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Background: In glioma patients, multimodality therapy and recurrent tumor

can lead to structural brain tissue damage characterized by pathologic findings

in MR and PET imaging. However, little is known about the impact of different

types of damage on the fiber architecture of the affected white matter.

Patients and methods: This study included 121 pretreated patients (median age,

52 years; ECOG performance score, 0 in 48%, 1-2 in 51%) with histomolecularly

characterizedglioma (WHOgrade IV glioblastoma, n=81;WHOgrade III anaplastic

astrocytoma, n=28;WHOgrade III anaplastic oligodendroglioma, n=12), who had

a resection, radiotherapy, alkylating chemotherapy, or combinations thereof. After

a median follow-up time of 14 months (range, 1-214 months), anatomic MR and

O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET images were acquired on a 3T hybrid

PET/MR scanner. Post-therapeutic findings comprised resection cavities, regions

with contrast enhancement or increased FET uptake and T2/FLAIR

hyperintensities. Local fiber density was determined from high angular-

resolution diffusion-weighted imaging and advanced tractography methods. A

cohort of 121 healthy subjects selected from the 1000BRAINS study matched for

age, gender and education served as a control group.
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Results: Lesion types differed in both affected tissue volumes and relative fiber

densities compared to control values (resection cavities: median volume 20.9

mL, fiber density 16% of controls; contrast-enhanced lesions: 7.9 mL, 43%; FET

uptake areas: 30.3 mL, 49%; T2/FLAIR hyperintensities: 53.4 mL, 57%, p<0.001).

In T2/FLAIR-hyperintense lesions caused by peritumoral edema due to

recurrent glioma (n=27), relative fiber density was as low as in lesions

associated with radiation-induced gliosis (n=13, 48% vs. 53%, p=0.17). In

regions with pathologically increased FET uptake, local fiber density was

inversely related (p=0.005) to the extent of uptake. Total fiber loss associated

with contrast-enhanced lesions (p=0.006) and T2/FLAIR hyperintense lesions

(p=0.013) had a significant impact on overall ECOG score.

Conclusions: These results suggest that apart from resection cavities,

reduction in local fiber density is greatest in contrast-enhancing recurrent

tumors, but total fiber loss induced by edema or gliosis has an equal

detrimental effect on the patients’ performance status due to the larger

volume affected.
KEYWORDS
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Introduction

There is broad evidence that brain functions depend

critically on the integrity of structural connections between

cortical regions (1–6). These connections are built by axon

bundles in the brain’s white matter and can be identified as

single fibers or tracts composed of fiber groups using modern

diffusion-weighted magnetic resonance imaging (DWI)

techniques (7–9). Following multimodal treatment in glioma

patients, fiber connections may become disrupted by structural

tissue damage resulting from tumor resection, radiotherapy,

alkylating chemotherapy, or combinations thereof (10–13), or

by recurrent tumor growth (14). Apart from the fiber tracts

originating in the primary, eloquent cortical regions, tissue

damage may affect larger and wider distributed white matter

areas (15–17) involving structural connections of multiple

functional networks (18). Therefore, glioma patients often

develop deficits in cognition, general performance (19), and

quality of life that increase with the duration of survival and

intensity of therapy (15, 20).

While the gross structural tissue changes induced by

neurosurgical tumor resection, radiation, local tumor

recurrence and edema can be readily made visible by standard

magnetic resonance imaging (MRI) and amino acid positron

emission tomography (PET) such as O-(2-[18F]fluoroethyl)-L-

tyrosine (FET) PET, the resulting damage to white matter
02
microstructural integrity remains to be elucidated (21, 22). In

principle, fiber tractography methods, based on DWI aiming to

identify individual interconnecting fibers at the submillimeter

level, are best suited to answer this question. Diffusion tensor

imaging (DTI), used to model the MR signal behavior in DWI, is

based on a simple diffusion tensor model and is widely

established in clinical practice, aiding to estimate white matter

fiber orientation (23). However, the model is a priori unable to

resolve multiple fiber orientations, which are present in

approximately 90% of the voxels, causing missing or false

positive fibers (23, 24). Advanced methods that can overcome

the former limitations use DWI data acquired within the so-

called high-angular resolution diffusion-weighted MR imaging

(HARDI) framework. Amongst these methods, constrained

spherical deconvolution (CSD) (25) has been shown to

improve the assessment of complex, intra-voxel fiber

configuration significantly. Thus, fiber-tracking procedures

based on advanced DWI methods allow a more accurate

estimation of complex fiber architectures (7) and are

increasingly used for planning the extent of resection in brain

tumors adjacent to eloquent areas (23, 26–32).

We hypothesize here that, apart from resection, structural

brain damage due to radiation or tumor recurrence, as indicated

by pathologic MRI and FET PET findings, has a differential

impact on local fiber density and affects the patient’s overall

performance status to varying degrees.
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Patients and methods

Patient characteristics

The patient group consisted of 121 patients (73 males,

48 females; mean age, 51.6 ± 11.6 years) with histomolecularly

characterized glioma (World Health Organization (WHO) grade

IV glioblastoma, n=81; WHO grade III anaplastic astrocytoma,

n=28; WHO grade III anaplastic oligodendroglioma, n=12)

according to the WHO classification of 2016 (33), who

underwent resection, radiotherapy, alkylating chemotherapy,

or combinations thereof (Table 1). Most of the patients (77,
Frontiers in Oncology 03
64%) received their primary treatment between 2016 and 2019 in

one of the 4 university hospitals of the comprehensive cancer

center ‘Center for Integrative Oncology Aachen-Bonn-Cologne-

Duesseldorf’, and another 21 (17%) were treated at another

university hospital (Frankfurt). Complete resection as

determined from early postoperative contrast-enhanced MR

was achieved in 88 patients (73%), while the others had partial

resection or stereotactic biopsy only. At time of imaging,

adjuvant radiotherapy (60 Gy in most cases) had been applied

in 112 (93%) and simultaneous and/or adjuvant chemotherapy

comprising temozolomide, temozolomide and lomustine

(CCNU) or procarbacine/CCNU/vincristine (PCV) in 108
TABLE 1 Patient characteristics.

n %

Gender (male/ female) 73/ 48 60/ 40

ECOG score (0/ 1/ 2/ 3) 58/ 56/ 6/ 1 48/ 46/ 5/ 1

Tumor type

GBM: IDH-wt/ IDH-mut/ NOS 67/ 10/ 4 56/ 8/ 3

AA: IDH-wt/ IDH-mut/ NOS 5/ 16/ 7 4/ 13/ 6

AOD: IDH-mut-1p-19q-codel 12 10

Glioma Grade 3/ Grade 4 40/ 81 33/ 67

IDH-wt or NOS/ IDH-mut 88/ 37 69/ 31

Tumor location

Left frontal/ parietal/ temporal/ occipital 30/ 8/ 22/ 5 25/ 7/ 18/ 4

Right frontal/ parietal/ temporal/ occipital 28/ 8/ 16/ 4 23/ 7/ 13/ 3

Primary treatment#

Biopsy/ partial/ complete resection 19/ 14/ 88 16/ 11/ 73

Radiotherapy yes/ no 112/ 9 93/ 7

Temozolomide 76 63

Temozolomide + CCNU 27 22

PC/ PCV 5 4

Number of treatment interventions#

Surgery* (1/ 2/ 3/ 4) 101/ 17/ 2/ 1 83/ 14/ 2/ 1

Radiotherapy series (0/ 1/ 2) 7/ 100/ 14 6/ 83/ 12

Chemotherapy courses (0/ 1/ 2/ 3) 10/ 91/ 16/ 4 8/ 76/ 13/ 3

Neurological symptoms

None 40 33

Paresis 29 24

Aphasia 17 14

Visual field/ diplopia 12 10

Other symptoms 23 19

mean ± SD median (range)

Age (years) 51.6 ± 11.6 51.9 (28.1 - 73.8)

Radiation dose (Gy) 59.3 ± 2.6 60.0 (40.1 - 62.0)

of first radiation series (n=114)

Interval (months) 30.4 ± 43.0 14.4 (0.6 - 213.7)

between therapy and imaging
ECOG, Eastern Cooperative Oncology Group; GBM, glioblastoma multiforme; AA, anaplasticastrocytoma; AOD, anaplastic oligodendroglioma; IDH-wt/-mut, mutation status in the
isocitrate dehydrogenase gene (wildtype/mutant); 1p-19q-codel, 1p/19q-codeletion; NOS, not otherwise specified; CCNU, lomustine; PCV, procarbacine/CCNU/vincristine; #received prior
to imaging; *including biopsy and resection.
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(89%). Where ever possible, the final diagnosis was based on the

presence of a IDH (isocitrate-dehydrogenase) mutation and the

1p-19q loss-of-heterozygosity status. Of note, therapy was

initiated between 2000 and 2015 in some patients, so

molecular characteristics were not available. Between 2018 and

2020, structural MRI and metabolic PET findings after treatment

were evaluated in all patients using anatomical MRI and FET

PET acquired on a 3T hybrid PET/MR scanner (Siemens Trim-

TRIO/BrainPET, Siemens Medical Systems, Erlangen). The

median interval between treatment initiation and imaging was

14 months (range, 1-214 months). Of note, 14 patients were

examined more than 60 months (5 years) after therapy

initiation. Regarding general performance status, 58 patients

(48%) had an ECOG score of 0 (fully active, able to carry on all

pre-disease performance without restriction), 56 (46%) were

grade 1 (restricted in physically strenuous activity, but

ambulatory and able to carry out work of a light or sedentary

nature), and 6 (5%) were grade 2 (ambulatory, capable of all self-

care, up and about more than 50% of waking hours, but unable

to work) (19). All patients were free from major depression and

seizures. A total of 81 patients (67%) had mild neurological

(48%) or other symptoms (fatigue, vertigo, 19%) without

requiring assistance for personal needs.

A control group of 121 healthy subjects was obtained from

the 1000BRAINS cohort study (34) that investigates

environmental and genetic influences on inter-individual

variability in brain structure, function, and connectivity in the

aging brain. Controls were matched for gender (males, n=75;

females, n=46), age (mean 51.7 ± 11.5 years), and educational

status using propensity score matching (35). Both cohorts have

been analyzed in an earlier study presented by our group (36).
Hybrid PET/MR imaging

In all patients, FET PET, as well as anatomical and diffusion-

weighted MR images, were obtained from the 3T hybrid PET/

MR scanner equipped with a birdcage-like quadrature

transmitter head coil mounted on the couch, an 8-channel

receiver coil and a PET insert consisting of 72 rings (axial

field-of-view, 19.2 cm; center spatial resolution, 3 mm

FWHM). The PET image data were corrected for random and

scatter coincidences as well as for dead time, attenuation (based

on a T1-weighted anatomical MRI scan), and motion before

OPOSEM (Ordered Poisson Ordinary Subset Expectation

Maximization) reconstruction (2 subsets, 32 iterations), with

software provided by the manufacturer (37).

The MRI protocol comprised a 3D high-resolution T1-

weighted magnetization prepared rapid acquisition gradient echo

(MPRAGE) native scan (176 slices; TR=2250 ms; TE=3.03 ms;

FoV=256×256 mm2; flip angle=9°; voxel size=1×1×1 mm3), a

contrast-enhanced MPRAGE scan recorded after injection of

gadolinium-based contrast agent, a T2-weighted sampling
Frontiers in Oncology 04
perfection with application optimized contrasts (SPACE) scan

(176 slices; TR=3.2 ms; TE=417 ms; FoV=256×256 mm2; voxel

size=1×1×1 mm3), and a T2-weighted fluid-attenuated inversion

recovery (T2/FLAIR) scan (25 slices; TR=9000 ms; TE=3.86 ms;

FoV=220×220 mm2; flip angle=150°; voxel size=0.9×0.9×4 mm3).

The HARDI measurements were performed with a double-

echo diffusion-weighted echo-planar imaging (EPI) sequence. The

protocol parameters were: 55 slices, TR=8 s; TE=112 ms; b-values

(gradient directions)=0 (13, interleaved) and 2700 s/mm2 (120);

voxel size=2.4×2.4×2.4 mm3). An additional non-diffusion-

weighted volume was acquired with the same settings but a

reverse phase-encoding direction for the purpose of EPI

distortion correction. The healthy subjects were measured on a

stand-alone MRI scanner (3T Siemens Tim-TRIO), identical to

the MR component of the hybrid PET/MR system. The body coil

was used for transmission and a 32-channel receive-only head coil

for signal reception. Before the in vivo measurements, a phantom

study was performed as a control that confirmed an equal signal

level, quality and signal-to-noise ratio values between

both scanners.
Lesion segmentation

The local fiber density was evaluated in four different types of

imaging findings: i) hypointense resection cavities, ii) contrast-

enhancing lesions, iii) T2/FLAIR hyperintense regions, and iv)

lesions with pathologically increased FET uptake defined by a

tumor-to-brain ratio (TBR) >1.6. A fully automated software

based on deep-learning algorithms (HD_GLIO-AUTO) was

used to segment T2/FLAIR hyperintense regions and contrast-

enhancing lesions (38).

Resection cavities were manually contoured using the

medical 3D segmentation software ITK-SNAP (http://www.

itksnap.org, vs. 3.8.0, Universities of Pennsylvania and Utah,

USA). The resection cavities were mostly filled with cerebro-

spinal fluid but sometimes also comprised complex,

intermingled structures of undeterminable origin. The mask of

areas with increased FET uptake originated from a semi-

automatic segmentation that identified all voxels with a TBR

above 1.6, which was histologically validated and is highly

predictive for glioma tissue (39). Finally, all masks were

visually examined and manually corrected by i) removing

spurious small-segmented regions that were not connected to

the primary lesion, and ii) padding of necrotic areas surrounded

by contrast-enhancing or FET-enhancing tissue.

T2/FLAIR lesions can be caused by both peritumoral edema

and radiation-induced gliosis which may be present

simultaneously and difficult to distinguish. Therefore, the

prevailing characteristics were used to assign a single

classification to a selection of patients. Such, T2/FLAIR lesions

were classified as perifocal edema in n=27 patients with

recurrent tumors >10 mL in both the contrast-enhancing and
frontiersin.org

http://www.itksnap.org
http://www.itksnap.org
https://doi.org/10.3389/fonc.2022.998069
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Friedrich et al. 10.3389/fonc.2022.998069
FET images. In opposite, T2/FLAIR hyperintensities were

classified as radiation-induced gliosis in n=13 patients in the

almost complete absence of contrast enhancement and FET

uptake (<0.1 mL) and a time interval >6 months from

local irradiation.
Tractography and local fiber density

Advanced DWI and tractography methods have rarely been

used to characterize or quantify brain tissue damage caused by

infiltrative tumor growth or treatment effects other than surgery

(40). This reluctance might be related to the observation that

most fiber tracking methods in brain regions affected by

recurrent tumor or other structural changes yield inconsistent

or biased results, usually leading to a severe underestimation of

fiber density (28, 32, 41, 42). Therefore, we applied a recently

developed modification of a widely used fiber-tracking method

that allows for reasonable identification of the fibers passing

through and near tumorous tissue and the surrounding brain

structures (43). In short, the applied constrained spherical

deconvolution (CSD) method (25) assumes that the diffusion-

weighted MRI signal results from the spherical convolution of a

response function with the underlying fiber orientation

distribution function (FOD). The response functions are

tissue-type specific and describe the expected MR signal of a

pure white matter (single oriented white matter fiber bundle),

gray matter, or cerebrospinal fluid image voxel. The estimated

white matter FODs in the original, single-shell CSD model (25)

are usually distorted by signal contributions from different tissue

types within the voxels. This problem has been addressed by the

advanced multi-shell multi-tissue CSD (MSMT-CSD) method,

which also considers the signal contributions of gray matter and

cerebrospinal fluid and exploits their different response

properties at different b-values (44). However, it has also been

shown that MSMT-CSD underestimates or excludes white

matter FODs in tumor tissue, since such areas are often

misclassified as gray matter-like tissue (43). In contrast, the

novel single-shell 3-tissue CSD (SS3T-CSD) method considers

different tissue types from single-shell (single b-value plus non-

diffusion weighted images) HARDI data and estimates white

matter FODs as bias-free as possible, even within different

compartments of a tumor (43, 45, 46). The method is

implemented in the toolkit MRtrix3Tissue (https://3tissue.

github.io, accessed on 1.3.2021), a fork of the widely used fiber

tracking toolkit MRtrix3 [https://www.mrtrix.org, accessed on

1.3.2020 (47)].

The MRtrix3Tissue toolkit steps were embedded in the

following processing pipeline. The image corrections were

passed from MRtrix to the FSL toolbox [FSL version 5.0,

https://fsl.fmrib.ox.ac.uk/fsl (48)] and the ANTs software suite

(https://github.com/ANTsX/ANTs, accessed on 3.1.2020). First,

the HARDI data were subjected to EPI distortion correction
Frontiers in Oncology 05
using the script “topup”. Second, eddy-current and motion

distortion correction were performed using the FSL tool

“eddy”, both scripts available in FSL. Afterwards, a bias field

correction based on the N4ITK algorithm was executed by the

ANTs software suite. The white matter, gray matter, and

cerebrospinal fluid response functions were estimated from the

preprocessed HARDI data using an unsupervised method (46).

Afterwards, SS3T-CSD was performed to obtain white matter-,

gray matter- and cerebrospinal fluid-like FODs in all voxels (45).

The response functions for each tissue compartment were

averaged across all patients and subjects in order to ensure

that the FODs were comparable within the group study. In

addition, the FODs were subjected to a global intensity

normalization (49).

Finally, in order to increase the biological plausibility of the

fiber tractograms, the method called Anatomically-Constrained

Tractography (available as part of MRtrix) which makes several

assumptions about the behavior of healthy neuronal fibers in

terms of their propagation and termination was applied to the

obtained fiber tractograms (50). These assumptions were relaxed

in all areas of segmented pathological tissue using a compound

lesion mask containing all segmented lesion types. Apart from

the default settings, the option “backtrack” was activated, the

number of seed points was fixed at 4 million and restricted to a

brain mask, and the cutoff value for the FOD amplitude was set

to 0.01. Lastly, the tractography data were converted into fiber

density images with an isotropic voxel size of 1 mm3. All image

processing steps were also performed for the control group,

except for the EPI distortion correction due to the lack of the

corresponding sequence with reversed phase-encoding. In

Figures 1, 2, representative results for the applied tractography

methods and lesion segmentation are depicted. Although the

lack of the EPI distortion correction could theoretically have led

to an inward-facing deformation mainly of the frontal tracts in

the healthy subjects, there was no indication that this happened

in the fiber density images, probably due to the successful

application of the spatial normalization to the MNI template

(see next section).
Effect of lesion type on local
fiber density

The tractography methods supplied by MRtrix support the

determination of the voxel-wise fiber density [also termed track

density by the developers (51, 52)], which we here used to

measure the integrity of local structural connectivity. For this

purpose, all structural and fiber density images of the patients

and healthy subjects as well as all lesion masks of the patients

were registered from the individual patient space to the standard

MNI space by the unified segmentation method of the SPM12

toolbox (Statistical Parametric Mapping Toolbox, https://www.

fil.ion.ucl.ac.uk/spm/software/spm12/, Matlab R2017b,
frontiersin.org
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MathWorks, Natick, MA, USA). This method combines tissue

segmentation with elastic registration (53). All further analyses

were done in the MNI standard space. A map of the average fiber

density in the control group (n=121) was computed from the

individual fiber density images of the healthy subjects. Then, the

mean fiber density within the lesion segments of the patients was

computed and compared to the mean fiber density in the

corresponding region of the average normal fiber density map.

In order to check the validity of the fiber density estimation, it

was also evaluated for the manually segmented resection cavities

and later used for calculation of the total fiber loss and its impact

on the ECOG performance status (see next section).

In order to analyze a possible correlation between FET PET

uptake and local fiber density, TBR values were divided into 4

bins, starting from the histologically validated cut-off value for

glioma tissue of 1.6 (binning thresholds, 1.6-2.6; 2.6-3.6; 3.6-4.6;

>4.6). As the tumors also extended into fiber-free areas (gray

matter and ventricles), the following measures were undertaken

to make the resulting TBR-binned lesion segments comparable.

Only patients with pathologically increased FET uptake located
Frontiers in Oncology 06
in a region with a reasonable homogenous underlying fiber

density in the reference fiber density image (control group)

were included. Thus, only patients for whom the standard

deviation of the fiber density in the reference region was

smaller than the mean fiber density itself were considered.

Besides, tiny TBR-binned segments (i.e., <0.25 mL) were

excluded within the patients, and one patient was discarded

for whom the displaced fibers probably caused the fiber density

to exceed the reference value. In the remaining 43 patients, the

mean TBR within the TBR-binned segments was computed, and

the mean relative fiber density was expressed as the ratio to the

reference region.
Impact of reduced fiber density on the
ECOG performance status

The effect of reduced fiber density on performance status

was examined to evaluate the clinical impact of reduced

structural connectivity induced by different types of lesions.
FIGURE 1

Probabilistic whole-brain tractography and fiber density image in a patient with recurrent glioma and perifocal edema. In normal brain tissue, a
method that increases the biological plausibility is applied (Anatomically-Constrained Tractography), while this condition is relaxed in
pathologically altered brain regions. In contrast to the standard multi-shell multi-tissue constrained spherical deconvolution (CSD) based
tractography of MRtrix3 (MSMT), the advanced MRtrix3tissue method using the single-shell 3-tissue CSD algorithm (SS3T) detected an adequate
number of fibers also within the tumorous or edematous tissue.
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The total fiber loss caused by each lesion type was calculated

from the relative reduction in fiber density [1 – (patient fiber

density/reference fiber density)] of each segment multiplied by

the corresponding segment volume. In patients where one or

more lesion types were not present, the respective volumes were

set to zero. The patient’s performance status was classified as

either normal/unaffected (i.e., ECOG score of 0) or impaired

(i.e., ECOG≥1).
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Statistical analysis

Statistical analysis was performed using the SPSS statistical

software package (version 27, IBM Corporation, Armonk, New

York, USA). All fiber density values were also converted to

fractions relative to the reference values in the corresponding

regions of the healthy subjects. To compare the absolute and

relative fiber densities between patients and healthy subjects, the
FIGURE 2

Representative case of lesion segmentation superimposed on a tractography image in a patient who had undergone surgery and
radiochemotherapy and developed local recurrence near the resection cavity. FET, O-(2-[18F]fluoroethyl)-L-tyrosine; T2/FLAIR, T2-weighted
fluid-attenuated inversion recovery; T1CE, T1-weighted contrast-enhancing image.
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Mann-Whitney U test and one-sample Wilcoxon signed-rank

tests (2-sided) were applied. For 3 lesion types (FET PET, T1CE

and resection cavity), 1-2 outliers were each excluded from

analysis. For evaluation of the differential effect of lesion types

in the patients, the Kruskal-Wallis test (2-sided) and a post-hoc

comparison by the Mann-Whitney U-test (2-sided) were

applied. The relationship between FET uptake and relative

fiber density was determined using linear regression analysis

and a mixed linear model using the TBR as fixed effect and

allowing for random variation of the constant term in each

individual patient. The influence of the total fiber loss caused by

different lesion types on performance status was examined using

univariate and multivariate logistic regression analysis including

a set of clinical variables as potential confounders. In all analyses,

a p-value <0.05 was considered statistically significant.
Results

The probability of lesion location is shown in Figure 3. Most

lesions were located in the frontal and temporal lobes. Average

fiber densities in the healthy subjects and in the unaffected brain

regions of the patients are illustrated in Figure 4, indicating that

the overall pattern of fiber tracts outside the lesions was

maintained in the patients. However, as expected, some of the

main tracts showed a reduced fiber density which we did not

further evaluate here. As shown in Table 2, the median volume

of resection cavities, contrast-enhancing regions, regions with

increased FET uptake, and T2/FLAIR hyperintense regions

amounted to 20.9, 7.9, 30.3, and 53.4 mL, respectively. A

significant decrease in absolute fiber density was observed in

all four major lesion types (p<0.001 in all cases).

The relative fiber densities (fraction of fiber density compared

to the corresponding region in the healthy subjects) in different

lesion types are shown in Table 2 and Figure 5. The relative fiber

density was most decreased in the resection cavities (resulting

mean density 16%, p<0.001), followed by T1-weighted contrast-

enhancing lesions (43%, p<0.001), lesions with pathologically

increased FET uptake (49%, p<0.001) and T2/FLAIR

hyperintense regions (57%, p<0.001) and depended significantly

on lesion type (Kruskal-Wallis-test, p<0.001). A post-hoc analysis

revealed that the contrast-enhancing lesions and FET uptake

regions were associated with a significantly larger decrease in

relative fiber density than the T2/FLAIR lesions (both p<0.001)

and that the relative fiber density in contrast enhancing regions

was significantly lower than in regions with pathologic FET

uptake (p<0.01). Also, the relative fiber densities found in T1-

enhancing lesions and in lesions with pathologic FET uptake did

not differ significantly between grade 3 and grade 4 gliomas.

T2/FLAIR lesions, predominantly related to radiation-

induced gliosis, were identified in n=13 patients (Table 2).

Within these lesions, the mean relative fiber density amounted

to 53% which was not significantly different from that measured
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in lesions dominated by tumor-related edema (n=27, 48%,

p=0.17). Representative cases are presented in Figure 6. With

regard to the FET uptake versus fiber density, a significant

(p=0.005, R2= 0.076) inverse linear dependence (constant term

0.59, slope -0.074) of fiber density on the level of FET uptake

(tumor-to-brain ratio, Figure 7) was observed. The mixed linear

model confirmed the highly significant dependency of fiber

density on TBR (p<0.001) and the inverse relationship (mean

constant term 0.61, slope -0.084).

The regression analysis on general performance revealed a

significant influence of the total fiber loss in contrast-enhancing

lesions (p=0.006) and T2/FLAIR hyperintense areas (p=0.013)

on the performance status (ECOG score) of the patients

(Table 3; Figure 8). None of the clinical variables comprising

age, gender, type of resection, grade 3 vs. 4, number of surgical

procedures, number of radiotherapy series, number of

chemotherapy courses and follow-up interval had a significant

impact on the ECOG score. In a multivariate logistic regression

analysis that included the total fiber loss caused by the 4 different

lesion types, only the effect of contrast-enhancing lesions on the

ECOG performance status kept its significant impact (p=0.04).
Discussion

Main findings

This study shows that structural and metabolic imaging

changes after multimodal therapy in glioma patients are

associated with a significant reduction in local white matter

fiber density, as assessed using the DWI single-shell 3-tissue

CSD algorithm. Compared to a matched cohort of healthy

subjects, the reduction was almost total in resection cavities,

strong in contrast-enhancing lesions and regions with

pathologically increased FET PET uptake, and stil l

pronounced in regions with T2/FLAIR hyperintensity. For

lesions with an increased FET uptake, an inverse linear

relationship between the TBR and a reduced fiber density was

observed. The total fiber loss in contrast-enhancing lesions and

T2/FLAIR hyperintense regions was associated with a significant

risk of lowered performance status as assessed by the ECOG

score, while the total fiber loss caused by resection and regions

with increased FET uptake did not impact general performance.

The methodological issues and clinical implications of these

results are discussed below.
Reliability of CSD-based tractography
and fiber density estimation

All tractography methods are based on assumptions that

relate the observed non-isotropic diffusion-weighted MRI signal

to the expected local fiber architecture. The main prerequisites of
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these models for reliable performance are a high angular

resolution of the diffusion-weighted signal and low confounding

of the fiber-associated signal by other sources, e.g., the presence of

freely diffusing water (54, 55) or isotropic diffusion such as present

in grey matter. The HARDI scheme applied here comprised 120

directions at a high b-value of 2700 s/mm2, which ensures optimal

contrast-to-noise properties within the shell and between the

single shell and the b=0 data as detailed in (43). From these
Frontiers in Oncology 09
diffusion-weighted data, the composition of every voxel in terms

of grey-matter-like, cerebrospinal fluid-like and white-matter-like

tissue was computed and the respective response functions were

determined from the experimental data themselves (45). Then, the

FODs of the white-matter-like compartments of normal and

pathological brain tissue and the contamination of each voxel

by freely diffusing water as found in cerebrospinal fluid or edema

(48) were calculated by the 3-tissue CSD algorithm (56, 57) for
FIGURE 3

Probability maps for lesion localization. Compound lesion maps comprising T2-weighted fluid-attenuated inversion recovery (FLAIR)
hyperintense lesions, contrast-enhancing lesions, resection cavities, and lesions with pathologically increased FET (O-(2-[18F]fluoroethyl)-L-
tyrosine) uptake on PET images are shown superimposed on images depicting the mean fiber density in a control group (representative sections
of the MNI-152 standard brain template). R, right; L, left; numbers, number of patients.
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subsequent tractography. Thus, effective measures have been

taken to avoid underestimation of fiber density in brain regions

affected by tumor, edema, or other pathological tissue (28, 32,

41, 42).

Due to the inhomogeneous distribution of the fiber tracts in the

normal brain, reference regions for fiber density have to be carefully

selected. This is probably why in a comparable study on fiber

density in different tumor compartments of glioblastoma (58)

reported in due course after the publication of the method (51,

52), a paradoxical positive correlation between the extent of tumor

infiltration and the fiber densitywas observed. In the present paper,

the spatially co-registered data of healthy subjects served as

reference, and all procedures were equally applied to the patient

and healthy subject data, resulting in reasonable fiber density

distributions in both groups. In summary, the methods applied

here can be expected to provide a solid estimate of the local and

relative fiber density in pathologically altered brain tissue.
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Fiber density in glioma tissue

Several groups investigated the impact of tumor cell density in

gliomas’ core or infiltration zone on local fiber density. For this

purpose, Stadlbauer et al. (59) applied DTI-based fiber density

mapping in patients with non-enhancing WHO grade II or III

glioma and evaluated 38 biopsies taken from the tumor center,

transition zone, and tumor border. A steep decrease in the fiber

density from the periphery into the tumor center was observed.

However, thefiber loss in the tumor corewasprobably overestimated

mainly due to the above-mentioned methodological limitations to

detect fibers in pathologically altered brain tissue. In a subsequent

study, the choline concentration in the tissue (determined by MR

spectroscopy), which is amarker ofmembrane turnover and cellular

density, was also inversely related to the fiber density (60). It is worth

mentioning thatfiberdensitymapshave alsobeenapplied to evaluate

tumor infiltration of the corticospinal tract inmotor-eloquentWHO
FIGURE 4

Average fiber densities in healthy subjects and in unaffected brain regions of the patients. FD, fiber density; FDmean, whole-brain mean fiber density.
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grade III or IV gliomas, where a significant reduction in fiber density

was found in the peritumoral region as well as in the cortico-spinal

tract itself (61). The observation that an increase in FET uptake is

associatedwith a decrease infiber densityfits well into thesefindings,

as theFETsignalwas found to correlatewith the tumor cell density in

glioma (62, 63). A particular effort was undertaken in the present

study to generate reliable reference regions by using spatially

registered normal brains and excluding patients with tumor

localizations distributed over brain regions with strongly varying

physiological fiber density.
Fiber density in peritumoral edema
and gliosis

It is commonly believed that malignant brain tumors disrupt

the blood-brain barrier, causing intravascular fluid to leak into the

interstitial space and leading to what has been termed as vasogenic

edema (64, 65). This process leads to an increased interstitial

pressure, which can displace, compress, or disrupt the axons that
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pass through the affected edematous region (66). In the

preoperative setting, several methodological attempts have been

made to reliably identify the major fibers tracts in the perilesional

tissue of gliomas, including techniques such as free-water modeling

(48) and local connectivity mapping (28), which seem to recover

more fibers in the tracts than the standard methods based on DTI.

We have attempted here for the first time to quantify the relative

fiber loss caused by edema and found it to be in the range of 50%.

Late side effects of radiotherapy have been found to mainly

affect white matter, leading to demyelination, axonal

degeneration, and astrogliosis (15), which, in the absence of

other tissue changes, may be readily detected by a signal increase

in T2-weighted or FLAIR images (67). In order to quantify

radiation-induced white matter damage, surrogate markers for

structural connectivity such as cortical atrophy, fractional

anisotropy, and mean, axial and radial diffusivity determined

from DTI have been applied (22, 68–72). However, in most of

these studies, the analysis was performed on the whole brain or

confined to anatomically predefined regions or tracts. In

contrast, we attempted here to quantify the relative fiber loss
TABLE 2 Volume and fiber density in lesions of different type.

Lesion type n# Lesion size (mL)
mean ± SD (median)

Fiber density Healthy
(fibers/mm3)

Patients
(fibers/mm3)

Patients
(% of reference)

Resection cavity 90 35.8 ± 40.3 (20.9) 45.1 ± 23.0 5.9 ± 7.3*** 15.5 ± 21.1***

T1CE 99 17.2 ± 23.3 (7.9) 76.3 ± 43.5 26.9 ± 19.9*** 42.9 ± 31.7***

FET PET (TBR>1.6) 79 39.5 ± 35.2 (30.3) 62.3 ± 30.6 27.8 ± 17.5*** 49.3 ± 26.1***

T2/FLAIR 121 70.1 ± 55.5 (53.4) 107.6 ± 39.6 60.9 ± 29.1*** 56.9 ± 16.3***

T2/FLAIR (edema) 27 121.1 ± 58.0 (131.8) 88.3 ± 23.2 40.7 ± 12.8*** 48.1 ± 15.5***

T2/FLAIR (gliosis) 13 52.3 ± 45.7 (33.3) 120.4 ± 41.3 62.6 ± 24.8*** 52.7 ± 12.5**
T1CE, T1-weighted contrast-enhancing; FET, O-(2-[18F]fluoroethyl)-L-tyrosine; FLAIR, fluidattenuated inversion recovery; TBR, tumor-to-brain ratio; #patients affected; **p<0.01,
***p<0.001, Mann-Whitney U test (fibers/mm3), one-sample Wilcoxon signed-rank test (% of reference).
FIGURE 5

Distribution of relative fiber densities (fraction of fiber density (FD) of the corresponding region in healthy controls) for the respective imaging
findings. FET, O-(2-[18F]fluoroethyl)-L-tyrosine; T2/FLAIR, T2-weighted fluid-attenuated inversion recovery (FLAIR) hyperintense lesions;
**p<0.01, ***p<0.001, Mann-Whitney U test for comparison between different types of lesions.
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in brain regions affected by radiation-induced damage, which

was also approximately 50%; the same order of magnitude as the

loss caused by edema. However, as the distinction between

edema and radiation-induced gliosis proved difficult, these

numbers have to be taken as largely provisional.
Clinical impact of fiber loss

It remains unclear how the apparent loss of fiber density

detected by MRI tractography methods is related to neuronal

function, e.g., the propagation of action potentials along the

axons in the affected tracts. At least in the case of edema, axons

are still present but may become nonfunctional, for example,

because of compression. However, our data show that the overall

extent of fiber loss in the volumes affected by different lesion

types significantly affects the global performance status. The

differential impact of the lesion types can be explained, at least in
Frontiers in Oncology 12
part, by the study population. Most patients had recovered from

surgery without permanent neurological deficits but were at

constant risk of developing radiation-induced damage or

recurrent tumor, the latter diagnosed early enough by FET

PET before it led to performance loss.
Limitations of the study

In the present study, regular follow-up data were available for

only a few patients. Consequently, each patient was examined only

once, resulting in a wide dispersion of intervals between the

initiation of therapy and imaging. Because multiple types of

lesions were present simultaneously in almost all patients,

uncertainties remained regarding the nature and boundaries of

each segment, despite all efforts to achieve a distinct and well-

circumscribed segmentation. Often, the contrast-enhancing and

FET uptaking lesions partially overlapped. However, in a small set
A

B

FIGURE 6

(A) Representative cases with T2/FLAIR hyperintense regions and (B) relative fiber densities (FD) in patients with radiation-induced gliosis or
peritumoral edema. T2/FLAIR, T2-weighted fluid-attenuated inversion recovery.
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of non-overlapping contrast enhancing (n=24) or FET uptake

lesions (n=9), a relative fiber density in the same order of

magnitude as found before (56% and 54%) was observed. Also,

the distinction between edema and radiation-induced gliosis proved

difficult, such that a substantial proportion of patients could not be

classified. Nevertheless, the relative fiber densities in these two lesion

types did not differ significantly. In addition, hyperintense T2/

FLAIR lesions could result from tumor infiltration not leading to

contrast enhancement or pathologic FET uptake.

The minimal remaining fiber density within the resection

cavity can be explained in part by the difficulty of unambiguous

segmentation of the resection cavity boundaries. Therefore, it is

possible that individual voxels that still contained tissue were part

of the segmented area.On the other hand, it should be kept inmind

that nomodel perfectly reflects reality, which in this case obviously

resulted in a small number of false positive fibers inside the

resection cavity. These problems are illustrated in Figure 2.
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Conclusions

In summary, we interpret this study as follows: i) The

almost complete fiber loss in the resection cavities was mainly

the result of carefully planned neurosurgical interventions

based on neuroanatomic and neuro-functional expertise,

avoiding neurological deficits in most patients. ii) Most

contrast-enhancing lesions were caused by recurrent tumor

growth, which severely disrupted fiber tracts in deliberate

localizations and thus impacted general performance

significantly. iii) Most regions with increased FET uptake

also resulted from recurrent tumor growth; however, due to

the higher sensitivity of amino acid PET compared to MRI for

detecting early tumor infiltration, the associated fiber density

loss was less pronounced and did not impair general

performance. iv) T2/FLAIR-hyperintense lesions mainly

resulted from radiation injury or peritumoral edema or a
frontiersin.org
FIGURE 7

Relative fiber density (FD) in PET lesion segments with different tumor-to-brain ratio (TBR) of FET (O-(2-[18F]fluoroethyl)-L-tyrosine) uptake.
Linear regression, R2=0.076, **p<0.01.
TABLE 3 Results of logistic regression analyses for the impact of total fiber loss on general performance status (normal ECOG=0 vs. impaired ECOG ≥ 1).

Imaging finding# Total fiber loss median (range) p-value univariate p-value multivariate

Resection cavity 7506 (0 - 171033) 0.906 0.692

Increased FET uptake 3977 (0 - 204533) 0.054 0.462

Contrast enhancement 1774 (0 - 102088) 0.006** 0.040*

T2/FLAIR hyperintensities 20265 (0 - 168450) 0.013* 0.310
FET, O-(2-[18F]fluoroethyl)-L-tyrosine; T2/FLAIR, T2-weighted fluid-attenuated inversion recovery; *p<0.05; **p<0.01; #including patients not affected by respective lesion type (lesion-
specific volume/total fiber loss set to zero).
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combination thereof and affected larger brain areas. Although

the reduction in fiber density was less pronounced, the larger

affected brain volume likely led to dysfunction in many brain

regions, resulting in impaired general performance.
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FIGURE 8

Percentage of patients with impaired performance status (ECOG score≥1) depending on total fiber loss (1 – (patient fiber density/reference fiber
density) multiplied by lesion volume), partitioned into quartiles of observed values confined to contrast-enhancing lesions (A) and hyperintense
T2/FLAIR regions (B). ECOG, Eastern Cooperative Oncology Group; T1CE, T1-weighted contrast-enhancing; T2/FLAIR, T2-weighted fluid-
attenuated inversion recovery.
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