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Clinical cancer trials are designed to collect radiographic measurements of

each patient’s baseline and residual tumor burden at regular intervals over the

course of study. For solid tumors, the extent of reduction in tumor size

following treatment is used as a measure of a drug’s antitumor activity.

Statistical estimation of treatment efficacy routinely reduce the longitudinal

assessment of tumor burden to a binary outcome describing the presence

versus absence of an objective tumor response as defined by RECIST criteria.

The objective response rate (ORR) is the predominate method for evaluating an

experimental therapy in a single-arm trial. Additionally, ORR is routinely

compared against a control therapy in phase III randomized controlled trials.

The longitudinal assessments of tumor burden are seldom integrated into a

formal statistical model, nor integrated into mediation analysis to characterize

the relationships among treatment, residual tumor burden, and survival. This

article presents a frameworkfor landmark mediation survival analyses devised

to incorporate longitudinal assessment of tumor burden. R2 effect-size

measures are developed to quantify the survival treatment mediation effects

using longitudinal predictors. Analyses are demonstrated with applications to

two colorectal cancer trials. Survival prediction is compared in the presence

versus absence of longitudinal analysis. Simulation studies elucidate settings

wherein patterns of tumor burden dynamics require longitudinal analysis.

KEYWORDS

functional principal component analysis, landmark analysis, longitudinal analysis,
mediation analysis, oncology, RECIST
1 Introduction

Defined as the time from randomization until death from any cause, overall survival

(OS) is considered the most reliable cancer endpoint for randomized controlled trials.
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Measurement of OS is unbiased and precise. Prolonging OS is

considered the most convincing demonstration that an emerging

cancer therapeutic intervention is superior to an existing

standard of care. Despite these advantages, a long duration is

required to sufficiently follow trial participants to observe OS.

Especially in earlier stages, for which recent advances in surgical,

radiation, and non-cytotoxic treatments have extended patient

survival to an extent that there are now considerable numbers of

patients alive 5 years after diagnosis (such as breast cancer and

colon cancer). Authors report that the median duration of an

industry sponsored phase III oncology trial that completes

enrollment is approximately 48 months (1).

This latency period required to acquire sufficiently mature

OS data effectively delays the confirmation of OS benefit. For

many cancer types, radiographic tumor assessments are used to

directly measure components of the disease and trigger

treatment decisions in clinical practice. While a variety of

tumor response criteria are considered appropriate for

regulatory reviews, the revised Response Evaluation Criteria in

Solid Tumors (RECIST) (2) is the predominate technique for

quantifying changes in tumor burden following treatment for

solid tumors. The RECIST criteria is a composite endpoint

which characterizes changes in tumor size by the sum of

longest diameters (LDSUM). Thought to be a surrogate

endpoint for OS, changes in tumor burden are described by

four levels of response for target and non-target lesions. For

example, for target lesions, takingas reference the smallest

LDSUM on study, observing a 20% increase yields the worst

result of progressive disease (PD). The best result occurs with the

disappearance of all target lesions, or complete response (CR). A

30% decrease from the baseline LDSUM yields a partial response

(PR). A patient is considered to have stable disease (SD) if

criteria for PD, PR, and CR are not satisfied.

Tumor assessments occur longitudinally over the course of

study, typically planned to be acquired at 4-week or 8-week

intervals until tumor progression. Planned trial statistical

analyses, however, reduce the longitudinal curves to a single

response level. At the patient level, the objective response

indicates whether a patient experienced PR or CR during the

course of study. At the cohort level, the objective response rate

(ORR), the proportion of patients that achieved an objective

response, is a commonly used primary endpoint for single-arm

trials. Objective response is used alongside endpoints describing

the duration of response to support applications for accelerated

approval to the U.S. Food and Drug Administration.

In oncology settings, complex relationships exist among

therapies, tumor response (often used as the basis for

evaluation in phase II trials), and survival. Reducing the

longitudinal tumor assessment to a single value, however, may

not describe the cumulative effect of the patient’s tumor burden.

Mediation modeling provides a framework for elucidating the

mechanisms by which an intervention impacts an endpoint

through a third intermediate response variable. The extent to
Frontiers in Oncology 02
which tumor response representsa reliable surrogate of survival

can be measured through the application of mediation models,

which decompose the total effect of an intervention into direct

effect and indirect effects. In the context of oncologic drug

development, the indirect effect defines the extent of survival

benefit that is achieved from improving the objective response

rate, while direct treatment effects characterize the extent of

survival benefit attributable to all other factors. Authors have

developed mediation models integrating categorical surrogate

endpoints with OS (3, 4). However, to our knowledge a

mediation model for OS that leverages the entire tumor

assessment trajectory for each patient has not been developed.

Longitudinal data is often analyzed using the linear mixed

effects models or generalized estimation equations (5, 6).

Functional principal component analysis (FPCA) is another

popular method that provides a powerful approach for

modelling noisy and irregularly measured longitudinal data.

Summary statistics derived from FPC scores yield dimension

reduction of the trajectories, while preserving most of the

information. Survival models with longitudinal predictors have

been developed under the joint modeling framework (7, 8).

Specifically, a mixed effects model with normal random effects is

commonly assumed for the longitudinal observations. The

hazard function or the survival probability is assumed to

depend on the true longitudinal outcome at each time point.

Naive two-stage approaches (9, 10) were first proposed for

estimating the association between the longitudinal and

survival outcomes. More advanced estimating procedures

based on the Expectation-Maximization (EM) algorithm (11)

and Markov chain Monte Carlo (MCMC) (12) were

subsequently proposed to reduce bias in parameter estimation.

Dynamic predictions of survival probabilities conditional on the

available longitudinal data have been developed for joint models

(13–15). The application of such joint models is challenging in

practice, however. The fitting algorithms are computationally

expensive and many underlying parametric distributional

assumptions cannot be verified from the data. Furthermore,

the extensions to estimate the time-varying effects of different

types of longitudinal response variables are not straightforward.

Landmark analysis first proposed in Anderson et al. (16)

provides a straightforward approach to approximate the

association between longitudinal and OS outcomes at a

sequence of landmark times. Landmark models have been

developed to estimate the varying effect of a longitudinal

predictor on the survival outcome and predict the survival

outcomes dynamically (17). Cao et al. (18) calculated the

cumulative effect of longitudinal outcome based on FPCs and

applied the measure in models with binary disease outcomes.

Yan et al. (19) used landmark analyses with FPCs derived based

on moving time windows in predicting survival probabilities

dynamically. Shi et al. (20) applied the FPCA based landmark

analysis in estimating the effect of longitudinal measures of total

cholesterol with respect to risk of coronary heart disease.
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Though it is not a comprehensive probability model of the

longitudinaland the event time processes, landmark analysis

circumvents the assumptions and computational burden

associated with a joint model.

This article presents a method for quantifying the treatment

mediation effects of tumor response on survival using longitudinally

observed tumor measurements. R2 effect-size measures (21, 22) are

extended to the settingof longitudinal survival mediation. Different

from the traditional product-based and difference-based mediation

effect measures, which are based on coefficients estimated in

regression models (23), R-squared type measures are derived

from the extent of explained variation of survival outcomes by

treatment and mediators. Several R2 measures have been proposed

in the literature. Kent and O’Quigley (24) derived an explained risk

measure called “explained randomness” using Weibull models with

entropy loss function. Korn and Simon (25)Korn and Simon (, 26)

discussed explained risk measures for residual variation in survival

analysis. To account for censoring in the survival data, authors have

incorporated inverse probability censoring weights (27, 28), but the

measures depend on the maximum follow-up time and could be

sensitive to the values in the right tail of the survival distribution. To

avoid any modification or approximation to the metric, Heller (29)

proposed a measure called explained relative risk for the

proportional hazards model, which is unaffected by non-

informative censoring times. Shi et al. (30) compared the different

R2 measures for survival outcomes and suggested two R2 measures

proposed in Kent andO’Quigley (24) andHeller (29) that satisfy the

properties conveyed by Royston (31). These methods have not be

used to compare tumor burden (TB) trajectories with landmark

analyses. We compare mediation analysis for OS using longitudinal

measures of tumor response versus conventional approaches using

the single-valued objective response. Measures are estimated using

patient-level data acquired from two colorectal cancer studies

[Goldberg et al. (32); Peeters et al. (33)], which we analyzed

before as secondary analyses in different contexts [Hobbs et al.

(34); 120 Zhou et al. (3); Zhou et al. (4)].

The remainder of this article is organized as follows. In

Section 2.1, we introduce the varying coefficient models for the

longitudinal outcomes and different response summary

statistics. The landmark analysis models are discussed in

Section refsec:osmod for estimating the time-varying effect of

longitudinal outcomes and predicting survival probability for

new patients. The R2 measures are introduced in Section 2.3 for

measuring the mediation effects of longitudinal tumor

measurements. The models comparing different measures are

applied to two colorectal cancer studies in Section 2.4.

Comprehensive simulation studies are performed in Section 3

to evaluate the predictive performance of summary statistics of

longitudinal measures under settings assuming various

relationships among treatment, longitudinal and survival

outcomes. Finally, we summarize the content and have some

discussions in Section 5.
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2 Methodology

Let A∈A indicate treatment arm. For simplicity, we present

notation assuming only two treatment options A=(0,1) as

extensions to three or more are relatively straightforward. X

and Z denote covariate vectors for longitudinal and survival

models, respectively. X and Z may represents different features

or shared common variables. lationships among treatment, TB,

and OS.
2.1 Longitudinal tumor burden

Let Yij=Yi(tij) denote the observed longitudinal measures of

TB for the i th patient at visit time tij , i=1,⋯,N ; j=1,⋯,mi . We

assume Yij follows a varying coefficient model:

Yi tð Þ = h0 tð Þ + Di tð Þ + ϵi tð Þ

= h0 tð Þ + h1 tð Þ � Ai + h2 tð Þ � Xi + ϵi tð Þ, (1)

Where h0(t) is the overall population mean trajectory of TB

and h1(t) and h2(t) are the time-varying treatment and covariate

effects on the tumor. The error term ϵij=ϵi(tij) is assumed to

follow a Normal distribution N(0,s2) . Note that Di(t) is the true

longitudinal trajectory with the overall mean trajectory removed,

and therefore contains the patient level variability of TB.
2.2 Functional principal
component analysis

Yao et al. (35) proposed an approach called Principal

Components Analysis through Conditional Expectation

(PACE) for sparse and irregularly measured longitudinal data.

According to the Karhunen–Loeve decomposition, the patient

level longitudinal trajectory Di(t) in Equation (1) can be

decomposed as Di(t) =o∞
k=1gikpk(t) where rk(t) is the k th

eigenfunction satisfying the orthonomal conditions: ∫rk(s)rl(s)
ds=0 and ∫rk(s)2ds=1 for any k≠l and k=1,⋯,∞ . Parameter gik=∫
(Yi(t)−h0(t))rk(t)dt is the functional principal component (FPC)

score corresponding to the k th eigenfunction.

The variability contained by the functional components

decreases as k increases. Usually the trajectories can be well

approximated by the first finite number (say K ) of components.

Therefore we estimate the smoothed trajectories

D̂ i tð Þ = o
K

k=1

ĝ ikrk tð Þ,

where ĝ ik is the FPC score estimated through conditional

expectation. The estimation of the overall mean function,

eigenfunctions, and FPC scores can be achieved in the R

package “fdapace”.
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To make full use of the longitudinal TB information, we

consider two approaches to estimation. One approach uses the

first K FPC scores that capture at least 90% of the total outcome

variability. The FPC scores summarize a patient trajectory’s

proximity to the patterns described by the eigenfunctions.

Restricting estimation to 90% of variability explained captures

most information of the longitudinal outcome. The other

approach summarizes the cumulative effect of longitudinal

outcomes. Let ti denote the upper limit of observational time

of the longitudinal measures for patient i. We define the

integrated smoothed outcome of Di(t) as ^ID i =
Z ti

0
D̂ i(s)ds,

which can be calculated through numerical integration.
2.3 Time-varying models for
overall survival

Let T denote overall survival duration since trial enrollment.

To evaluate treatment effect on OS after adjusting for TB, we

assume T follows a proportional hazards (PH) model (36)

h(tjAi,Ri,Zi) = h0 tð Þ � exp   b1Ai + b2Zi + aRif g,
where h0(t) is the baseline hazard function. The baseline

hazard is positive and can be estimated nonparametrically. Ri
denotes the tumor response surrogate measure. For

conventional mediation analysis, Ri may be the binary

indicator of an objective RECIST tumor response. Leveraging

the longitudinal model, one could use the first K FPC scores as Ri
or the fully integrated smoothed outcome ^ID i) of TB discussed

in Section 4.2. Of note, the classical causal mediation analysis

model for survival outcomes assumes no unmeasured

confounders for the exposure-outcome (A-T), exposure-

mediator (A-R), and mediator-outcome (R-T) relationships

VanderWeele (23). As our goal here is prediction rather causal

inference, we do not make such assumptions. Nevertheless,

adjusting covariates, i.e., potential confounders, in the PH

models is expected to improve the prediction accuracy

Vandenberghe et al. (37).

The true survival time T is subject to right censoring. Let Ci

denote the censoring duration of patient i. For modeling

justification, we need to assume that the censoring mechanism

is random or non-informative. Therefore, Ti and Ci are

independent conditional on the treatment Ai , covariates Zi,

and longitudinal outcome variable Ri . The observed survival

outcome for patient i includes an observed survival duration ~Ti

= min(Ti,Ci) and censoring indicator di=I(TiłeqCi) .

With complete dataset O = f(~Ti, di,Ai,Xi,Zi,Ri), i = 1,⋯,N

g, the overall effects of treatment and covariates can be estimated

with the traditional nonparametric Cox PH model. However,

this model assumes that the effects of treatment, TB, and

covariate on OS are fixed over time. Ignoring the possibility of
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time-varying effects, this strong assumption is usually difficult to

justify. easures. This limitation can be addressed by adopting a

landmark analysis approach.

2.3.1 Landmark analysis
Let 0<L1<L2<⋯<LP<t denote a sequence of landmark times of

interest, where t=max (t1,⋯,tN) is an upper limit of the longitudinal

follow-uptimeofallpatients.ForeachlandmarktimeLp ,onlypatients

in the risk set at Lp are used for estimation. Define t(p)i = ftij : tij <
Lp, j = 1,⋯,mig tobe theobservational timepointsbefore landmark

timeLp :  Y
(p)
i denotes thecorresponding longitudinaloutcomeswith

measurement time in t(p)i .TheresponsesummaryvariableR(p)
i is then

derivedbasedonavailabledataY (p)
i atlandmarktimeLp .Specifically,a

conventional model using binary objective response will allow

different patterns for responders after the response is observed,

while non-responders will assume constant values at 0 for all time.

WhenisdefinedbasedonFPCA,asdiscussedinSection4.2,FPCAcan

be applied according to amoving time window (19).

Initially, FPCA is performed with all available longitudinal

data using the maximum time window (0,t) . The estimated

overall mean function ĥ 0(t), as well as the eigenvalues and

eigenvectors corresponding to the first K FPCs are saved. Then

at each landmark time Lp , FPC scores are recalculated as ĝ (p)
ı ́k

based on available longitudinal outcomes Y (p)
i . The integrated

score at landmark timLp is calculated as Ri
^

ID(p)
i =

Z tpi

0
D̂ i(s)ds,

where tpi = min  (ti, Lp).
The landmark data at Lp is defined as O(p) = f(~Ti, di,Ai,Xi,

Zi,R
(p)
i ) : ~Ti > Lp; i = 1,⋯,Ng and the survival model for T−LP

given O(p) is defined as:

h(tjO pð Þ) = h pð Þ
0 tð Þ

� exp   b1 Lp
� �

· Ai + b2 Lp
� �

· Zi + a Lp
� �

· R pð Þ
i

n o
,

(2)

where h(p)0 (t) is the nonparametric baseline hazard function

evaluated at time Lp+t . Trajectories of estimated coefficients b̂ 1

( · ), b̂ 2( · ) and â ( · ) represent the changing patterns of the

effects of treatment, covariate, and TB measures on overall

survival. These model features provide estimates for time-

varying coefficients at landmark time points of interest.

Moreover, the estimated models can be used for prediction at

each landmark time, which will be discussed in the next section.
2.3.2 Prediction for new patients
After estimating the model in (2) for all the landmark times,

we can dynamically predict survival probabilities for new

patients at each landmark time. Specifically, the conditional

survival probabi l i ty for a new patient N+1 , who

survivedlonger than landmark time Lp and had data O(p)
N+1 =

(AN+1,ZN+1,R
(p)
N+1), can be written as
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Ŝ (Lp + tjLp,O pð Þ
N+1)

= Pr TN+1 > Lp + tjTN+1 〉 Lp,AN+1,ZN+1,R
pð Þ
N+1

n o

= Ŝ pð Þ
0 (t)exp   b̂ 1 Lpð Þ·AN+1+b̂ 2 Lpð Þ·ZN+1+â Lpð Þ·R pð Þ

N+1f g ; (3)

where Ŝ (p)
0 (t) = exp  f−

Z t

0
h(p)0 (s)dsg is the baseline survival

function corresponding to landmark time Lp .

The predictive power of various tumor burden summaries,

Ri, discussed in Section 4.1 can be evaluated by comparing the

resulting area under curves (AUC):

AUCp uð Þ = Pr S(Lp + t Lp,O
pð Þ
i ) < S(Lp + t

��� ���Lp,O pð Þ
j ) Lp 〈Ti ≤ Lp + u,Tj 〉 Lp + u

�� �
:

n
(4)

The estimated value ^AUCp(u) can be obtained by plugging

the predicted survival probabilities (3) in equation (4). Models

with larger values of ^AUCp(u) facilitate more accurate

predictions at landmark time Lp .

Brier score (38) is another measure of prediction

performance characterized by the mean squared error for the

predicted survival probabilities calculated in equation (3). This

measure is useful for model comparison in simulation studies

where the true survival probabilities are known Shi et al. (20).

However, the Brier score cannot be directly applied in real data

analysis with right-censored observations unless modified using

the inverse probability of censoring weighting method Graf et al.

(27), which can be numerically unstable Seaman andWhite (39).
2.4 R2 measures for mediation effect

R2 effect-size measures were originally proposed to assess the

variance accounted for in mediation models with uncensored

continuous outcomes (21). According to Yang et al. (22) and Shi

et al. (30), three differentregression models need to be fit to

calculate the R2 measures for mediation effects: (1) a model with

the independent variable of interest, (2) a model with the

mediators and (3) a full model with all predictors. Specifically,

we fit the following three PH models:

h(tjAi) = hD0 tð Þ � exp   bD
1 Ai

� �
, (5)

h(tjRi) = hM0 tð Þ � exp   aMRi

� �
, (6)

h(tjAi,Ri) = hF0 tð Þ � exp   bF
1Ai + aFRi

� �
, (7)

where the superscripts ‘D’, ‘M’ and ‘F’ denote the “direct”,

“mediated” and “full” models. These three models are used to

distinguish the baseline hazard and regression coefficients. Let

R2
T ,D denote the total variation of survival time T explained by
Frontiers in Oncology 05
treatment. This can be derived based on model (5). Similarly, let

R2
T ,M calculated based on model (6) represent the variation of T

explained by the response summary variable, and R2
T ,F calculated

based on the full model (7) is the the variation of T explained by

the treatment and response summary variables conjointly. The

R-squared measure of mediated effect is then calculated as

R2
med = R2

T ,D + R2
T ,M − R2

T ,F : (8)

The proportion of mediated effect with respect to the total

treatment effect on survival is defined as the shared over simple

(SOS) effect. SOS effect is calculated as SOS = R2
med=R

2
T ,D.

Provided a nonzero total effect and non-negative direct and

mediated effects (i.e. 0 ≤ R2
med ≤ R2

T ,D and R2
T ,D > 0), the

mediation effect of the response summary variable increases as

SOS increases from 0 to 1.

To calculate the R2 measures in Equation (8), Shi et al. (30)

compared five available approaches and suggested the R2
b

proposed by Heller (29) as well as R2
w proposed by [15] which

is based on the five properties suggested in (31) for evaluating

the R2 measures in survival models. n the manuscript, and

results with other approaches can be found in the

Supplementary Materials. Let q denote the vector of regression

coefficients in models (5)-(7) and Pi denote the corresponding

vector of predictor values for patient i , i=1,⋯,N . The R-squared

measure R2
b derived by Heller (29), which they referred to as the

explained relative risk, is calculated as

R2
b =

log N−1oiexp   (q̂
0 ePih �

�
1:5772 + log N−1oiexp   (q̂

0 ePih �
� − 1

,

where ePi is the covariate value centered around zero and q̂ is

the maximum partial likelihood estimate for q . Note that 1.5772
is the approximate value for the entropy for the covariate model

under the extreme value distribution. The other measure R2
w

using the approach proposed by [15] was developed from a

Weibull model as an approximation to the explained risk based

on the product moment correlation coefficient with a standard

normal error variance:

R2
w =

q̂
0cSPq̂

1 + q̂ 0cSPq̂
,

where ŜP is the estimated variance covariance matrix of the

covariate vector.

Note that the R-squared based approaches require large

sample sizes in practice. Based on our numerical studies, the

estimated SOS effects using the above approaches are not always

restricted to the interval [0,1], especially when the total

treatment effects are small while the sample sizes are moderate.
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3 Colorectal cancer studies

This section applies the landmark survival mediation

analysis to two colorectal cancer studies. The predictive power

of various tumor burden measures are compared at different

landmark times. Landmark times were selected as the 10th, 20th,

…,90th quantiles of event times observed in each study.

Estimated time-varying coefficients of treatment and baseline

LDSUM were compared among four models: (i) model with no

response variable adjusted; (ii) model adjusting binary response;

(iii) model adjusting the first three FPC components that

explained more than 99% variability in the outcome and (iv)

model adjusting the integrated smoothed TB trajectory.
3.1 Goldberg study

The colorectal cancer study reported by Goldberg et al. (32)

included 795 patients with metastatic colorectal cancer who had

not been treated previously for advanced disease. Secondary

analysis of the trial data has been reported Hobbs et al. (34).

These patients were enrolled in the study between May 1999 and

April 2001 and had a median follow-up of 20.4 months (88

weeks). There were three treatment arms including irinotecan

and bolus fluorouracil plus leucovorin (IFL), oxaliplatin and

infused fluorouracil plus leucovorin (FOLFOX), or irinotecan

and oxaliplatin (IROX). FOLFOX and IROX were two new

regimens under investigation while IFL was considered as the

standard of care.

Our case study compares the tumor response and overall

survival outcomes between patients who received the FOLFOX

regime (treatment group) and the standard of care IFL (control

group). Analysis was limited to patients with at least three

measurements of tumor burden as defined by RECIST

LDSUM. As a result, the analysis set included a total of 311

patients (157 in treatment group and 154 in control group).

Tumor burden was evaluated at each treatment cycle (every 2

weeks). (This is the description in the study, but we assumed 2

wks for each cycle in data. Do we need to note here)?

Longitudinal LDSUM measures are plotted by treatment

groups in Figure 1A. The median number of follow-up visits is

five. Baseline LDSUM is included as a covariate in models for

both longitudinal LDSUM and OS. The baseline LDSUM ranged

from 1.5 to 38.5 centimeters (cm) with mean of 10.18 cm in the

treatment group compared with 10.11 cm in the control group.

According to RECIST criteria, patients in the treatment

group experienced more reductions in tumor burden than

patients in the control group: 114 (72.6%) responders (14 CR

and 100 PR) among patients receiving FOLFOX versus 93

(60.4%) responders (5 CR and 88 PR) for patients receiving

IFL. We performed FPCA on the scaled longitudinal LDSUM.

The time scale was map into [0, 1] by dividing the observational
Frontiers in Oncology 06
time by the maximum follow-up duration observed. Figure 1B,

plots the smoothed outcome up to the last observational time.

Solid lines depict observed domain for each patient, while

dashed lines are used to depict the predicted trajectories for

each patient. Functional data regression was fit using equation

(1) to the smoothed trajectories yielding the estimated intercept

and coefficients for treatment and baseline LDSUM in plotted in

Figure 1C. Based the resultant estimated coefficient trajectories,

we find that the treatment effect on the longitudinalLDSUM

measures fluctuates around zero after adjusting for baseline

tumor burden. Patients with larger baseline LDSUM also had

larger LDSUMmeasures but the correlation decreases with time.

The C-index (or AUC) evaluated at median survival time is

computed and compared for the four models with complete data

(dashed lines) at each landmark time (solid lines) in Figure 1D.

With complete data, models (iii) and (iv) based on the FPCs

resulted in larger AUC values than model (ii) which described

changes in TB as the binary objective response. All the three

models containing tumor response information yielded larger

AUC than model (i). Models (iii) and (iv) yielded larger AUC

values than models (i) and (ii) for landmark time points before

800 days, while the AUC values are comparable beyond 800 days.

Figures 1E, F present the estimated coefficients for treatment and

baseline LDSUM for four models at eachlandmark time. The

point estimates based on the complete dataset are marked as

dashed lines in the plot. Patients receiving the FOLFOX regime

experienced lower hazard of death compared to patients receiving

IFL after adjusting baseline LDSUMmeasures andresponse based

on all four models.

Table 1 reported the estimated R2 measures for models (ii)-

(iv). Note the estimated measures fall below zero occasionally in

this data due to the small sample size and mode R2 rate total

effects. All R2 measures are close to zero, indicating limited

mediated effect of the response summary variables. With limited

differentiation between treatment and the longitudinal LDSUM,

as estimated in Figure 1C, the mediation path from treatment to

response to OS is not identified from the data.
3.2 Study of Panitumumab

The other colorectal cancer study was sponsored by Amgen

(33). The study enrolled 1186 patients with Metastatic Colorectal

Cancer (mCRC). Patients were randomized to receive either

standard treatments of FOLFIRI (control group) or FOLFIRI

plus Panitumumab (treatment group). The median follow-up

time of the patients was 59 weeks. Our case study uses data made

available on Project Data Sphere (PDS) (40), which comprised

approximately 80% of patient-level data reported in the

completed study. Analyses included patients with at least 2

measures of LDSUM during follow-up, yielding 841 patients

(417 in control group and 424 in treatment group) for analysis.
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FIGURE 1

Goldberg study: (A) observed LDSUM by treatment groups; (B) smoothed (solid lines) and predicted (dashed lines) values for scaled LDSUM
based on FPCA; (C) estimated varying coefficients in functional data regression analysis; (D) AUC values with different response measures; (e/f)
estimated coefficient for treatment/baseline LDSUM in survival model. Solid lines are based on analysis and dashed lines are based on complete
data in (D–F).
TABLE 1 Colorectal studies: estimated R2 and SOS measures for mediation effects.

(ii) Binary response (iii) FPC scores (iv) Integrated response

Study measure R2med SOS R2med SOS R2med SOS

Goldberg R2
b -0.00992 -0.22303 -0.00106 -0.02394 -0.00684 -0.15374

R2
w -0.00993 -0.19275 0.00457 0.08869 -0.00613 -0.11905

Amgen R2
b -0.00001 -0.00447 0.00114 0.68428 0.0009 0.54028

R2
w 0.0002 0.10568 0.00069 0.35978 0.00118 0.61047

SOS: the shared over simple effect. It is defined as the ratio of R-squared measures of the mediated and the total treatment effects on OS.
F
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All patients with measurable disease at the baseline central

review had their objective tumor response assessed every 8

weeks until progressive disease or death. The longitudinal

LDSUM measures are plotted in Figure 2A. The median

number of follow-up visits is four. Similar to analysis of the

Goldberg study, we include the baseline LDSUM measures as

predictors in models for both longitudinal LDSUM and OS. The

baseline LDSUM ranged from 20 to 762 millimeter (mm) with

an average size of target tumor at baseline of 168.9 mm and 164.1

mm in the treatment and control groups, respectively.
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The resultant RECIST objective response rate in the

treatment group is around 30%, which is much higher than

the response rate in control group (12.5%). Figure 2B presents

the predicted smoothed trajectories of longitudinal LDSUM.

Estimates of the time-varying intercept and coefficient effects for

treatment and baseline LDSUM are shown in Figure 2C. The

plots demonstrate that the addition of Panitumumab had the

effect of decreasing the LDSUM early following treatment. The

effect, however, diminished with further follow-up. Similarly,

patients with larger baseline LDSUM maintained larger LDSUM
D

A B

E F

C

FIGURE 2

Amgen colorectal cancer study: (A) observed LDSUM by treatment groups; (B) smoothed (solid lines) and predicted (dashed lines) values for
scaled LDSUM based on FPCA; (C) estimated varying coefficients in functional data regression analysis; (D) AUC values with different response
measures; (e/f) estimated coefficient for treatment/baseline LDSUM in survival model. Solid lines are based on analysis and dashed lines are
based on complete data in (D–F).
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measures early on, The baseline effect of LDSUM also decreased

to zero with time.

C-index (or AUC) evaluated at median survival time is

compared among four models with complete data (dashed lines)

and at each landmark time (solid lines) in Figure 2D. With

complete data, model (iii) had the largest AUC and model (ii)

with best response had larger AUC thanmodel (iv). Models (ii), (iii)

and (iv), which contained response information, were found to have

larger AUC than model (i) at all the landmark time points.

In Figures 2E, F, the estimated coefficients for treatment and

baseline LDSUM based on the four models were compared at each

landmark time. The point estimates based on the complete dataset

are marked as dashed lines in the plot. The treatment coefficients

was negative in model (i) and positive in the other three models

adjusted for response variables. The difference here indicated that

the protective effect of additional Panitumumab on survival

outcome strongly depended on the response information. The

coefficients for baseline LDSUM were close to zero and the

estimated values from model (iii) had larger variability.

The R2 measures are listed in Table 1. The estimated SOS

effects are close to zero for model (ii) and between 0.35 and 0.7

for models (iii) and (iv). This suggests that 35% to 70% of the

treatment effect on OS is mediated by the longitudinal TB

measures. Additionally, the FPC scores capture this mediation

effect more efficiently than the conventional RECIST objective

response. on effect during the follow-up between 300 to

700 days.
4 Simulation

4.1 Data generation

This section presents a simulation study devised to compare

the four models (i)-(iv) discussed in Section 3. Using estimates

from our case studies, we assume that the true trajectory of the

longitudinal outcome was h0(t)+h1(t)A+h2(t)X with range for

longitudinal follow-up time of t∈(0,1) Treatment A was generated

from the Bernoulli distribution with probability of 0.5. Covariate

matrix X was generated from the standard Normal distribution.

For the time-varying coefficients, we used the estimated overall

mean from the Goldberg study for h0(t) , and assume different

time varying coefficients h1(t) and h2(t) for treatment and

covariate X based on a cubic spline functions. Specifically, we

defined four cubic B-spline basis function (B1(t),⋯,B4(t)) in the

range of t∈(0,1) Model coefficient functions were determined by

hj(t) =o
4

l=1

xjlBl(t).

We generate the true event time T from the survival model

h(tjA,Z,D tð Þ) = h0 tð Þ � exp   b1A + b2Z + a
Z t

0
D sð Þds

� 	
,

where D(s)=h1(s)A+h2(s)X is the true longitudinal trajectory

after removing the overall mean function and D(t) includes the
Frontiers in Oncology 09
history of D(s) up to time t=min (T,1) . The baseline hazard

function assumed Weibull distribution with shape 1.682 and scale

1.024, which were estimated from the Goldberg data. Covariate Z

was generated from the standard Normal distribution.

Since the longitudinal predictor in the survival model is

time-dependent when T<1 , we generated the event time using

the following procedures. First, we set a sequence of grids

0=s0<s1<⋯<sM=1 , where sm−sm−1=0.001 . At each grid sm,

theintegration part in the model can be approximated using

the numerical integration. Specifically, we approximate R(sm) =Z sm

0
D(s)ds by

R smð Þ ≈ ~R smð Þ =o
m

l=1

(D slð Þ − D sl−1ð Þ) sl − sl−1ð Þ,

and the cumulative hazard function evaluated at time grid sm
can be approximated as

H smð Þ ≈ ~H smð Þ = exp  (b1A + b2Z)o
m

l=1

(sl

− sl−1) h0 slð Þea~R slð Þ − h0 sl−1ð Þea~R sl−1ð Þ
n o

:

The survival probability at time sm is then S(sm) ≈ exp  ( −
~H(sm)). For T≥1 , the cumulative hazard function is:

H Tð Þ = ~H sMð Þ + exp   b1A + b2Z + a~R sMð Þ� �Z T

1
h0 uð Þdu :

To generate event time T that follows the desired

distribution, we first generate U∼Unif(0,1) , and compare it

with the survival probability S(sM) . If U>S(sM) , the event time

T=max {sm:S(sm)≥U} , otherwise, T has closed form solution

T = H−1
0 H0 sMð Þ − log   (U) + ~H sMð Þ

exp   (b1A + b2Z + a~R sMð Þ)

� 	
,

Where H0(s) =
Z s

0
h0(u)du is the cumulative baseline

hazard function and H−1
0 is its inverse function.

We then generate independent censoring time C from

uniform distribution Unif(0,10) , and the observed survival

outcome as ~T = min  (T ,C) and d=I(T≤C) . The longitudinal

follow-up time t=(t1,⋯,tm) was randomly selected as the time

grids on the interval (0, ~t), where ~t = min  (1, ~T), and the

number of total post-baseline visits m was generated from

Poisson distribution with mean of 5. The observed

longitudinal observations represent the true trajectory h0(t)+D
(t) evaluated at visit time t plus error terms generated from N

(0,s2=0.01) . Only patients with at least 3 post-baseline

observations (m≥q3 ) were included in analysis.
4.2 Simulation settings and results

Our simulation study assumed five fundamentally different

relationships among the treatment, longitudinal and survival
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outcomes. The coefficients for longitudinal and survival models

are listed in Table 2 for each setting. In the first two settings ‘a1’

and ‘a2’, there is only direct treatment effect on survival outcome

with the response effect on OS assumed to be zero (i.e. a=0 ).

The treatment and the longitudinal outcomes are not related in

‘a1’, while in setting ‘a2’, treatment has positive effect on the

longitudinal outcome. Setting ‘b’ is another typical case where all

the treatment effect on survival is mediated through the

longitudinal response outcome. Setting ‘c’ has both direct and

indirect treatment effects on the survival outcomes, while setting

‘d’ is a null case where treatment, longitudinal response and

survival outcomes assume no dependence.

We used sample size N=1000 and 100 replications for each

setting. The censoring time was generated from Uniform

distribution U(0,10) , resulting in censoring proportions between

10% and 40%. Results comparing the four models based on the

complete data are summarized in Figure 3. The mean and the 2.5%

and 97.5% percentiles of the Brier scores and the C-index (AUC)

evaluated at the median survival time are plotted in subfigures (a)

and (b), respectively. The FPCA based models (iii) and (iv) have

smaller Brier scores and larger AUCs in settings (b) and (c), where

there is non-zero indirect treatment effect on survival through

longitudinal outcome. The estimated R2 measure and SOS effects

using method R2
b are plotted in subfigures (c) and (d) with first and

third quartiles. Subfigures (e) and (f) describe method R2
w. The

results using the two approaches are similar. SOS estimated for

models (iii) and (iv) are closer to 1 (the truth), in setting (b) than

model (ii). In addition, larger variation of SOS is observed for model

(ii) in some settings, especially in the setting (d), where treatment

neither impacts the longitudinal LDSUM nor OS. Summary

statistics of the estimated coefficients b1 and b2 can be found in

the Supplementary Materials. The mean estimates of the four

models are close to the truth in settings ‘a1’, ‘a2’ and ‘d’, while

models (iii) and (iv) have smaller bias than model (ii) in settings (b)

and (c).

We selected the landmark time as a sequence of time from

0.2 to 2 with a step of 0.2 on the scaled time grids. Note that the

summary variables for the longitudinal outcome were calculated

at each landmark time based on available longitudinal data up to

that time. The Brier scores and AUCs are reported in Figure 4.

The estimated coefficients at landmark time points are
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summarized in the Supplementary Materials. The conclusions

are similar to those based on the complete data. The models (iii)

and (iv) have consistently better predictive ability (smaller Brier

scores and larger AUCs) than model (i) and (ii) in settings ‘b’

and ‘c’. The four models have similar performance in the other

three settings ‘a1’, ‘a2’ and ‘d’, where tumor response is assumed

to have no effect on survival.
5 Discussion

Oncology studies routinely acquire measures of tumor burden

longitudinally over the course of patient follow-up. This

information is predominately dimension reduced to a binary

tumor response variable indicating the occurrence of a partial or

complete response as defined by the RECIST criteria. This article

presented a landmark mediation survival model devised to estimate

conjoint effects of treatment and longitudinal tumor assessments.

Prediction performance was compared using different

characterizations of tumor response following treatment.

Conventional binary response based on the RECIST criteria was

compared to analysis of the full longitudinal TB assessments using

FPC scores as well as the integrated response. R2 measures were

adopted to quantifythe extent of treatment survival mediation effect

attributable to longitudinal TB assessments. Implementation was

demonstrated with two colorectal cancer studies: the Goldberg

study comparing FOLFOX with IFL and the Amgen study on the

additional effect of Panitumumab on FOLFIRI. The time-varying

effects of treatment and baseline LDSUM were compared with

models that leveraged different extent of information from the

longitudinal tumor assessments. Prediction performance was

compared using AUC. R2 measures were adopted to quantifying

the mediation effect of the longitudinal tumor burden.

We found that the longitudinal models with prediction

based on FPC scores tended to yield larger AUCs when

compared to models with conventional RECIST objective

response. Moreover, it was discovered that the predictive

utility of binary tumor response depends on the shape of the

underlying longitudinal trajectories. With U-shaped trends for

tumor burden following treatment, as observed in the Amgen

study, binary objective response (PR or CR based on the RECIST
TABLE 2 Simulation settings and coefficients values.

Settings Longitudinal model Survival model

x1 (A) x2 (X) b1 (A) b2 (Z) a (R)

a1: direct effect only (0,0,0,0) (0.6,0.5,0.5,0.6) -1 1 0

a2: direct effect only (0,-0.2,-0.25,-0.7) (0.6,0.5,0.5,0.6) -1 1 0

b: indirect effect only (0,-0.2,-0.25,-0.7) (0.6,0.5,0.5,0.6) 0 1 10

c: both effects exist (0,-0.2,-0.25,-0.7) (0.6,0.5,0.5,0.6) -1 1 10

d: no effect exists (0,0,0,0) (0.6,0.5,0.5,0.6) 0 1 0
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criteria) was sufficient to characterize the most pertinent

information contributed by the longitudinal data. AUCs

obtained from models incorporating tumor response

information were much larger than corresponding model

absent tumor response.

In the absence of U-shaped trends in tumor burden over

time, reducing the longitudinal TB data to a binary response

discards important information regarding treatment survival

mediation. Models using binary objective response applied to

the Goldberg study, for example, yielded AUCs that were very

close to those obtained in the model without tumor response.
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Based on the estimated R2 and SOS effects, the longitudinal TB as

defined by LDSUM presented no mediation effect in the

Goldberg data. For the Amgen study, however, an estimated

35% to 70% of the treatment effect on OS was mediated through

the pattern of longitudinal tumor assessments captured by FPC

scores. Simulation demonstrated that FPCA based longitudinal

predictors yielded smaller Brier scores and larger AUCs than the

binary response model under all settings. Consequently, the

complex relationships between treatment, survival, and tumor

burden may be better elucidated with the widespread adoption

of longitudinal analysis. FPC scores in particular offer a practical
D
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C

FIGURE 3

Simulation Results: Y-axis corresponds to (A) Brier score, (B) C-index, (C) R^2_b measure, (D) SOS_b measure, (E) R^2_w measure, and
(F) SOS_w measure, respectively. Simulation settings include: direct effect only (settings a1 and a2), indirect effect only (setting b), both effects
exist (setting c), and neither effect exists (setting d).
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approach to synthesizing the longitudinal patterns with

sufficient flexibility to capture the trends that describe

treatment survival mediation.

Several limitations should be noted. The estimation

approaches presented were founded on large sample theory

which requires caution with the application to small sample

data in practice. The interpretation of the mediation effect is

uninterruptible when the estimated R2
med is negative or the

resulted SOS effects are out of the [0,1] range. This may have

resulted in our case study from the additional random variation

induced by the joint model and/or the relatively small sample size

of the Goldbergcase. Further investigation is required to define the

minimal number of OS event one needs to observed before fitting

mediation models for OS with longitudinal surrogates.
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FIGURE 4

Simulation Results: Brier scores (column A) and C-index (AUC) (column B) in landmark analysis for the following simulation settings: direct effect
only (settings a1 and a2), indirect effect only (setting b), both effects exist (setting c), and neither effect exists (setting d).
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