been widely studied. For instance, ionizing radiation can

penetrate tissues, destroy chemical bonds, and remove electrons

from atoms to treat cancer (28). It also causes chromosomal

mutations in cells, leading to cell death (29). Another

mechanism that may be the most important one is the DSB of

cancer cells after RT (30). In addition, ROS produced by RT

indirectly induces cancer cell death (26). Superoxide anion (O2

-), hydrogen peroxide (H2O2) and hydroxyl radical (OH
-) are the

most common ROS (31, 32), which are effective molecules in RT.

These ROS show high reactivity to a variety of cellular

macromolecules including DNA, lipids and proteins, and

induce biological changes, resulting in tumor cell death (28).

Apoptosis, autophagy and necrotic cell death are the common

forms of cancer cell death induced by ROS (33). Several clinical

treatments, such as photodynamic therapy (PDT), whose

mechanism mainly induces ROS to destroy and kill cervical

cancer cells (34, 35).

Inhibition of DNA repair has been proved to be a method to

improve radiosensitivity of cervical cancer (25). After RT,

human DNA repair includes two important pathways

homologous recombination (HR) and non-homologous end

joining (NHEJ) (30, 36). The HR repair pathway is a precise

form of repair that uses undamaged DNA sequences as a

template to function in the S and G2 phases of cell cycle (37).

Whereas the NHEJ pathway is an error-prone mechanism. It

connects broken double-stranded DNA at all stages of the cell

cycle, which may cause chromosomal connection errors, such as

misalignment or ectopic position (29). DNA repair pathways

regulated by HIF-1a, and HR and NHEJ pathways were reported

to be inhibited due to hypoxia in breast cancer cells (38). In

addition, under hypoxia, the expression of the NHEJ pathway

related genes was also found inhibited, resulting in enhanced

sensitivity of prostate cancer cells to RT (39). Furthermore,

damaged NHEJ was demonstrated to lead to genomic

instability, increase the proportion of acquired mutations or

translocations, and induce tumorigenesis in leukemia (40, 41).

Therefore, several studies have indicated that the key
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downstream factors in the HR and NHEJ repair pathways may

become potential targets for enhancing the sensitivity of RT (42–

46). For instance, RAD51 is a highly conserved protein that

catalyzes DNA repair through HR repair pathway and

modulates the sensitivity of cells to RT (47, 48). Inhibiting

RAD51 was found to enhance the radiosensitivity of cervical

cancer cells (47, 49, 50). Wang et al. showed that Sulforaphane

(SFN) enhanced the radiosensitivity of cervical cancer cells by

blocking RAD51 recruitment to the site of injury (49). Other

studies also found that Ku70 and Ku80 proteins were involved in

the repair of DSBs through NHEJ of DNA strands (51, 52).

Cervical cancer cells with the low expression of Ku70 had higher

radiosensitivity, and the survival rate of cervical cancer patients

with low expression of Ku70 were also higher (53). It was

reported that compared with Ku80 positive cervical cancer

patients, Ku80 negative patients had a stronger response to

RT. Inhibition of Ku80 was found to improve radiosensitivity,

which has been confirmed in cervical cancer patients (15, 54).

MRE11 is the core of MRN (MRE11-RAD50-NBS1) complex

and plays an important role in DNA damage sensing and

repairing (15, 55). After DNA damage caused by ionizing

radiation, MRE11 recognized and excised DNA DSB ends for

further repair (55). RhoC was found to regulate MRE11-

mediated DNA repair through Rock2 and regulate

radioresistance of cervical cancer (56). NHEJ protein DNA-

PKcs was found to be up-regulated in the residual tissues of

cervical carcinoma after RT and inhibiting the activity of DNA-

PKcs improved the radiosensitivity of cervical cancer (57–60).

PARP1 had a high ability to sense DNA damage, and it

participated in the repair of single strand broken DNA.

PARP1 inhibitor upregulated the sensitivity of cervical cancer
Frontiers in Oncology 03
to radiation (61, 62). The potential mechanism of radioresistance

after RT in cervical cancer is shown in Figure 1.

Several oncogenes or tumor suppressor genes were reported

to be involved in the regulation of RT. For example,

retinoblastoma protein-interacting zinc finger gene (RIZ),

located on chromosome 1q36, is a tumor suppressor whose

expression is downregulated in a variety of tumors (63, 64). It

was found that cervical cancer cells overexpressing RIZ

increased the apoptosis rate and DNA damage after RT

compared to the control group (65). This study showed that

RIZ improved the radiosensitivity of cervical cancer cells and

was a potential therapeutic target of RT combined with gene

therapy for cervical cancer patients. P53 is an important

regulator of cell cycle and DNA repair. After the imbalance of

p53 in cervical cancer cells, its regulatory function was

confirmed, and the irradiated cells underwent uncontrolled

DNA repair, leading to radioresistance (66). P73 has

homology with the well-known tumor suppressor gene p53

and is considered as a new tumor suppressor gene. The high

expression of p73 was significantly correlated with the

radiosensitivity of cervical cancer and played an important

role in promoting radiosensitivity of cervical cancer (67).

XAV939 is an inhibitor of the Wnt/b-catenin signaling

pathway. When combined with RT, XAV939 inhibited

pro l i f e r a t i on and inc reased apop tos i s o f human

medulloblastoma cells (68). In cervical cancer, XAV939

promoted apoptosis induced by RT, holding a therapeutic

potential in increasing clinical efficacy (69). Inhibiting the

repair of DNA damage caused by RT sensitized the radiation

response of cervical cancer (70). PXN gene was up regulated in

cervical cancer cells, and its overexpression reduced the
FIGURE 1

The mechanism of cervical cancer radioresistance after radiotherapy. After RT, DNA double strand breaks in cervical cancer cells, and some
cancer cells show apoptosis and necrosis, reaching the effect of RT. Other fraction of cancer cells has DNA damage repair (including HR and
NHEJ). The wrong repair path leads to the accumulation of acquired mutations, and tumor aggressivity and recurrence, while the correct repair
leads to cell survival and radioresistance. CSC, cancer stem cell; HR, homologous recombination; NHEJ, non-homologous end joining; RT,
radiotherapy.
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apoptosis rate after RT, leading to radioresistance (71). The

DNA repair molecules and gene regulation cervical cancer are

summarized in Table 1.

Inhibitors of DNA repair pathway are crucial to improve

the therapeutic efficiency of patients. Some small molecule

inhibitors have been used in clinical trials or applied in

clinical practice (72). DNA-PK is a key driver of NHEJ

pathway, and Pepostertib is an inhibitor of DNA-PK, which

destroys DNA repair by inhibiting the activity of DNA-PK to

improve the therapeutic effect (73). In one preclinical study,

AZD7648 (an effective and specific DNA-PK inhibitor)

combined with RT induced tumor regression in mice and

improved the therapeutic effect (74). X-ray repair cross

complement protein 5 (XRCC5) is an ATP dependent DNA

helicase, which provides a start for the DNA repair mechanism

of the NHEJ pathway when DNA double strand breaks.

Targeting XRCC5 with Myrosin G was found to play a

positive therapeutic role (75). CB-5083, as a specific small
Frontiers in Oncology 04
molecule inhibitor of p97, prevented the decomposition of

MRN complex at the DNA damage site during ionizing

radiation and damaged DNA repair, thus enhancing the

killing function of tumor cells after RT (76). NHEJ inhibitors

can be used in combination with standard cancer therapies to

reduce therapeutic dose and improve clinical therapeutic effect.

Orapanib, a PARP inhibitor, destroyed the localization of base

excision repair effector XRCC1 and NHEJ proteins Ku80 and

XRCC4, enhanced the sensitivity of cervical cancer cells to

cisplatin, demonstrating the potential of PARP inhibitors in

the treatment of cervical cancer (77). Santu et al. found that the

PARP inhibitor Rucaprib is the most effective radiosensitizer for

cervical cancer, which improved the effect of RT for cervical

cancer patients (78). The small molecule inhibitors associated

with DNA repair are summarized in Table 2. Targeting RT

related genes is in a good position to promote DNA damage and

apoptosis induced by radiation, which provides a new strategy

for cervical cancer RT.
TABLE 2 List of small molecule inhibitors about DNA repair.

Target Inhibitor Main Function Reference

DNA-PK Pepostertib Destroy NHEJ and inhibit DNA repair (73)

AZD7648 Inhibit DNA double strand break repair (74)

XRCC5 Myrosin G Target XRCC5 and inhibit DNA repair (75)

p97 CB-5083 Prevents the decomposition of MRN complex from DNA damage site (76)

PARP Orapanib Destroying XRCC1 and NHEJ, aggravating S and G2/M block (77)

Rucaprib Inhibition of DNA repair and radiosensitization (78)

PI3K/mTOR NVP-BEZ235 G1 cell cycle arrest and apoptosis induction (79)

1,3,5-triazine derivatives G1 cell cycle arrest (80)

mTOR AZD8055 Inhibiting proliferation and glycolysis, inducing apoptosis (81)
fro
DNA-PKcs, DNA-dependent protein kinase; XRCC5, X-ray repair cross complement protein 5; PARP, Poly (ADP-ribose) polymerase; NHEJ, non-homologous end joining.
TABLE 1 List of DNA repair molecules and gene regulation in cervical cancer after radiotherapy.

Gene Function DNA Repair path Reference

RAD 51 DNA damage repair HR (47–50)

Ku 70 DNA double strand break
identification and repair

NHEJ (53)

Ku 80 DNA double strand break identification and repair NHEJ (15, 54)

MRN DNA double strand break repair NHEJ (56)

DNA-PKcs Add Poly ADP-Ribose to the damaged site of single stranded DNA to promote DNA repair. NHEJ (57–60)

PARP1 DNA single-strand breaks repair NHEJ (61, 62)

RIZ Induce apoptosis and DNA damage / (65)

P73 Induce cell arrest and apoptosis / (67)

XAV939 Inhibit WNT signaling pathway and promote apoptosis / (69)

P53 Regulate cell cycle and DNA repair / (66)

PXN Upregulation of bcl-2 and inhibition of apoptosis / (71)
MRN, MRE11-RAD50-NBS1 complex; DNA-PKcs, DNA-dependent protein kinase; PARP1, Poly (ADP-ribose) polymerase-1; RIZ, retinoblastoma protein-interacting zinc finger gene;
HR, homologous recombination; NHEJ, non-homologous end joining.
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3 Tumor microenvironment
contributes to of cervical cancer
radioresistance

The presence of immune cells and hypoxia in TME is closely

related to cervical cancer radioresistance. For example, the high

level of tumor-associated neutrophils was reported to lead to

radioresistance in cervical cancer cells and associated with a poor

prognosis in patients (18). In addition, many studies have

focused on the role of the hypoxic TME in promoting cervical

cancer radioresistance (12). The cancer cells in TME usually

contain high amount of antioxidants. High levels of glutathione

(GSH) were found to boost radioresistance of cervical cancer

cel ls by clearing ROS (82) . Therefore , developing

radiosensitizers based on reducing antioxidants may be a

potential strategy for cervical cancer therapy.

Hypoxia is one of the characteristics of cervical cancer and

reduces the effect of RT (83–85). The imbalance between tumor

cell growth and neovascularization, as well as the abnormal

morphology and function of tumor neovascularization leads to

hypoxic microenvironment (86). Hypoxia was demonstrated to

enhance the resistance to RT, resulting in a poor prognosis of

cervical cancer patients (83, 84, 87).

RT plays an active role in the treatment of cervical cancer;

however, this treatment also paradoxically leads to

radioresistance through the changes of transcription factors in

TME. Epithelial-mesenchymal transition (EMT) is closely

related to the effect of RT. Twist is a key transcription factor

of EMT, and its expression is positively correlated with hypoxia.

Downregulation of Twist reversed the radioresistance induced

by hypoxia and enhanced the sensitivity of cervical cancer cells

to RT (85). In addition, upregulation of Twist promoted the

localization of nuclear epidermal growth factor receptor (EGFR)

and the expression of nuclear DNA-PKcs, and enhanced the

repair of DNA damage caused by RT (85). Another study

showed that Lcn2 interacted with HIF-1a to promote the

formation of radioresistant phenotype in nasopharyngeal

carcinoma. It was found when Lnc2 was downregulated, the

ability of cell colony formation and DNA damage repair were

significantly reduced, which indicates that inhibiting Lnc2

improved the effect of RT for nasopharyngeal carcinoma (88).

Although RT works for cancer, it paradoxically promotes

metastasis and enhances the invasion of cancer through EMT

induced by RT (89). Ionizing radiation was reported to activate

multiple EMT-induced transcription factors, including HIF-1,

ZEB1 and STAT3 (26, 90–92), which activate the corresponding

signaling pathways to enhance the EMT ability of tumor cells. In

cervical cancer, it has been proved that the EMT induced by RT

enhanced the viability and invasiveness of cancer cells (89). In

addition, EMT-induced transcription factors endow cells with

cancer stem cell (CSC) properties and promote the production

of CSCs. CSC is recognized as a radioresistant cell, which plays a
Frontiers in Oncology 05
role mainly by reducing radiation-induced DNA damage and

enhancing DNA repair ability (93).

Immune cells in TME also contribute to the progression of

cervical cancer, which makes the immunotherapy an important

treatment choice. HPV E6 and E7 proteins were found to

promote the expression of programmed cell death protein 1

(PD-1) and programmed death-ligand 1 (PD-L1) in cervical

cancer (94). It is widely known that PD-1 and PD-L1

upregulation suppresses the activation of T cells, resulting in

immune escape of tumor cells (95). In June 2018, the US Food

and Drug Administration (FDA) approved an anti-PD1

antibody pembrolizumab for the treatment of several types of

cancer including recurrent or metastatic cervical cancer (96).

Another important molecule in suppressing T cell activation is

the cytotoxic T-lymphocyte–associated antigen-4 (CTLA-4),

and it’s up-regulation leads to immune tolerance of cancer

cells (97). PD-L1 blockade and CTLA-4 inhibitor ipilumumab

were reported to attenuate tumor induced inhibitory signal

transduction, stimulate T cell activation, and play an anti-

tumor role (94).

Therefore, targeting TME components is promising

for deve lop ing nove l ce rv i ca l cancer therapy to

reduce radioresistance.
4 Metabolic factors affect cervical
cancer radioresistance

The metabolic disorder of cancer cells is closely related to

tumorigenesis and therapeutic effects (98). Metabolic

reprogramming is regulated by abnormal activation of proto-

oncogenes and loss of tumor suppressor genes (99). In addition,

TME influences various aspects of the tumor metabolism,

including glucose metabolism, amino acid metabolism and

lipid metabolism, which may contribute to the modulation of

cervical cancer radioresistance (100–102).
4.1 Glucose metabolism and cervical
cancer radioresistance

Cervical cancer mainly obtains energy through aerobic

glycolysis to maintain the growth and proliferation of cells.

Blocking glycolysis inhibits the growth of cancer cells and

induces apoptosis, which provides a new approach for the

clinical treatment of cervical cancer (103). The process of

aerobic glycolysis in cervical cancer cells is mediated by key

enzymes such as glucose transporter 1 (GLUT1), LDHA,

hexokinase 2 (HK2) and aldolase A (ALDOA), which enhance

glucose uptake and lactate production, and promote the

progression of cervical cancer (104–108). The Wnt/b-catenin
pathway is upregulated in cancer and promotes the activation of
frontiersin.org
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Warburg Effect, including the enhancement of enzyme activity

in the glycolytic pathway and the acceleration of glutamate

decomposition, which in turn promotes the production of

lactate. The high lactate microenvironment stimulates the

expression of vascular endothelial growth factor (VEGF),

promotes tumor angiogenesis and induces cell migration

(109). PI3K/mTOR is a key signaling pathway for cell

proliferation, and researchers have made great efforts to

inhibit this pathway. Li et al. inhibited the glycolysis process of

cervical cancer cells through the mTOR inhibitor AZD8055 to

fight against the unlimited proliferation of tumor cells (81).

Several groups also used NVP-BEZ235 and new 1,3,5-triazine

derivatives to double block PI3K/mTOR signaling pathway to

inhibit the proliferation of cervical cancer cells, so as to enhance

the therapeutic response (79, 80).

Cancer cells choose aerobic glycolysis with less capacity rather

than aerobic oxidation with more capacity, which seems to be an

uneconomical way. However, cancer cells upregulate GLUT and

produce ATP with high efficiency, in order to meet their high

energy needs (107). In addition, the metabolic mode of aerobic

glycolysis also meets the proliferation needs of cancer cells.

Glycolysis produces many metabolic intermediates and

precursors, which enter various biosynthetic pathways, such as

the pentose phosphate pathway (PPP), to generate amino acids and

nucleic acids, and then synthesize biological macromolecules and

organelles required for cell proliferation (110, 111). This metabolic

mode produces pyruvate, lactic acid, NADPH and hydrogen ions.

NADPH converts oxidized glutathione (GSSG) to glutathione

(GSH) (Figure 2). These products and glutathione up-regulate

the endogenous antioxidant capacity of cells, thereby directly or

indirectly working for antagonistic RT (112).
Frontiers in Oncology 06
4.1.1 GLUT1
GLUT is a family of carrier proteins embedded in the cell

membrane to transport glucose, which is widely distributed in

various tissues in the body. The distribution of GLUT in vivo and

its affinity with glucose molecules are significantly different.

Among the 14 glucose transporters, GLUT1 is the most

common and widely distributed one (21, 113). It is a human

unidirectional protein encoded by SLC2A1 gene that is important

for glucose uptake (114). It is up regulated in many types of cancer

and metabolic diseases, and involved in the disease progression

(115, 116). Inhibition of GLUT1 was found to downregulate

glycolysis and inhibited the growth of cervical cancer cells in

vitro and in vivo (117). Compared with normal cervical

epithelium, the expression of GLUT1 is increased in cervical

cancer and is associated with lymphatic metastasis (118).

There are different views on the role of GLUT1 in cervical

cancer prognosis. Several lines of evidence suggest that high

expression of GLUT1 indicates a poor prognosis of cervical

cancer (105, 106, 119–121). However, another study suggested

that the expression of GLUT1 was not correlated with the

prognosis of cervical cancer (122, 123). This contradict

requires more clinical studies to explore the role of GLUT1 in

the prognosis of cervical cancer.

It was reported that high expression of GLUT1 in cervical

cancer more likely leads to radioresistance (124). In a

prospective study, it was found that GLUT1 could be used as a

biomarker of cervical cancer radioresistance for individualized

treatment (125). Pierre Benoit Ancey et al. found that the loss of

GLUT1 in tumor-related neutrophils enhanced the effect of RT

in patients with lung cancer. The potential mechanism may be

that the lack of GLUT1 weakens the direct killing effect of
FIGURE 2

The role of metabolism on cervical cancer radioresistance. Glucose is transported into cells through GLUT1 for glycolysis and produces a large
amount of lactic acid, enhancing cervical cancer radioresistance. Glucose in cells also produces GSH through PPP pathway. The antioxidant
GSH weakens DSB after RT, resulting in radioresistance of cervical cancer cells. High expression of COX-2 in lipid metabolism and Glutamine in
amino acid metabolism also contribute to cervical cancer radioresistance. GLUT1, glucose transporter 1; PPP, pentose phosphate pathway; ROS,
reactive oxygen species; HIF-1, hypoxia-inducible factor 1; GSSG, oxidized glutathione; GSH, glutathione; RT, radiotherapy.
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neutrophils on cancer cells (126). In addition, increased GLUT1

expression was significantly associated with radioresistance in

rectal cancer, oral cancer and esophageal cancer (127–130).

Therefore, inhibiting the expression of GLUT1 may be used as

a new potential therapeutic target to improve RT sensitivity of

cancer patients (125).

4.1.2 LDHA
LDHA is a kind of NAD dependent kinase, which is a

homologous or heterotetramer molecule mainly located in

cytoplasm. LDHA plays a key role in glycolysis to convert

pyruvate to lactate and convert NADH to NAD (131). LDHA

is up regulated in many cancers, resulting in increased catalytic

product lactate and poor prognosis (121, 132–134). High lactic

acid forms an acidic TME, promotes tumor to acquire an

aggressive phenotype, and increases the risk of tumor

metastasis and recurrence (135). It was reported inhibition of

LDHA reduced the proliferation and invasion of cervical cancer

cells (136, 137).

High lactate level promotes radioresistance of malignant

tumor cells. A study on chemoradiotherapy resistance in

advanced cervical cancer showed that the expression of LDHA

was up-regulated in chemoradiotherapy resistant group by

microarray analysis compared to chemoradiotherapy sensitive

group (138). Another study also found that a relatively high

expression level of LDHA in cervical cancer cells was resistant to

RT, which helped cancer cells carry out aerobic glycolysis and

promoted radioresistance (139). Therefore, LDHA inhibitors

may be a promising strategy to improve the effect of RT and

provide a certain foundation for the new drug development

(140, 141).

4.1.3 PKM2
PK is another key enzyme in glycolysis, which catalyzes the

conversion of phosphoenolpyruvate and adenosine diphosphate

to pyruvate that is the last irreversible conversion process of

glycolysis (142–144). The M2 subtype PKM2 is highly expressed

in many cancers, playing an important role in maintaining the

metabolism of cancer cells (143). The high expression level of

PKM2 was used as a marker to predict the cervical cancer

prognosis (145). One study showed that PKM2 knockdown

inhibited EMT via the Wnt/b-catenin pathway, thereby

suppressing cervical cancer cell proliferation and invasion

(146). Another study reported that knockdown of PKM2 in

SiHa and HeLa cervical cancer cells promoted DNA DSBs

leading to RT sensitivity (147). In addition, PKM2 knockdown

leads to G2/M cell cycle arrest, and the expression of CSC

marker NANOG decreases, which significantly enhances the

RT effect of cervical cancer cells (147). Zhao et al. found that the

high expression of PKM2 was related to the poor prognosis of

locally advanced cervical squamous cell carcinoma and

contributed to the generation of radioresistance using
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multivariate COX regression analysis (148). Therefore,

targeting PKM2 is a new strategy to improve the RT effect for

cervical cancer.

4.1.4 HK2
Glucose can be converted into glucose 6-phosphate under

the catalysis of HK2, which is the first step of glycolysis (149).

Downregulation of HK2 inhibited glycolysis, reduced glucose

consumption and lactate production of cells, and also inhibited

cell proliferation and induced apoptosis (137, 150). Whether

HK2 regulates the biological behavior and treatment of cancer

cells through the glycolytic pathway needs to be further

explored. Knockdown of HK2 in cervical cancer cells inhibited

proliferation and migration and promoted cell apoptosis (151).

Targeting HK2 was found to reduce the glycolysis of cervical

cancer cells and enhance the sensitivity of cervical cancer to RT

(152). It was showed that increased expression of long non-

coding RNA urothelial cancer associated-1 (lncRNA UCA1) by

RT enhanced glycolysis by targeting HK2, thereby promoting

cervical cancer radioresistance (153). In the established

radioresistant cervical cell lines SiHa and HeLa, it was also

found that lncRNA UCA1 promoted radioresistance of the

cells through enhancement of HK2 and glycolysis (153).

Similarly, in the study of locally advanced cervical squamous

cell carcinoma, it was found that the high level of HK2 was one

of the risk prognostic factors for cervical cancer patients, and

associated with the low radiosensitivity (154). Inhibiting HK2 to

reduce the dependence of cervical cancer cells on glycolysis is a

potential strategy to promote cervical cancer RT.

The glycolysis related proteins in cervical cancer

radioresistance are summarized in Table 3.
4.2 Lipid metabolism and cervical cancer
radioresistance

Increased lipid uptake and storage in cancer cells contribute

to tumor growth and proliferation. More and more evidence

shows that lipid metabolism reprogramming plays a very

important role in the development of cancer (155–157). The

fatty acid is an important component of cell membrane

structure, which maintains the fluidity of cell membrane. In

case of metabolic emergency, fatty acid decomposition is also the

main source of energy (158, 159). Targeting fatty acid

metabolism was reported to improve the radiosensitivity of

many cancers (160, 161).

In the treatment of cervical cancer patients, reasonable

supplementation of high polyunsaturated fatty acids was

demonstrated to improve the effect of RT (162). The lipid

metabolites in high-resolution magic angle proton magnetic

resonance spectroscopy spectrum was used to evaluate the

apoptosis of cervical cancer (163). Ferulic acid was effectively
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combined with RT to increase lipid peroxide of cervical cancer

cells and improved radiosensitivity (164). Cyclooxygenase

(COX) converted arachidonic acid into prostaglandins, and

COX-2 inhibitor phosphorylated p53 in irradiated cervical

cancer cells, reducing the cervical cancer radioresistance (102).

Currently, the study on lipid metabolism in cervical cancer

radioresistance is very limited, but related studies in other

types of cancer may give some insights for future

investigation. For example, arachidonate 15-lipoxygenase

deficiency was found to reduce DNA DSBs induced by RT and

induce radioresistance in rectal cancer cells (165). Another study

found that targeting fatty acid synthase enhanced the sensitivity

of nasopharyngeal carcinoma to RT (161). In addition, targeting

carnitine palmitoyl transferase 1 (CPT1A) mediated fatty acid

oxidation also improved the effect of RT for nasopharyngeal

carcinoma (166).
4.3 Amino acid metabolism and cervical
cancer radioresistance

Cancer cells need to obtain enough amino acids for

biosynthesis to adapt to the characteristics of rapid

proliferation. Amino acid metabolism is closely related to the

occurrence and development of cancer, and targeting amino acid

metabolism provides a potential therapeutic strategy for cancer

treatment (167).

The best-studied amino acid in this metabolic pathway is

glutamine, which plays an important role by providing nitrogen

and carbon in biosynthesis (168, 169). Studies have shown that

glutamine metabolism was closely related to cancer

radiosensitivity (170, 171). It has been found that in human

cervical cancer samples, the content of phosphate-activated

mitochondrial glutaminase2 (GLS2) in the radioresistant group

was higher than that in the radiosensitive group. When GLS2
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was knocked down, the level of antioxidant glutathione

decreased and ROS increased after RT, which promoted the

radiosensitivity of cervical cancer cells (172). In another study,

the use of glutaminase inhibitors enhanced the radiosensitivity

of cervical cancer (101). In addition, glutamine was decomposed

by glutaminase, which enhanced the radiosensitivity of prostate

cancer (173). Paradoxically, in HeLa cell culture, the addition of

supraphysiologic glutamine concentration did not enhance the

radioresistance of cervical cancer cells (174). Indepth study is

needed about the effect of glutamine on cervical cancer RT.

Aminopeptidase N (APN), as a transmembrane exopeptidase, is

expressed at a level consistent with the increased malignant

behavior of tumors (175). In vitro and in vivo studies showed

that APN inhibitor ubenimex enhanced apoptosis and cell

damage induced by RT, and improved the radiosensitivity of

cervical cancer (176).

Currently, other amino acids regulating metabolism that

affects cervical cancer radioresistance have not been reported yet,

which requires further study.
5 Conclusions and perspectives

Radioresistance has become a major problem in the

management of cervical cancer patients. This review

summarizes the mechanism of radioresistance in cervical

cancer from different aspects. Most scholars believe that the

enhancement of DNA repair ability after RT leads to the

reduction of cervical cancer cell death. In addition, EMT and

CSCs induced by RT promote radioresistance, leading to cancer

recurrence and metastasis.

Here, we focus on TME to investigate how to overcome the

radioresistance and promote the efficiency of RT. Hypoxic

TME not only directly reduces radiosensitivity due to the

reduction of ROS, but also indirectly reduces radiosensitivity
TABLE 3 List of glycolysis related proteins in cervical cancer radioresistance.

Metabolism
Enzyme

Canonical Function Mechanism of Radioresistance Reference

GLUT 1 Glucose transport High aerobic glycolysis
Lymph node metastasis,
Endogenous markers of hypoxia

(117, 118, 124,
125)

LDHA Convert pyruvate to lactate and NADH to NAD Forming high lactic acid tumor
microenvironment,
High aerobic glycolysis

(139)

PKM2 Conversion phosphoenolpyruvate and adenosine diphosphate to
pyruvate

Regulate cell cycle,
Maintain stem cell characteristics.

(147)

HK2 Conversion of glucose to glucose 6-phosphate Removal reactive oxygen species and free
radicals,
Promote glycolysis

(152)
GLUT1, glucose transporter 1; LDHA, dehydrogenase A; PKM2, pyruvate kinase type M2; HK2, hexokinase 2.
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by promoting glycolysis. Glucose metabolism is a very

important factor in occurrence of radioresistance in cervical

cancer. The intermediate products produced by glycolysis are

suitable to be used as the precursor of biosynthesis to promote

the growth and proliferation of cervical cancer cells. Lactic acid

produced by glycolysis promotes radioresistance of cervical

cancer cells, and lactic acid inhibitors are expected to become

new products to improve the effect of RT. Although the study

of lipid metabolism and amino acid metabolism is very limited,

we review the important findings related to cervical cancer.

Glutamine has a relatively obvious effect on RT and low-level

glutamine can increase the content of intracellular ROS to

improve sensitivity of cervical cancer cells to RT. In addition,

inhibiting the NHEJ pathway to block DNA repair makes

tumor cells sensitive to RT, which is also a promising

therapeutic strategy (40). In recent years, immunotherapy

has become a novel promising treatment, and is used in

combination with traditional chemotherapy or RT for

advanced and recurrent cervical cancer patients. Anti-PD-1/

PD-L1 and anti-CTLA-4 therapies are commonly used in

cervical cancer immunotherapy to improve the prognosis of

cervical cancer patients. Whether the metabolic programming

can give insights for the development of immunotherapy to

improve the current cervical cancer treatment is still unknown

and worth of putting more efforts for further investigation.

There is no doubt that targeting the key enzymes and

intermediates of metabolism is a promising strategy to

improve the radiosensitivity of cervical cancer patients. With

the in-depth study on the mechanisms related to metabolism

with modern omics technologies, it is possible to develop

personalized treatment plans to improve the current

treatments and prognosis of cervical cancer patients with

different metabolic status.
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