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Application of genomic
selection and experimental
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and immunotherapeutic efficacy
of ferroptosis-related CXCL2 in
hepatocellular carcinoma
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and Yuanliang Yan1,2*

1Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China, 2National
Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University,
Changsha, China
Since most hepatocellular carcinoma (HCC) patients are diagnosed at advanced

stages, there is no effective treatment to improve patient survival. Ferroptosis, a

regulated cell death driven by iron accumulation and lipid peroxidation, has been

reported to play an important role in tumorigenesis. However, the detailed

mechanism and biological function of ferroptosis are still incompletely understood

in HCC patients. In this study, we analyzed genomic profiles of three HCC datasets,

GSE6764, GSE14520, and GSE14323. Venn diagrams were implemented to visualize

the overlapping genes between differentially expressed genes and ferroptosis-

related gene set. Then, one up-regulated gene, ACSL4, and five down-regulated

genes, STEAP3, MT1G, GCH1, HAMP, and CXCL2, were screened. Based on the

survival analysis performed by Kaplan-Meier plotter database, ferroptosis-related

gene CXCL2 was demonstrated positively-correlated with the patients’ prognosis.

Moreover, CXCL2 overexpression significantly inhibited cell growth and improved

cellular ROS, Fe2+ andMDA levels in HCC cells Huh7 andMHCC97H, suggesting the

roles of CXCL2 in inducing ferroptotic cell death. In addition, aberrantly expressed

CXCL2 was negatively associated with malignancy clinical features, such as nodal

metastasis and higher grades. The ssGSEA enrichment analysis revealed that CXCL2

co-expressedmoleculesweremainly involved in inflammation and immune-related

pathways, such as acute inflammatory response, humoral immune response,

adaptive immune response. TISIDB algorithm indicated the positive correlation

between CXCL2 expression and tumor-infiltrating immune cells, including

neutrophils and macrophages. Additionally, we also found that CXCL2 was

positively correlated with immune infiltration score, and HCC patients with higher

score harbored better prognosis. Together, these findings suggested that CXCL2
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.998736/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.998736/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.998736/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.998736/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.998736/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.998736/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.998736&domain=pdf&date_stamp=2022-10-05
mailto:yanyuanliang@csu.edu.cn
mailto:gongzhicheng@csu.edu.cn
https://doi.org/10.3389/fonc.2022.998736
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.998736
https://www.frontiersin.org/journals/oncology


Yi et al. 10.3389/fonc.2022.998736

Frontiers in Oncology
may enhance ferroptosis sensitivity and regulate immune microenvironment in

HCC, and serve as a promising prognosis biomarker for HCC patients.
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Introduction

Liver cancer is the third leading cause of cancer-related

mortality worldwide after lung cancer and colorectal cancer, and

hepatocellular carcinoma (HCC) accounts for approximately

90% of all cases (1, 2). The main risk factors for HCC include

chronic viral infection by hepatitis B virus (HBV) or hepatitis C

virus (HCV), habitual alcohol consumption, and non-alcoholic

steatohepatitis (NASH) associated with metabolic syndrome,

indicating that inflammation has an important function in the

development of HCC (3, 4). Patients with HCC are often

diagnosed at advanced stages, which contributes to its poor

prognosis. Currently, surgical resection, liver transplantation,

trans-arterial chemoembolization, local ablation, and systemic

therapy are the major therapeutic modalities for HCC (5).

Immunotherapy is emerging as a promising and effective

therapeutic approach among systemic therapy after sorafenib.

Nivolumab is the first anti-programmed death-1 (PD-1)

antibody approved by the United States Food and Drug

Administration (FDA) as a second-line treatment for patients

with advanced HCC (6). Furthermore, clinical trials evaluating

PD-1 blockade as first-line treatment strategy in HCC are

underway (NCT02576509). However, it is only a small subset

of patients treated with immune checkpoint inhibitors that

benefit from these agents (7). Therefore, it is urgently

necessary to identify novel potential biomarkers to improve

patient response rates and survival.

Ferroptosis is a novel form of regulated cell death driven by

iron-dependent lipid peroxidation (8, 9). Accumulating evidence

suggests that ferroptosis has significant implications on

tumorigenesis and cancer progression (10, 11). P53, one of the

most extensively studied tumor suppressor genes, promotes

ferroptosis pathway by repressing the expression of solute

carrier family 7 member 11 (SLC7A11), a pivotal component of

the cystine/glutamate antiporter. Moreover, SLC7A11 is up-

regulated in human tumors, and its upregulation inhibits

reactive oxygen species (ROS)–induced ferroptosis and

abrogates p533KR (an acetylation-defective mutant)-mediated

tumor growth suppression (12, 13). Ferroptosis induction in

combination of other cancer treatments might enhance the

therapeutic response in patients by increasing drug sensitivity

(14, 15). However, the possible roles and underlying mechanisms

of ferroptosis in HCC remain incompletely characterized.
02
C-X-C motif chemokine ligand 2 (CXCL2) is a member of

chemokine superfamily, which encodes secreted proteins

participated in inflammatory processes and immunoregulatory

(16, 17). Moreover, increasing evidence indicates that CXCL2 is

also involved in tumor initiation and progression. A recent study

reported that elevated CXCL2 in the tumor microenvironment

promoted the recruitment of myeloid-derived suppressor cells

and was correlated with poor prognosis in patients with bladder

cancer (18). Intriguingly, Ding and the colleague revealed that

CXCL2 expression was down-regulated in HCC and

overexpression of CXCL2 inhibited tumor cell proliferation

and promoted apoptosis (19). However, the underlying

mechanisms of CXCL2 in inflammation and HCC progression

remains to be further investigated.

In this study, we comprehensively analyzed the

biological functions of CXCL2 in HCC. According to

several genomic selection strategies, CXCL2, a ferroptosis-

related gene, was found to be down-regulated in HCC and

influence tumor progression and clinical prognosis of HCC

patients. Furthermore, we explored the possible roles of

CXCL2 in inducing ferroptotic cell death. These results

indicated that CXCL2 harbored vast potential significance

as a prognostic biomarker and therapeutic target for patients

with HCC.
Materials and methods

Multi-omics data collection

Three HCC datasets, GSE6764 (20), GSE14520 (21), and

GSE14323 (22), were screened according to the inclusion

criteria detailed in a previous study by our research group

(23). Detailed characteristics of the three GEO datasets were

shown in Table 1. Differentially expressed genes (DEGs)

between HCC tumor samples and normal tissues were

identified based on the criteria: P < 0.01 and |Log2 FC (Fold

Change)| > 1. Moreover, 259 ferroptosis-related genes were

downloaded from FerrDb (http://www.zhounan.org/ferrdb/

legacy/index.html) (24). Next, Venn diagrams (http://

bioinformatics.psb.ugent.be/webtools/Venn/) were generated

to identify the co-DEGs among three GEO datasets and

ferroptosis-related gene dataset.
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Genomic selection analyses

The integrative bioinformatics analysis was performed using

several online bioinformatics databases (Table 2).

We employed the Kaplan-Meier plotter (25) and GEPIA2

database (26) to assess the prognostic values of co-DEGs in HCC

patients, including overall survival (OS), progression-free

survival (PFS) and disease-specific survival (DSS). The

expression levels of CXCL2 in GSE6764, GSE14520, and

GSE14323 were analyzed by using the GEO2R algorithm

(https://www.ncbi.nlm.nih.gov/geo/geo2r/). Furthermore, the

expression pattern of CXCL2 between HCC tumor samples

and normal tissues was cross-validated by the TNMplot (27),

Xiantao tool (https://www.xiantao.love/products) and UALCAN

(28). Xiantao tool is a comprehensive bioinformatics toolbox to

perform differential expression analysis, functional enrichment

analysis, interaction networks, and clinical prognosis across

different cancer types from The Cancer Genome Atlas

(TCGA) database. We used Xiantao toolbox and UALCAN to

assess the association between CXCL2 and clinical pathological

parameters in TCGA-LIHC cohort.

LinkedOmics could be used to analyze the multi-omics data

across various cancer types, with three analytical algorithms:

LinkFinder, LinkInterpreter, and LinkCompare (29). The

heatmaps of the top 50 genes positively and negatively

correlated with CXCL2 were analyzed with the LinkFinder

module. Furthermore, Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

analysis were implemented using the LinkInterpreter algorithm.

Next, we performed the single sample Gene set enrichment

analysis (ssGSEA) (33) to assess the correlation between CXCL2
Frontiers in Oncology 03
expression and 24 immune cell types in TCGA-LIHC. In addition,

we used the TISIDB (30) to validate the roles of CXCL2 in immune-

related responses, such as tumor-infiltrating immune cells, and

immunomodulators. In addition, Tumor Immune Dysfunction and

Exclusion (TIDE) (31, 32) was applied to predict the roles of

CXCL2 in immunotherapy response of HCC patients.
Cell cultures and reagents

Human HCC cells, Huh7 and MHCC97H, and human

immortalized hepatocyte, HHL-5, were kindly provided from

the Cancer Research Institute of the Central South University

(Changsha, China) and cultured in DMEM (C11995500,

HyClone, USA) supplemented with 10% fetal bovine serum

(04-001-1A, BI, Israel) and 1% penicillin and streptomycin

(10378016, Gibco, USA) at 37°C with 5% CO2. The

overexpression plasmid HY21177 pcDNA3.1-CXCL2

(NM_002089)-3xFlag-C plasmid was purchased from

Guangzhou Dahong Biological Technology Co., Ltd. (China).

The CXCL2 overexpression plasmid was extracted with a

SanPrep Column Plasmid Mini-Preps kit (Sangon Biotech,

Shanghai, China), and then transfected into Huh7 and

MHCC97H cell lines for 24 h using Lipofectamine 3000

(L300015, Thermo Fisher Scientific, USA) following the

manufacturer’s instructions.
RNA isolation and real-time PCR

Total RNA was extracted from cells with TRIzol reagent

(Invitrogen, USA), and then reverse-transcribed into cDNA

using a PrimeScriptTM RT reagent kit (RR047A, Takara,

China) with gDNA Eraser (Perfect Real Time) according to

the manufacturer’s protocol. The qPCR reaction was

performed with iTaqTM Universal SYBR green Supermix

(1725121, Bio-Rad, USA). Relative RNA levels were

calculated using the 2-DDct method with RNA levels of

GAPDH used as internal controls. The sequences of gene-

specific primers are listed as follows: CXCL2 forward: 5’-

GCTTGTC TCAACCCCGCATC-3 ’ and reverse : 5 ’-

TGGATTTGCCATTTTTCAGCATCTT-3’; GAPDH forward:

5 ’-ACAGCCTCAAGATCATCAGC-3 ’ and reverse: 5 ’-

GGTCATGAGTCCTTCCACGAT-3’.
TABLE 2 The bioinformatics databases analyzed in this study.

Database URL References

Kaplan-Meier Plotter https://kmplot.com/analysis/ (25)

GEPIA2 http://gepia2.cancer-pku.cn/#index (26)

TNMplot https://tnmplot.com/ (27)

UALCAN http://ualcan.path.uab.edu/ (28)

LinkedOmics http://linkedomics.org/login.php (29)

TISIDB http://cis.hku.hk/TISIDB (30)

TIDE http://tide.dfci.harvard.edu/ (31, 32)
TABLE 1 Detailed characteristics of the three GEO datasets in our study.

GEO datasets Platform Sample type Sample size (tumor/control) References

GSE6764 GPL570 tissue 75 (35/40) (20)

GSE14520 GPL571
GPL3921

tissue 43 (22/21)
445 (225/220)

(21)

GSE14323 GPL96
GPL571

tissue 9 (9/0)
115 (55/60)

(22)
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Western Blot

The cultured cell lines were collected and then lysed with

RIPA lysis buffer (20101ES60, Yeasen Biotech, China)

supplemented with proteinase inhibitors (B14012, Bimake,

USA). Equal amounts of total protein (50 µg) were loaded into

each lane of 15% SDS–polyacrylamide gel electrophoresis

(PAGE). Subsequently, proteins were transferred to PVDF

membranes (0.22 µm: ISEQ00010; 0.45 µm: IPVH00010).

Next, membranes were blocked in 5% skimmed milk at RT for

1 h, and then incubated overnight at 4 °C with primary

antibodies in 5% Bovine Serum Albumin (D620272, Sangon

Biotech, China), followed by HRP-conjugated secondary

antibody (1:3000; SA00001-2, proteintech) at RT for 1 h.

Primary antibodies are described as follows: CXCL2 (1:1000;

bs-1162R, Bioss); Actin (1:2000; sc-58673, Santa Cruz

Biotechnology). Finally, proteins were visualized using

Immobilon Western Chemiluminescent HRP Substrate

(WBKLS0500, Millipore, USA).
Tissue microarray and
immunohistochemistry

Tissue microarrays (TMAs) containing 80 pairs of HCC and

matched paracancerous tissues were purchased from shanghai

Outdo biotechnology company Ltd. (HLivH160CS02, Shanghai,

China). Immunohistochemistry (IHC) staining of CXCL2 was

conducted using a Histomouse SP Kit (959551, Invitrogen, USA)

according to the manufacturer’s protocal. The concentration of

antibody against CXCL2 was 1:100. The results of CXCL2

staining in tissues were independently evaluated by two

pathologists. The evaluation of proportion score was on a scale

of 1-4 (1, 0%-25%; 2, 25.1%-50%; 3, 50.1%-75%; 4, 75.1%-100%).

The staining intensity score was graded as follows: 0, negative; 1,

weak; 2, moderate; 3, strong. Then the histologic score for each

tissue was calculated with the formula: histologic score =

proportion score × intensity score.
Iron assay

The concentration of ferrous iron (Fe2+) was measured using

an iron colorimetric assay kit (ab83366, Abcam, USA) according

to the manufacturer’s instructions. After CXCL2 or control

plasmids overexpression, Huh7 and MHCC97H cells were

treated with erastin (10 mM) for 24 hours. Cells were

harvested using trypsin without EDTA and homogenized in

iron assay buffer on ice, then centrifuged at 4°C (14,000×g,

15 min) to remove insoluble material. Subsequently, collect the

supernatant and add assay buffer, mix and incubate for 30 min at

25°C. Add 100ul iron probe into each sample and incubate at
Frontiers in Oncology 04
25°C for 60 min protected from light. Detect the absorbance at

593 nm using the VICTOR X2 microplate reader (PerkinElmer,

Waltham, USA).
Malondialdehyde assay

The relative MDA concentration was determined using a

lipid peroxidation assay (MAK085, Sigma, USA) according to

the manufacturer’s protocol. Cells were processed with CXCL2

overexpression plasmids or erastin as described previously, then

collected and homogenized in MDA lysis buffer with BHT on

ice. Centrifuge the samples at 13,000 × g for 10 minutes to

remove insoluble material. Collect the supernatant and add

thiobarbituric acid (TBA) into each sample. Then incubate the

samples at 95 °C for 60 min to form the MDA-TBA adduct.

Measure the absorbance at 532 nm using the VICTOR X2

microplate reader (PerkinElmer, Waltham, USA).
ROS assay

Intracellular ROS level was evaluated by CytoFLEX flow

cytometry (Beckman Coulter, USA). Briefly, about 105 cells were

collected after CXCL2 overexpression plasmids or erastin

treatment as described previously, and then stained with the

ox ida t i on - s en s i t i v e fluore s c en t p robe dye 2 ′ , 7 ′ -
dichlorodihydrofluorescein diacetate (DCFDA; Abcam,

ab113851) according to the manufacturer’s instructions.

Finally, flow cytometry analysis was performed using FlowJo

software (v10.8.1, USA).
Cell counting kit 8

Huh7 and MHCC97H cells were transfected with

pcDNA3.1-CXCL2 overexpression plasmid or empty

pcDNA3.1 (+) plasmid as control for 24 h and then seeded in

96-well culture plates (2 × 103 cells/well). At 24h, 48h, 72h, 96h,

and 120h, cell viability was assessed by performing CCK-8 assay

(B34304, Bimake, USA) reading absorbance at 450 nm using a

VICTOR X2 microplate reader (PerkinElmer, USA) according

to the manufacturer’s protocols.
Colony formation assay

Huh7 and MHCC97H cells were transfected as previously

described and then seeded in 6-well plates (103 cells/well). After

incubating at 37°C for about 14 days, the cells were washed twice

with PBS and then stained with 0.3% w/v crystal violet/methanol

for 15-20 min at room temperature (RT).
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Statistical analysis

All experiments and assays were independently repeated by

at least three times and results were reported as means ±

standard deviations (SD). Statistically significant differences

were performed using Student’s t-test or ANOVA. Kaplan–

Meier survival analysis was assessed by log-rank test. The

immune score, stromal score, and ESTIMATE score of each

tumor sample were estimated using the R package “ESTIMATE”

based on expression data (34). Statistical analysis was carried out

using GraphPad Prism 8 and P < 0.05 was considered as

statistically significant difference.
RESULTS

Identification of differentially
expressed genes

We analyzed the gene expression profiles of three HCC datasets

(GSE6764, GSE14323, and GSE14520) and screened the DEGs

between HCC and normal liver tissues according to the screening

criteria: P < 0.01 and | log2 FC| > 1. We identified 826 up-regulated

genes in GSE6764, 332 in GSE14323, and 505 in GSE14520,

respectively. Meanwhile, 859 genes in GSE6764, 257 in GSE14323,

and 583 in GSE14520 had been identified to be significantly down-

regulated in HCC (Supplementary Table S1). And 259 ferroptosis-

related genes were downloaded from the FerrDb database.

Recently, increasing evidence suggests that ferroptosis has

significant implications on tumorigenesis and cancer progression,
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and ferroptosis induction might ameliorate antitumor efficacy by

increasing drug sensitivity (35, 36). In order to explore the roles of

ferroptosis in HCC, we employed Venn diagrams to identify co-

DEGs between three GEO datasets and ferroptosis-related gene

set. As shown in Figures 1A, B, one up-regulated gene, ACSL4,

and five down-regulated genes, STEAP3, MT1G, GCH1, HAMP,

and CXCL2, were preliminarily screened, and the gene expression

heatmaps of these co-DEGs in each GEO dataset were presented

in Figure 1C. These six selected genes were presumed to have

potential roles in the occurrence and development of HCC.
CXCL2 shows the promising prognostic
value in HCC

Using 60 ferroptosis-related genes dataset, previous study

analyzed the diagnostic and prognostic roles of STEAP3, ACSL4

and MT1G in HCC (23). In this study, the correlations between the

expression levels of GCH1 (RNAseq ID: 2643), HAMP (RNAseq

ID: 57817), and CXCL2 (RNAseq ID: 2920) and prognosis in HCC

patients were analyzed using the Kaplan–Meier plotter database.

The expression of CXCL2 was significantly associated with

favorable OS (HR = 0.61, 95% CI = 0.43–0.86, P = 0.0046), PFS

(HR = 0.66, 95% CI = 0.48–0.90, P = 0.0083), and DSS (HR = 0.45,

95% CI = 0.29–0.71, P = 0.00045), which was consistent with low

expression of CXCL2 in HCC tissues. However, there was no obvious

relationship between the expression of GCH1 or HAMP and

prognosis in HCC patients (P > 0.05) (Figures 2A–I). In addition,

we employed the GEPIA2 database to cross-validate the prognostic

value of CXCL2, GCH1, and HAMP, and drew consistent
A

B

C

FIGURE 1

Identification of co-differentially expressed genes (co-DEG). (A, B) Venn diagrams exhibited one up-regulated gene, ACSL4, and five down-
regulated genes, STEAP3, MT1G, GCH1, HAMP, and CXCL2, between three HCC GEO datasets and ferroptosis-related gene set. The number in
overlapping area represents the number of genes. (C) The gene expression heatmaps of co-DEGs in GSE6764, GSE14323, GSE14520.
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conclusions (Supplementary Figure S1). Therefore, these results

revealed that CXCL2 expression might associated with clinical

outcomes in HCC and warrants further investigation.
Low expression of CXCL2 in HCC and its
correlation with clinicopathologic
characteristics

The expression profiles of CXCL2 were further confirmed by

several independent online bioinformatics databases, such as

TNMplot, Xiantao tool, and UALCAN. Firstly, TNMplot

revealed that CXCL2 mRNA expression levels were

significantly down-regulated in HCC samples from gene chip

data and RNA-seq data (Figures 3A, B). Next, Xiantao tool also

exhibited the low expression of CXCL2 in HCC tissues
Frontiers in Oncology 06
compared to normal liver tissues including non-cancerous

patients (Figure 3C) or matched adjacent para-tumor tissues

(Figure 3D). We then analyzed the correlations between CXCL2

expression level and clinicopathological characteristics in HCC

patients. As shown in Figures 3E, F, CXCL2 expression levels

were significantly correlated with AFP (alpha-fetoprotein) (P <

0 .001 ) and h i s to log i c g rade (P = 0 .048) . Othe r

clinicopathological features of CXCL2 expression in HCC were

exhibited in Supplementary Table S2. In addition, we explored

the diagnostic value of CXCL2 in HCC with receiver operation

characteristic (ROC) curve, and the area under the ROC curve

(AUC) was 0.903 (Figure 3G). This result indicated that CXCL2

might be a potential diagnostic biomarker in HCC patients.

Then, we further validated the expression of CXCL2 and its

correlation with clinicopathologic characteristics with UALCAN

database. Figure 3H showed the expression pattern of CXCL2
A B

D E F

G IH

C

FIGURE 2

Prognostic values of CXCL2, GCH1, and HAMP in HCC. (A-I) Overall survival (OS), progression-free survival (PFS), and disease-specific survival
(DSS) Kaplan-Meier curves of CXCL2, GCH1, and HAMP in patients with HCC by Kaplan–Meier plotter database.
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across diverse TCGA cancer types, and low expression of CXCL2

was associated with malignancy clinical features, such as tumor

grade, stage, and nodal metastasis (Figures 3I–K). Finally, the

low expression of CXCL2 in two HCC cell lines, Huh7 and

MHCC97H, was further confirmed by real-time PCR and

western blotting, compared with the normal hepatocyte cell

line HHL-5 (Figures 3L, M).

The expression of CXCL2 was then examined with IHC

staining in tissue microarrays containing 80 pairs of HCC and

matched paracancerous tissues, and the results confirmed that

HCC tissues harbored significantly lower levels of CXCL2 than

paracancer tissues (Figures 4A, B). To further explore the role of

CXCL2 in HCC, we overexpressed CXCL2 with the

overexpression plasmid in Huh7 and MHCC97H cell lines

(Figure 4C). CCK-8 and colony formation assay indicated that

CXCL2 overexpression significantly repressed cell growth and

proliferation compared with control group (Figures 4D–F).

Ferroptosis is a form of regulated cell death characterized by

increased intracellular Fe2+ and lipid peroxidation, and the

marker of lipid peroxidation is MDA (37). After CXCL2

overexpression, the levels of intracellular Fe2+ and MDA were

significantly increased in Huh7 and MHCC97H cells compared

with vectors (Figures 4G–J). Similarly, flow cytometry analysis

indicated that CXCL2 overexpression elevated intracellular ROS

levels with or without erastin (Figures 4K–N). CCK-8 assay

suggested that the combination of CXCL2 overexpression and

erastin significantly inhibited cell survival in Huh7 and

MHCC97H cells (Figures 4O, P). These findings suggested

that CXCL2 overexpression might suppress cell survival in

HCC by promoting ferroptosis.
CXCL2 co-expression network in HCC

To explore the biological roles of CXCL2 in HCC, we

performed the co-expression profile of CXCL2 in the TCGA-

LIHC cohort by the LinkFinder module of LinkedOmics. As can

be seen from Figure 5A, 4643 genes (red dots) were positively

related with CXCL2, and 4232 genes (green dots) were

negatively associated with CXCL2. Figures 5B, C exhibited the

heatmaps of the top 50 genes positively and negatively correlated

with CXCL2, respectively (Supplementary Tables S3, S4).

Notably, the top 50 positively correlated genes owned a high

probability of being low-risk markers in HCC, of which 9/50

genes harbored protective hazard ratio (HR). Contrarily, there

were 33 of the top 50 negatively associated genes with

unfavorable HR (Figures 5D, E).

In addition, we further conducted functional enrichment

analysis by the LinkInterpreter module of the LinkedOmics

database. GO-biological process showed that genes co-

expressed with CXCL2 mainly part ic ipated in the

inflammation and immune-related terms, such as acute

inflammatory response, humoral immune response, adaptive
Frontiers in Oncology 07
immune response, response to molecule of bacterial origin

(Figure 5F). KEGG pathway analysis showed that these co-

expressed genes were mainly involved in complement and

coagulation cascades, staphylococcus aureus infection, cell

adhesion molecules, cytokine-cytokine receptor interaction,

etc. (Figure 5G). In addition, we performed GO and KEGG

enrichment analysis in the GSE14520, and the results were

similar with the original results (Supplementary Figure S2).

Taken together, these results suggested that CXCL2-associated

network might have a significant impact on inflammation and

immune regulation in HCC.
Role of CXCL2 in the immune
microenvironment of HCC

Increasing evidence suggests that ferroptosis has great

potential in regulating tumor immune microenvironment (38,

39). Hence, we explored the role of ferroptosis-related gene

CXCL2 in HCC immune microenvironment through Xiantao

tool. As presented in Figure 6A, CXCL2 expression was

positively associated with the abundance of several tumor-

infiltrating immune cells, including neutrophils, immature

dendritic cell (iDC), macrophages, type 1 T helper cell (Th1),

and natural killer (NK) cells. Similar lymphocyte infiltration

profiles were attained by TISIDB database (Figure 6B). We

continued to analyze the correlation between CXCL2

expression and immunostimulators. Figures 6C–F exhibited

immunostimulators positively correlated with CXCL2,

including interleukin 16 (IL-16), CD40 ligand (CD40LG),

CD48, and TNF superfamily member 14 (TNFSF14). Given

the clinical implications of checkpoint blockade-based

immunotherapy in HCC (3), we further explored the

associations between CXCL2 expression and several immune

checkpoints. As shown in Figures 6G–J, CXCL2 expression was

positively associated with programmed cell death ligand 1 (PD-

L1), and negatively associated with indoleamine 2,3-dioxygenase

1 (IDO1), sialic acid binding Ig like lectin 15 (SIGLEC15), and

B7-H3 (CD276). Additionally, Figures 6K, L exhibited positive

correlations between CXCL2 and immune infiltration score in

TCGA-LIHC cohort and GSE14520 dataset. Patients with high

immune infiltration score had better 3-year OS in GSE14520

(Figure 6M). In addition, we employed the TIDE algorithm to

predict the immunotherapy response of HCC patients based on

pre-treatment expression profiles. As shown in Figure 6N, the

response rate of CXCL2 high expression group predicted by the

TIDE database was lower than that of CXCL2 low expression

group. This inconsistency with the results of “ESTIMATE”

algorithm may be that TIDE database focused on predicting

the efficacy of anti-PD1 and anti-CTLA4 therapies. Together,

these results suggested that ferroptosis-related gene CXCL2

might affect the prognosis of HCC patients by regulating the

immune microenvironment.
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FIGURE 3

The expression level and clinicopathologic characteristics of CXCL2 in HCC. (A, B) Low expression of CXCL2 in HCC samples in gene chip data and
RNA-seq data of TNMplot database. (C, D) The validation of low expression of CXCL2 in HCC samples in TCGA-LIHC cohort (C) or in comparison
with matched adjacent para-tumor tissues (D) by Xiantao tool. (E, F) Correlation of CXCL2 expression with AFP (E) and histologic grade (F). (G)
Receiver operation characteristic (ROC) curve to evaluate the diagnostic value of CXCL2 in HCC. (H) Expression pattern of CXCL2 across diverse
TCGA cancer types by UALCAN database. (I-K) Correlation of CXCL2 expression with tumor grade (I), stage (J), and nodal metastasis (K). (L, M) Low
expression of CXCL2 in two HCC cell lines, Huh7 and MHCC97H, was further confirmed by real-time PCR (L) and western blotting (M), compared
with the normal hepatocyte cell line HHL-5. * represents P < 0.05, ** represents P < 0.01, *** represents P < 0.001.
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CXCL2 relating M1 Macrophages in HCC

The above results revealed that CXCL2 was positively

correlated with macrophage infiltration. We then analyzed the
Frontiers in Oncology 09
associations between CXCL2 expression and classical

macrophage phenotype markers of M0 (undifferentiated)

(AIF1), M1 (anti-tumor) (IL12A, TNF, NOS2, PTGS2) and

M2 (tumor-promoting) (IL10, CD163, TGFB1, CSF1R) in
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FIGURE 4

CXCL2 overexpression inhibited cell proliferation. (A) IHC images of CXCL2 in paired HCC and paracancerous tissues. (B)The histologic score of
CXCL2 expression in paired HCC and paracancerous tissues. (C) Western blotting validated the overexpression of CXCL2 in two HCC cell lines,
Huh7 and MHCC97H. (D-F) CCK-8 and colony formation assay revealed that CXCL2 overexpression inhibited cell growth and proliferation.
(G-J) Fe2+ and MDA levels were detected in Huh7 and MHCC97H cells transfected with CXCL2 overexpression plasmids. (K-N) Intracellular ROS
levels were elevated in Huh7 and MHCC97H cells with CXCL2 overexpression. (O, P) CCK-8 assay suggested that the combination of CXCL2
overexpression and erastin significantly inhibited cell survival in Huh7 and MHCC97H cells. * represents P < 0.05, ** represents P < 0.01, ***
represents P < 0.001.
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TCGA-LIHC cohort with Spearman’s rank correlation test. As

shown in Figures 7A–C, M1 macrophage marker PTGS2 showed

the highest positive correlation with CXCL2 (r = 0.32, P < 0.001).

In addition, we employed the GEPIA2 database to cross-validate
Frontiers in Oncology 10
the association and the results were similar to our previous

finding (Supplementary Figure S3). This finding indicated that

CXCL2 may regulate immune response by promoting the

formation of the M1 macrophage.
A

B
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C

FIGURE 5

The co-expression network of CXCL2 in HCC. (A) Volcano plot for genes positively or negatively associated with CXCL2 in TCGA-LIHC cohort by
LinkedOmics database. Red dots represent genes positively correlated with CXCL2, and green dots represent negative correlation (B, C) Heatmaps
of the top 50 genes positively and negatively correlated with CXCL2 in HCC, respectively. (D, E) survival maps of the top 50 genes harboring
positive and negative correlations with CXCL2 in HCC. (F, G) GO and KEGG pathways of CXCL2-associated network in TCGA-LIHC cohort.
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Discussion

This study aimed to explore critical and novel ferroptosis-

related biomarkers for prognosis of HCC patients. Through three
Frontiers in Oncology 11
GEO datasets and a ferroptosis-related gene dataset, we screened six

co-DEGs, including one up-regulated gene, ACSL4, and five down-

regulated genes, STEAP3, MT1G, GCH1, HAMP, and CXCL2. We

also found the low-expressed CXCL2 exhibited potential prognostic
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FIGURE 6

The role of CXCL2 in immune microenvironment of HCC. (A) Lollipop diagram exhibiting tumor-infiltrating immune cells associated with CXCL2
by Xiantao tool. (B) Scatter plots cross-validating the associations between CXCL2 expression and several TILs, including iDC, macrophage, Th1,
and NK cells. (C-F) Positive correlations between CXCL2 expression and several immunostimulators, including IL-16, CD40LG, CD48, and
TNFSF14. (G-J) Association between CXCL2 expression and immune checkpoints. (K, L) Association between CXCL2 expression and immune
score in TCGA-LIHC cohort and GSE14520 evaluated by ESTIMATE algorithm. (M) Kaplan-Meier survival curves showing 3-year overall survival
based on immune score in GSE14520 dataset. (N) The predicted response rate of the CXCL2 high expression group was lower than that of the
CXCL2 low expression group.
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significance in patients with HCC, and low expression of CXCL2

was associated with malignancy clinical features, such as AFP > 400

ng/ml, nodal metastasis, and higher grades. Furthermore, in vitro

experiments demonstrated that CXCL2 was down-regulated in

HCC samples and the overexpression of CXCL2 inhibited cell

proliferation. ssGSEA analysis revealed that enrichment of genes co-

expressed with CXCL2 were mainly involved in inflammation and

immune-related pathways. These findings provided a new

perspective on CXCL2 as a prognostic marker in HCC.

Ferroptosis is characterized as a form of non-apoptotic

regulated cell death driven by iron accumulation and lipid

peroxidation (40, 41). Increasing evidence suggests that

ferroptosis plays pivotal roles in tumor development and is

strongly correlated with therapeutic responses in various cancer

types (42, 43). Sorafenib, a multi-kinase inhibitor, remains the

first-line targeted therapy for advanced HCC patients (44).

Previously studies indicated that sorafenib exerted antitumor

effects not only by inhibiting cell proliferation and inducing

apoptosis, but also by antiangiogenic activity (45, 46). However,

recent studies have shown that sorafenib may exert its antitumoral

activity mainly by promoting ferroptosis by inhibiting the

function of system Xc- (cystine/glutamate antiporter system)

(47–49). High expression of ACSL4 (Acyl-CoA synthetase long

chain family member 4), a driver of ferroptosis, was positively

associated with the sensitivity of sorafenib in HCC (50).

Combination of sorafenib and ferroptosis inducers may be a

new and effective therapeutic strategy in HCC patients.

Chemokine CXCL2 is a small secreted protein with a Glu-

Leu-Arg (ELR) motif that binds to CXC chemokine receptor 2

(CXCR2) to promote tumor angiogenesis and endothelial cell

survival (51). According to a recent study by Linkermann et al.

(52), the expression level of CXCL2 was significantly reduced

upon the application of ferroptosis inhibitor ferrostatin-1 (Fer-1)

in a mouse model of oxalate nephropathy. Ferroptosis inducer

RLS3 increased the expression of CXCL2 in vascular smooth

muscle cells (53). In this study, bioinformatics analysis and
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experimental validation confirmed the down-regulation of

CXCL2 in HCC, and overexpression of CXCL2 increased

intracellular ROS, Fe2+ and MDA levels. These results might

provide further insights into the potential role of CXCL2 in

mediating ferroptosis. The ROC curve, based on a series of cut-

off points with sensitivity and specificity, is an effective method

to evaluate the performance of diagnostic tests (54, 55). In our

study, we found the area under the ROC curve (AUC) for

CXCL2 to diagnose HCC reached 0.903, indicating a

promising clinical diagnostic significance of CXCL2 which

needed further clinical validation.

An accumulating body of evidence suggests that immune

microenvironment affects tumor development and response to

therapy (56–58). Single-cell RNA sequencing analysis revealed

the immunosuppressive landscape in HCC patients (59).

Checkpoint blockade immunotherapies have redefined cancer

treatment paradigm (60). The combination therapy of

atezolizumab (anti-PD-L1) and bevacizumab (anti-VEGF)

improved overall survival in patients with HCC compared to

sorafenib, leading to FDA approval of this regimen (3, 61).

Consistent with previous findings, ferroptosis-related gene

CXCL2 was down-regulated in HCC samples compared with

adjacent normal tissues and overexpression of CXCL2 could

inhibit cell proliferation (19, 62). However, previous studies

mainly focused on apoptosis pathways. In this paper, ssGSEA

showed that co-expression genes of CXCL2 were mainly

enriched in inflammation and immune-associated pathways,

such as acute inflammatory response, humoral immune

response, adaptive immune response. The interaction analysis

between CXCL2 and immune system further indicated that

CXCL2 expression was positively correlated with lymphocytes,

including neutrophils and macrophages, especially the M1

macrophages (anti-tumor). The positive correlation was also

found between CXCL2 and immunostimulators, such as IL-16,

CD40LG, CD48, and TNFSF14. In addition, correlation analysis

between CXCL2 and immune infiltration score in GSE14520
A

B C

FIGURE 7

CXCL2 associated with M1 macrophage in HCC. (A) Heat map of correlation between CXCL2 and classical macrophage phenotype markers.
(B, C) Scatter plots showing the association between CXCL2 and M1 macrophage markers (PTGS2 and TNF).
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dataset indicated that patients with high immune infiltration

score had higher CXCL2 expression and better prognosis.

Together, these findings suggested that ferroptosis-related gene

CXCL2 may regulate tumor immune response to influence

cancer development and serve as a biomarker for diagnosis

and prognosis in patients with HCC.
Conclusion

Conclusively, our study provides a novel insight into the

biological role of CXCL2 and its interaction with immune

microenvironment in HCC patients. CXCL2 was down-

regulated in HCC tissues and cell lines, and overexpression of

CXCL2 could inhibit cell proliferation. High expression of

CXCL2 exhibited a favorable prognostic indicator in patients

with HCC. Furthermore, CXCL2 expression was obviously

correlated with the immune signatures, including tumor-

infiltrating immune cells and immunostimulators. Therefore,

our findings suggest ferroptosis-related gene CXCL2 plays a

pivotal role in the development of HCC by regulating immune

response and may be a promising diagnostic and prognostic

indicator in patients with HCC.
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markers (AIF1). (B-E) Scatter plots showing the association between
CXCL2 and M1 (anti-tumor) macrophage markers (IL12A, TNF, NOS2,

PTGS2). (F-I) Scatter plots showing the association between CXCL2 and
M2 (tumor-promoting) macrophage markers ( IL10, CD163,

TGFB1, CSF1R).
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