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Owing to its unique nucleophilicity, cysteine is an attractive sulfhydryl-

containing proteinogenic amino acid. It is also utilized in various metabolic

pathways and redox homeostasis, as it is used for the component of major

endogenous antioxidant glutathione and the generation of sulfur-containing

biomolecules. In addition, cysteine is the most nucleophilic amino acid of

proteins and can react with endogenous or exogenous electrophiles which can

result in the formation of covalent bonds, which can alter the cellular states and

functions. Moreover, post-translational modifications of cysteines trigger

redox signaling and affect the three-dimensional protein structure. Protein

phosphorylation mediated by kinases and phosphatases play a key role in

cellular signaling that regulates many physiological and pathological processes,

and consequently, the modification of cysteine regulates its activities. The

modification of cysteine residues in proteins is critically important for the

design of novel types of pharmacological agents. Therefore, in cancer

metabolism and cancer cell survival, cysteine plays an essential role in redox

regulation of cellular status and protein function. This review summarizes the

diverse regulatory mechanisms of cysteine bound to or free from proteins in

cancer. Furthermore, it can enhance the comprehension of the role of cysteine

in tumor biology which can help in the development of novel effective

cancer therapies.
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Introduction

Cysteine, a sulfhydryl-containing proteinogenic amino acid essential for the human

body, is employed in a variety of metabolic pathways, such as the regulation of reduced

glutathione (GSH), a major endogenous antioxidant molecule and the generation of

sulfur-containing biomolecules such as hydrogen sulfide (H2S), taurine, coenzyme A and

biotin (1, 2). In addition, the reactive thiol (-SH) group of cysteine residues in proteins

can undergo various post-translational modifications (PTMs) such as palmitoylation,

glutathionylation, guanylation, cysteinylation, nitrosylation, and sulfhydration (Figure 1)
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(2). PTMs play a key role in various biological processes by

affecting the structure, reactivity, stability, and function of the

protein, thereby modulating a broad range of biological

processes (3). Moreover, endogenous or exogenous

electrophilic molecules can be covalently modified with the

nucleophilic cysteine, which consequently alters the cellular
Frontiers in Oncology 02
states and functions. Some pharmacological agents that exploit

the modification of cysteine residues present in many

intracellular proteins affect the biological activity, thus exerting

their drug effects (4). This review investigates the multifaceted

role of cysteine bound to or free from proteins in cancer

biology research.
FIGURE 1

Metabolic products and post-translational modifications of cysteine. Cysteine generates sulfur-containing molecules such as glutathione,
taurine, biotin, coenzyme A and hydrogen sulfide by various metabolic pathways. In addition, cysteine undergoes a variety of post-translational
modifications including palmitoylation, glutathionylation, guanylation, nitrosylation, and sulfhydration.
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Cysteine metabolism in cancer and
tumor microenvironment

It is increasingly noted that altered levels of amino acids

including cysteine in the tumor microenvironment, by uptake or

processing of both intracellular and extracellular regions, have

emerged as potential markers of tumor progression. Cysteine

may interplay with the tumor microenvironment and cancer cell

metabolism which affect the metastatic potential and drug

resistance (5). The extracellular compartments are highly

oxidizing, whereas cells generally maintain a reducing

environment in the cytosol.Cysteine mainly exists as cystine,

the oxidized dimer form of cysteine, in the extracellular space.

Both forms of cysteine and cystine can be imported into cells

through specific transporters, and amino acids exist as cysteine

in a reducing environment. The cystine/cysteine redox cycle is

characterized by a slight increase in the intracellular cysteine

levels and exceedingly high extracellular cysteine concentrations,

which efficiently protects the cells from oxidative stress-induced

cell death (6). Tumors interact with the surrounding

microenvironment and organs through the lymphatic network,

composed of a complex mixture of cells, including tumor cells,

fibroblasts and immune cells. Cystine is transported into stromal

cells and converted to cysteine that supports glutathione (GSH)

synthesis and secretion into the tumor microenvironment (7).

Enhanced cysteine transport and its metabolism enable cancer

cells to adapt to a challenging tumor microenvironment and

acquire chemoresistance. This section discusses the role of

cellular signaling molecules and proteins in regulating cysteine

metabolism in cancer development and drug resistance.
xCT/SLC7A11

System xc
- transporter is a heterodimer consisting of the

disulfide-linked light (xCT/SLC7A11) and heavy (CD98/

SLC3A2) chain subunits. Cystine/glutamate antiporter solute

carrier family 7 member 11 (SLC7A11) is a major transporter

regulating cysteine in tumor cells and is induced in response to a

variety of stimuli, such as oxidative stress and electrophilic

compounds (8). Lin et al. reported that SLC7A11 is widely

expressed in multiple human cancers, and its up-regulation is

correlated with poor survival outcomes in patients with breast

cancer, prostate cancer, and papillary thyroid carcinoma (9). In

prostate cancer, xCT protein expression is positively associated

with invasion and metastasis by affecting the redox status of the

tumor microenvironment. Zhong et al. reported that altering the

extracellular cysteine/cystine ratio by xCT knockdown inhibits

prostate cancer cell invasion (10). In addition, oncogenic KRAS-

mutant cancer cells maintain the induction of xCT transcription,

which enhance the GSH levels and protect tumor cells against

oxidative stress (11). Moreover, cysteine and glutathione released
Frontiers in Oncology 03
from stromal fibroblasts in the tumor microenvironment confer

resistance to cisplatin treatment in ovarian tumor cells by

reducing the intracellular cisplatin accumulation. However,

interferon (IFN)-g derived from CD8+ T cells in the tumor

stromal region attenuated platinum resistance through STAT1

phosphorylation and xCT downregulation in fibroblasts

(Figure 2) (7). In contrast to the high expression of xCT in solid

tumors, the xCT transporter is downregulated in hematologic

malignancies such as chronic lymphocytic leukemia.

Downregulation of xCT expression limits its ability to transport

cystine for GSH synthesis (12). However, bone marrow stromal

cells effectively import cystine, convert it to cysteine, and release it

into the microenvironment for uptake by chronic lymphocytic

leukemia cells to promote GSH synthesis (12). Interactions

between stromal cells and leukemic cells are essential for the

survival of chronic lymphocytic leukemia cells from drug-induced

cytotoxicity (12). Furthermore, Cramer et al. reported that

cysteinase, a glutathione inhibitor that degrades cysteine and

cystine, suppressed the growth of prostate carcinoma allografts,

reduced tumor growth in prostate and breast cancer xenografts

due to depletion of intracellular GSH and consequent oxidative

stress (13).
GSH peroxidase 4 (GPX4)

The tripeptide GSH consists of glutamate, cysteine, and

glycine and serves as a cysteine storage and transport form

(14). It is synthesized by the consecutive action of two ATP-

dependent enzymes, g-glutamylcysteine synthetase, and GSH

synthetase. The extracellular enzyme g-glutamyltranspeptidase

cleaves the g-peptide linkage of GSH to release the product

cysteinyl-glycine and glutamate. Cysteinyl-glycine can be

hydrolyzed to cysteine and glycine, which can be imported

into the cell (15, 16). Ferroptosis is an iron-dependent

nonapoptotic cell death driven by lipid peroxidation and

membrane damage, and is associated with a redox imbalance

(17). GSH is an essential cofactor for GPX4 enzymatic activity

(18). GPX4 converts GSH into oxidized glutathione (GSSG),

which then reduces cytotoxic lipid peroxides to lipid alcohols.

Inhibition of GPX4 activity leads to the accumulation of lipid

peroxides, which triggers ferroptic cell death (19). When the cells

encounter a decrease in cysteine levels, ferroptosis is triggered by

the degradation of GPX4 via chaperone-mediated autophagy

(20). Recently, Zhang et al. reported that cysteine starvation

impairs GPX4 protein expression by inactivating mTORC1/4E-

BP1-mediated protein translation. mTORC1 inhibitors also

sensitize cancer cells to ferroptosis induced by GPX4 inhibitor

in renal cancer UMRC6 cells (21). In addition, under dual

depletion of cystine and GSH, hepatocellular carcinoma

HepG2 cells undergo ferroptosis, characterized by a marked

increase in lipid peroxidation, and this cell death program can be

rescued by a ferroptosis inhibitor treatment (22). Moreover,
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Yang et al. reported that the administration of inhibitors

targeting GPX4 directly or indirectly through GSH depletion

suppresses tumor formation in mice bearing human

fibrosarcoma HT-1080 xenografts (19). Fu et al. demonstrated
Frontiers in Oncology 04
that cisplatin-resistant gastric cancer cells had lower levels of

ATF3 than their parental cells, which results in reduced

ferroptosis due to low ROS, lipid peroxidation, and higher

intracellular GSH levels (23). ATF3 sensitizes gastric
FIGURE 2

Cysteine as an important building block for cell-cell communication in tumor microenvironment. In the extracellular space, cysteine mainly
exists as the oxidized dimer form, cystine. Both forms of cysteine and cystine can be imported into cells through specific transporters, xCT.
GSH is synthesized from cysteine, which functions in concert to detoxify ROS. GSH acts as an essential cofactor for GPX4 enzymatic activity,
which results in blocking lipid peroxidation and ferroptosis. Stromal fibroblast-derived cysteine and GSH also scavenge the ROS in tumor
microenvironment, which contribute to cancer progression. However, IFN-g derived from CD8+ T cells attenuates drug resistance through
downregulation of xCT. In addition, 3MST resident in mitochondria generates H2S, and then it induces the NF-kB activation by persulfidation of
its subunit or nuclear localization of Nrf2 via persulfidation of Keap1.
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carcinoma cells to cisplatin through ferroptosis induction by

blocking the Nrf2/Keap1/xCT signaling pathway (23). In line

with this notion, Fan et al. reported that the activation of the

Nrf2/Keap1 pathway increased the xCT expression and

diminished ferroptosis, which facilitating glioma cell growth

(24). Also, Roh et al. showed that the inhibition of xCT

sensitized cisplatin-resistant head and neck cancer (HNC) cell

lines to cisplatin by inducing ferroptotic cell death via

glutathione depletion and ROS accumulation (25).
Hydrogen sulfide

H2S is produced in mammalian cells by three enzymes,

including cystathionine b-synthase (CBS), cystathionine g-lyase
(CSE), and 3-mercaptopyruvate sulfurtansferase (3MST) in

mammalian cells. CBS and CSE are located in the cytosol of

cells, whereas 3MST primarily resides in and generates H2S in

mitochondria. Studies have reported that of H2S involved in both

the inhibition and advancement of cancer. Knockdown of CBS

decreases bioenergetics, actions such as oxygen consumption and

ATP production in colon and ovarian cancer cells (26, 27). H2S

might enhance glucose uptake by stimulating GLUT activity,

thereby accelerating glycolysis. This supports the production of

intracellular ATP required by cancer cell proliferation (28). In

addition, vascular endothelial growth factor increases H2S level by

upregulating CSE expression in endothelial cells, thereby

promoting angiogenesis of endothelial cells obtained from breast

carcinomas (B-TECs) (29). It also prompts to deliver nutrients

and oxygen to cancer cells (29). CSE knockdown suppresses

vascular endothelial growth factor–induced migration of B-

TECs (29). H2S can mediate hypoxia-induced angiogenesis in

cancer progression by inhibiting the catabolism of H2S and

increases the expression of CSE (30, 31). Moreover, H2S exerts a

protective effect against various apoptotic stimuli through the

activation of NF-kB and Nrf2 mediated by H2S-linked

persulfidation (32, 33). In the same context, H2S is able to

accelerate the cell cycle in cancer cells by upregulating the

expression of proliferating cell nuclear antigen and cyclin-

dependent kinase 4, thereby promoting cell proliferation in oral

squamous cell carcinoma (Figure 2) (34).
Taurine

Cysteine dioxygenases catalyzes the oxidation of cysteine to

cysteine sulfinate. Cysteine sulfinic acid decarboxylase catalyzes

the reaction, and carboxyl groups are removed to form

hypotaurine, which subsequently generates taurine (35).

Taurine, also known as 2-aminoethanesulfonic acid, is the most

abundant free sulfur-containing amino acid in mammalian

tissues, and possesses anti-oxidative, anti-inflammatory, and

anti-apoptotic effects (36). Marcinkiewicz and Kontny reported
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that taurine has cytoprotection function and maintains the

homeostasis of cells involved in acute and chronic

inflammatory/oxidative stress (37). Several studies have

confirmed that taurine displays a strong growth-inhibitory effect

on various cancer types including colon cancer (38), lung cancer

(39), hepatocarcinoma (40), melanoma (41), and breast cancer

(42). El Agouza et al. reported that serum taurine levels decreased

in patients with high breast cancer risk, which was linked to

decreased angiogenesis (43). Moreover, taurine exerts a strong

antitumor effect on rats harboring mammary carcinogenesis,

which can be attributed to disturbances in the energy

metabolism. Plasma concentrations of fumarate, malate, citrate,

a-ketoglutarate, and pyruvate involved in glycolysis and the

tricarboxylic acid (TCA) cycle are lower in the taurine-

supplemented breast cancer mice group than their

concentrations in a normally matched group of mice (44).
Cysteine in carbon
metabolism reprogramming

Metabolic reprogramming, an important cancer hallmark,

refers to the ability of cancer cells to modify their metabolism, to

support the increased energy demand due to the continuous

growth and rapid proliferation of cancerous cells. In fact, the

metabolic changes in glucose, lipids, and amino acids provide

the cancer cells with the energy and substances needed for

biosynthesis and the maintenance of biological functions (45).

Amino acids participate in important processes such as

oncogenesis and progression and are important raw materials

for cell anabolism. Recently, Nunes et al. reported that cysteine

promotes sulfur and carbon metabolic reprogramming, the

underlying the adaptation of ovarian cancer cells to hypoxic

microenvironment. (46). In fact, the xCT transporter localizes in

mitochondria of ovarian cancer cells, and then an increase

in intracellular cysteine facilitates ATP production under

hypoxia conditions (46). Nunes et al. reported that cysteine

allows ovarian cancer cells to adapt to hypoxic environments

and to escape from carboplatin cytotoxicity (47, 48). Although it

plays a minor role, transsulfuration contributes to de novo

cysteine synthesis from methionine which is recognized as an

additional mechanism for maintaining cysteine pools in the

tumor microenvironment (49). Enhanced transsulfuration

activity driven by the glycine N-methyltransferase may

contribute to cysteine biosynthesis and promote cancer cell

survival in cysteine-limited microenvironment, which has been

demonstrated to support tumor growth in vivo (50). Liu et al.

reported that upregulated transsulfuration pathway for cysteine

synthesis in erastin-resistant ovarian cancer cells compensates

for cysteine deprivation by xCT blockage, which is mediated by

Nrf2-mediated CBS activation (51). Knockdown of CBS

promotes cellular oxidative stress and lipid peroxidation, thus

enhancing ferroptosis susceptibility (51). Moreover, patient-
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derived basal-like breast cancer tumors exhibited elevated

expression of CBS. Anti-proliferative effect and diminished

malignant transformation are observed after CBS silencing in

basal-like breast cancer cells. Disruption of CBS inhibits both

hypoxic response and tumor angiogenesis in basal-like breast

cancer cell-derived xenograft tumors, which have larger

intratumoral necrotic areas. It is due to the increased

vulnerability to oxidative stress and ferroptosis induced by

cysteine deprivation (52). Floros et al. reported that MYCN

stimulates the transsulfuration pathway through the induction

of the key enzymes CBS and methylthioadenosine

phosphorylase, and further protects neuroblastomas from

ferroptotic cell death (53). Cysteine is a valuable carbon

source, since its catabolism produces organic compounds such

as pyruvate, a-ketobutyrate, glutamate, serine, propionyl-CoA,

succinate, and acetyl-CoA which supply the TCA cycle, and are

intermediates for fatty acid synthesis (54, 55).
Post-translational modifications
targeting cysteine of protein
in cancer

PTMs is a biochemical modification occurring to one or

more amino acids on a protein during or after protein

translation. PTMs are critical molecular events in a series of

biological processes such as cell growth, proliferation,

differentiation, metabolism, and apoptosis (56). In most

proteomes, cysteine residues are frequently low but with high

chemical reactivity. The cysteine thiols could be the nucleophilic

residue attacking the substrate. Cysteine residues also react with

each other to form disulfide bonds which stabilize the three-

dimensional structure and alter the redox state (57). Protein

oxidation, lipidation, and metabolites-mediated protein

modification occur in cysteine (58). These PTMs are involve

in various pathological events or diseases such as inflammation,

carcinogenesis, aging, and neurodegenerative disorders (59–61).
Protein oxidation

Cysteine residues in proteins are easily oxidized by ROS,

reactive nitrogen species, reactive sulfur species, or GSH. Protein

S-nitrosylation, the covalent attachment of nitric oxide (NO)

moiety to the reactive thiol group of a cysteine residue to form

S-nitrosothiol is an important PTM for most classes of proteins

(62). Numerous S-nitrosylated proteins such as Bcl-2, p53, HIF-

1a, PTEN, and Src are involved in cell survival, angiogenesis,

tumorigenesis, and response to cancer treatment (63–68). NO

impairs the apoptotic function of cells and increases resistance to

cisplatin-induced cell death in human lung carcinoma cells. NO

production induces S-nitrosylation of Bcl-2, which inhibits its
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ubiquitination and subsequent proteasomal degradation (64). In

addition, S-nitrosylation on Cys498 residue of Src kinase induces

autophosphorylation, which promotes nitric oxide-mediated cell

invasion and resistance to anoikis in cancer cells (68, 69). NO

donors such as sodium nitroprusside and S-nitrosoglutathione

promote S-nitrosylation at the Cys183 residue of extracellular

signal-regulated kinase 1/2 (ERK1/2), which leads to inducing

apoptosis in U251 glioma cells (70). Therefore, S-nitrosylation

affects a variety of proteins that play important roles in the

cellular dysfunctions and contribute to cancer progression and

response to chemotherapy.
Protein lipidation

Protein lipidation is an important PTM that can reversibly or

irreversibly attach lipid types to proteins, and the three major

lipidation processes are palmitoylation, myristoylation, and

farnesylation. Palmitoylated proteins are modified by the

attachment of fatty acid to cysteine residues via thioester

linkage. Palmitoylation of protein regulates its binding at the

plasma membrane, lipid raft localization, and protein stability

(71). In prostate and breast cancer cells, palmitoylation occurs at

the cysteine residue 797 of the epidermal growth factor receptor

(EGFR) residing in mitochondria, which stimulates the activation

of EGFR. It promotes mitochondrial fusion and cell survival by

upregulating mitochondrial prohibitin 2 and optic atrophy 1

protein levels (72). In addition, the isoprenyl group can react

with cysteine thiol and bind to proteins, thus forming irreversible

S-prenylation reactions such as farnesylation. Farnesyltransferase

is an enzyme for farnesylation on the cysteine residue of the

CAAX motif region of cytosolic RAS protein, resulting in RAS

protein association with cellular membranes. Fatty acid synthase is

a metabolic enzyme involved in liponeogenesis and its

overexpression has been associated with poor prognosis and

shorter disease-free survival in patients with prostate cancer,

lung cancer, and sarcoma (73–75). Scribble (Scrib) organizes cell

polarity gradients and suppresses aberrant growth signals in

various human cancers. Scrib Cys4 and Cys10 residues are

required for palmitoylation of Scrib by ZDHHC protein acyl

transferases (76). The expression of the epithelial-mesenchymal

transition transcription factor Snail leads to Scrib displacement

from the plasma membrane to the cytosol, which is associated

with disrupting S-palmitoylation of Scrib in epithelial cancer

cells (77).
Metabolite-mediated PTMs

Metabolites have been shown to be involved in critical

biological changes and regulations. Itaconate, derived from

citrate produced in the TCA cycle, contains a,b-unsaturated
carboxylic acid, and covalently modifies at the Cys151 residue
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of Keap1 (78). Itaconate promotes tumor growth via oxidative

phosphorylation-driven ROS generation in peritoneal tissue-

resident macrophages and concomitant ROS-mediated mitogen-

activated protein kinases (MAPKs) activation in tumor cells (79).

Interestingly, Nrf2 expression is significantly downregulated in

peritoneal tissue-resident macrophages isolated from Immune-

responsive gene 1 (Irg1) shRNA-injected tumor-bearing mouse

(79). Irg1 is a mitochondrial enzyme that produces itaconates.
Frontiers in Oncology 07
Cys151 residue is required to inhibit Keap1-mediated Nrf2

degradation, thus itaconate upregulates Nrf2 levels via Keap1

alkylation (Figure 3). Moreover, 4-hydroxy-2-nonenal (HNE), a

major a,b-unsaturated aldehyde product of n-6 fatty acid

oxidation, is involved in metabolic and neurodegenerative

diseases, inflammatory diseases, and cancer (80). 4-HNE can

form adducts with Fas, a death receptor protein with a cysteine-

rich extracellular domain (81). Also, 4-HNE induces Daxx protein
FIGURE 3

Mechanism of itaconate-mediated cysteine modification. Immune-responsive gene 1 (Irg1) is a mitochondrial enzyme-producing itaconate.
Itaconate, covalently modifies at the Cys 151 residue of Keap1, following Nrf2 nuclear localization and activation. In addition, itaconate promotes
tumor growth via oxidative phosphorylation-driven ROS generation in peritoneal tissue-resident macrophages.
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level and promotes the export of Daxx from the nucleus to the

cytosol in Jurkat T lymphocyte cells. Daxx is then bound to Fas,

which leads to suppression of apoptosis (81). Moreover,

cytoplasmic translocation of Daxx induces up-regulation of heat

shock factor 1 associated stress-responsive genes, which may

contribute to resistance to apoptosis.
Role of cysteine residues for
inhibitors targeting protein kinases
and phosphatases

PTMs can control the biological function of numerous

phosphatases, kinases, and transcription factors, which can

alter the intracellular localization of target proteins or their

interaction with binding partner proteins. Several studies have

been conducted on cysteine modification by various endogenous

and exogenous molecules/chemicals in various transcription

factors (82). Recently, the ability of oxidative stress and small

molecule inhibitor-induced cysteine modifications have received

considerable attention for regulating the function of both protein

phosphatases and kinases (83).

Protein phosphatases belong to two major families of

phosphatases: serine/threonine protein phosphatases and

protein tyrosine phosphatases (PTPs). PTPs regulate signal

transduction pathways involving tyrosine phosphorylation and

have been implicated in the development of cancer (84, 85). The

active site of most classical PTPs is formed by the P-loop, which

contains the conserved PTP signature motif (H/V)C(X)5R(S/T).

The cellular redox state is involved in regulating tyrosine

phosphatase activity through the reversible oxidation of

catalytic cysteine to sulfenic/sulfinic acid (86). The catalytic

cysteine is highly susceptible to oxidation and nitrosylation,

leading to reversible or irreversible modifications that abolish its

nucleophilic function and inactivate its enzyme activity (87, 88).

Oxidation of the Cys residue in the active site of PTPs by ROS

abrogates its nucleophilic properties, thereby inhibiting PTP

activity (87). PTP1B acts as a negative regulator of multiple

receptor tyrosine kinases, including the EGFR. NADPH oxidase

4 (NOX4)-mediated oxidation of PTP1B in the endoplasmic

reticulum enhances EGFR phosphorylation (89). Bile acids can

trigger mitochondrial ROS generation in hepatocytes that in

turn act to mediate the inactivation of PTPs, resulting in the

activation of EGFR (90). In addition, S-nitrosylation of the

Cys215 residue by NO donors shields PTP1B from subsequent

hydrogen peroxide-induced irreversible oxidation (88). PTPN22

(short for protein tyrosine phosphatase non-receptor type 22),

known as a risk factor in multiple autoimmune disorders,

reduces T-cell activity by removing phosphate groups from

phosphorylated proteins such as LCK, Fyn, and Zap70, which

are associated with T-cell receptor signaling pathway.

Interaction between the non-catalytic cysteine at position 129
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and the catalytic cysteine 227 shows the formation of a disulfide

bond, which maintains its catalytic activity (91, 92). However,

when Cys 129 residue of PTPN22 is mutated, the disulfide bond

cannot form and the enzyme is exposed by oxidation, resulting

in inactivation (93).

Recently, the discovery of reversible/irreversible covalent

inhibitors targeting cysteine residues in and around the ATP-

binding pocket of kinases has been gaining considerable

attention (94). Hypothemycin, one of the resorcylic acid

lactones, is a representative inhibitor targeting cysteine residues

located in the ATP site of Ser/Thr/Tyr protein kinases. The a,b-
unsaturated enone moiety of resorcylic acid lactones is

susceptible to Michael addition reaction with a conserved

cysteine residue (Cys166 in human ERK2) (95). In addition,

hypothemycin inhibits the phosphorylation of the mitogen-

activated protein kinase kinase (MEK)3/6 substrate p38, the

MEK4/7 substrate c-Jun N-terminal kinase (JNK), and the

TGF-b-activated kinase 1 (TAK1) substrate IkB kinase b. MEK

and TAK1 contain the conserved cysteine residue corresponding

to ERK2 (95). Afatinib, the first covalent inhibitor of EGFR

approved by the FDA, binds to Cys797 residue on the kinase

domain of EGFR in the “DFG-in” conformation (94). Tan et al.,

reported that FIIN-2, an irreversible covalent FGFR inhibitor,

formed the covalent binding mode at the Cys477 residue of

FGFR4 in the “DGF-out” conformation (96). Furthermore, a

newly synthesized compound targeting Cys174 at the DFG-1

position in TAK1 is considered a type II inhibitor (97). There is a

growing interest in the discovery of kinase inhibitors that can be

reversibly or irreversibly modulated by targeting cysteine. Many

researchers have focused on understanding the mode of action of

inhibitors that can act differently depending on the DGF-in or

DFG-out conformation.
Conclusion and future perspectives

As shown in the Figure 4, cysteine has different fates

including the synthesis of cysteine-derived molecule, sulfur/

carbon metabolic reprogramming, and venue for post-

translational protein modification of various proteins or

discovery of drug inhibitors. Intracellular and extracellular

alteration of amino acid metabolism in the tumor

microenvironment can influence cancer growth, progression,

and metastasis. Cysteine, as a multifaceted precursor, plays a

central role in cellular metabolism and contributes to the

survival and proliferation of cancer cells. Changes in the redox

state of cells by cystine/cysteine circuitry control the ROS levels,

which modulates cellular signal transduction pathways involved

in cell survival and resistance to chemotherapy. Several proteins,

involving covalent or non-covalent cysteine modifications have

been also identified. Naturally or synthetic chemotherapeutic

agents exert their effects through oxidation or modification of

cysteine thiol groups present in the cellular signal molecules
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FIGURE 4

Cysteine metabolic fate. There are diverse regulatory mechanisms of cysteine bound to or free from proteins. Enzymes and metabolites of
cysteine transport and metabolism enables cancer cells to contributing cancer progression and acquiring chemoresistance. In addition, cysteine
residue of proteins undergoes various post-translational modifications, to maintain its redox homeostasis. Oxidative stress and small molecule
inhibitors-induced cysteine modifications regulate the function of both protein phosphatases and kinases.
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mediated by phosphatases and kinases. Covalent or non-

covalent inhibitors are again attracting attention, and they

target site-specifically a cysteine residue near the active pocket

of druggable proteins. Further studies are needed to validate the

reversible/irreversible modes of action of covalent inhibitors.
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