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Tumors can survive environmental and metabolic stress by triggering

homeostatic responses that re-establish the pre-stress status and permit

them to grow and thrive. The endoplasmic reticulum (ER) is the organelle

where proteins undergo post-translational modifications and are folded and

exported to the secretory pathway. Its environment and activity are therefore

fundamental for proteostasis, i.e., the plethora of mechanisms controlling

protein formation, folding, degradation, and secretion, needed to assure

protein balance and cellular health. In different tumor-related conditions,

such as after the activation of oncogenes or under hypoxia and nutrient

deprivation, the ER experiences stress, triggered by a high load of proteins to

be folded compared to the limited folding capacity of the organelle. As a

consequence, three ER membrane sensors and the related unfolded protein

response (UPR) are activated. The UPR comprises a complex interconnection

between signal transduction pathways that promote a homeostatic response

that acts by increasing the amount of protein chaperones and of proteins

involved in ER-associated protein degradation (ERAD) on one hand and

attenuating protein translation on the other. ER-phagy, literally “eating” the

ER, is part of another homeostatic response consisting of the clearance of non-

functional ER portions including misfolded proteins. This response is also

activated by a set of dedicated ER-phagy receptors after ER stimuli, which

overlap the stimuli generating ER stress. Thus, the UPR and ER-phagy are two

closely related homeostatic mechanisms that cooperate in re-establishing ER

homeostasis. However, while the role of the UPR in favoring cancer growth and

thriving by promoting angiogenesis, metastasis, chemotherapy resistance, and

epithelial-to-mesenchymal transition is consolidated, that of ER-phagy is still in

its infancy. This essay provides an overview of emerging concepts on ER stress,

the UPR, and ER-phagy and their crosstalk in tumorigenesis. We also critically

review new findings on their pharmacological targeting in cancer.
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Introduction

The stress of the endoplasmic reticulum (ER stress), as the

term suggests, is a condition of the stress of this organelle, which

is central in protein folding and secretion. Thus, the

endoplasmic reticulum (ER) suffers this condition when its

folding ability is impaired in the face of a high load of

proteins. A number of intrinsic and extrinsic factors are the

sources of ER stress in tumors. As intrinsic factors, there are

oncogenes (K-Ras and c-MYC) or the loss of tumor suppressors

(e.g., p53), which initiate neoplastic transformation by driving

rapid and uncontrolled cell proliferation and are thus associated

with an increased protein translation, causing ER stress (1, 2). As

extrinsic factors, tumors, especially solid ones, deal with a

characteristic microenvironment characterized by hypoxia, the

shortage of nutrients, and high concentrations of some

metabolites (e.g., lactate and fatty acids) (3). Hypoxia, for

example, which is the trigger of angiogenesis, is also a trigger

of ER stress as it impairs the post-translational disulfide bond

formation of proteins in the ER (4). Thus, hypoxia in tumors

might be considered a constant source of ER stress.

In cancer cells, the initial nutrient deprivation of glucose and

glutamine limits intermediary metabolism and the hexosamine

biosynthetic pathway (HBP), which generates substrates for N-

linked protein glycosylation that are important for protein

folding, triggering ER stress in cancer (5). ER stress activates

the homeostatic UPR through the stimulation of the three ER

stress sensors IRE1, PERK, and ATF6, which articulate a

sophisticated multifaceted response by upregulating enzymes

dedicated to the protein folding machinery and degradation on

one side and attenuating protein translation on the other, finally

re-establishing ER homeostasis (6). Thus, the UPR exerts a

cytoprotective effect on tumor cells and promotes tumor

progression and spread by inducing different mechanisms

involved in the thriving of cancer cells, such as angiogenesis,

epithelial–mesenchymal transition (EMT), and resistance to

chemotherapy (7, 8).

In tumors, the same ER stimuli–inducing ER stress also

triggers ER-phagy. Despite the initial idea of ER-phagy, like the

uncontrolled eater of the ER, the discovery of specific ER-phagy

receptors, whose number is in rapid expansion (FAM134A,

FAM134B, FAM134B-2, FAM134C, SEC62, RTN3L, CCPG1,

ATL3, and TEX264), has redrawn the initial picture favoring the

hypothesis of a selective ER-induced mechanism (9). ER-phagy

is activated by the stimulation of various receptors and involves

breaking down “malfunctioning” ER portions by sequestering

them in autophagosomes and promoting the resulting

degradation of the cargo through fusion with lysosome (10).

Thus, ER-phagy may lead the cells to reshape the ER and thus

survive severe ER stress. Ample evidence suggests that the UPR

and ER-phagy are two closely interconnected homeostatic

processes that may complement each other and both aim at

re-establishing ER homeostasis and help cells thrive.
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The study of ER-phagy is more recent than the UPR and

gained momentum in the last 10 years with the discovery of its

dedicated receptors. However, its involvement in tumorigenesis

is still controversial and it is debated whether it is a pro-survival

or a pro-death response.
Endoplasmic reticulum stress and
unfolded protein response

The ER is a cellular organelle where important protein

modifications take place such as oxidative protein folding and

N-glycosylation, thereby regulating protein trafficking and

secretion; it is also the main site of intracellular calcium

storage and for the control of lipid homeostasis (11). Thus,

this organelle suffers stress when some processes in protein

folding or degradation become faulty or inefficient and the load

of unfolded protein accumulates beyond a tolerable threshold

(12). As a consequence, an expansion of the ER membrane takes

place, which is driven by lipid biosynthesis and alleviates this

stress by leading the accommodation of an increased amount of

ER client proteins and limiting their aggregation independently

from the chaperone levels (13). Characteristic tumor conditions

such as nutrient deprivation and hypoxia, which are common in

solid cancers and are also associated with their aggressiveness

(3), impair protein folding, triggering ER stress (Figure 1) (4).

The ER stress-induced UPR constitutes a plethora of corrective

measures initiated by three ER stress sensors: protein kinase R-

like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and

activating transcription factor 6 (ATF6) which promote the

inhibition of protein translation and antioxidant response by

the PERK branch together with increased chaperone activity,

lipid biosynthesis, and protein degradation by the concerted

IRE1 and ATF6 branches to restore ER homeostasis in the first

instance (6). However, persistent unresolved ER stress, together

with conditions favoring the maladaptive branch of the UPR,

result in cell death, revealing the double-edged sword of UPR as

a pro-death rather than pro-survival response (6).
The three unfolded protein
response sensors

IRE1 is the most conserved of the three sensors, already present

in the simple eukaryote yeast. It is a type I ER transmembrane

protein whose cytoplasmic part contains an auto-phosphorylating

kinase domain and an endoribonuclease (RNase) one. In the

conditions of ER stress, the luminal domains of two IRE1

protomers dimerize, leading to the autophosphorylation of the

protein and the activation of the RNase domain. The latter

promotes the unconventional splicing of a 26-bp intronic region

of the X box binding protein 1 mRNA (XBP1), which, after being
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translated and translocated in the nucleus, becomes a transcription

factor of the genes involved in protein folding and in ER-associated

protein degradation (ERAD) (14).

PERKandATF6appear inmetazoans rendering theUPRamore

complex and articulated signal transduction in superior eukaryotes.

PERK is a type I transmembrane protein of the ER that, after ER

stress, undergoes the dimerization and autophosphorylation of the

cytosolic domain, which then promotes the phosphorylation of the

eukaryotic initiation factor 2-alpha (eIF2-alpha), limiting protein

translation, and the phosphorylation of NRF2, activating an

antioxidant NRF2-dependent response (14–16).

On the other hand, the activation of PERK promotes the

selective translation of ATF4, a transcription factor that triggers

the expression of stress-responsive genes such as the

transcription factor C/EBP homologous protein (CHOP), with

the downstream ER protein disulfide oxidase, ERO1 alpha

(henceforth, ERO1), and the phosphatase of P-eIF2-alpha,

GADD34, which reactivates protein translation (17–19).

ATF6 is a type-II ER transmembrane protein whose ER stress–

mediated activation leads to its trafficking to the Golgi, where the

cytosolic part is cleaved from the transmembrane domain by SP1

and SP2 proteases. Its free cytosolic portion can then migrate to the

nucleus and act as a transcription factor of protein chaperones such

as BIP/GRP78 and GRP94 (20) (Figure 2).
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Interestingly, the UPR is not only activated by unfolded

proteins into the ER but also by an abnormal/excessive

saturation of membrane lipids (22, 23). This occurs because

the transmembrane domain of UPR sensors senses the

surrounding membrane composition, and not only unfolded

ER proteins. The IRE1/XBP1s branch of the UPR is a well-

characterized positive regulator of lipid biosynthesis: indeed,

XBP1s triggers ER expansion together with the regulation of

lipogenic genes such asDgat2, Scd1, and Acc2 and increased lipid

biosynthesis (24, 25). To conclude, the UPR or, to better say, the

ER stress response is activated by both unfolded proteins and

excessive saturated fatty acid which give rise to a lipotoxic stress.

As mentioned before, the UPR is mainly a homeostatic

response whose primary goal is to relieve cells from stress by

enacting corrective measures, to re-establish ER homeostasis.

However, chronic unresolved ER stress together with the

activation of maladaptive UPR factors in specific genetic and

environmental contexts may trigger cell death (6).
Unfolded protein response in cancer

The UPR is present in many type of cancers, such as breast,

pancreas, lung, skin, prostate, brain, and even liquid cancer (i.e.,
FIGURE 1

Endoplasmic reticulum (ER) stressors in cancer. Different factors/conditions related to cancer are considered ER stressors. The epidermal
growth factor receptor family, composed of four members HER1, HER2, HER3, and HER4, is highly expressed in some cancers (for example,
HER1/HER2 in gastric cancer and HER2 in breast cancer). The activation of HER2 and HER1 results in the activation of intracellular pathways
including RAS/RAF/MEK/ERK, PI3K/AKT/TOR, Src family kinases, and STAT transcription factors that modulate survival, proliferation, mobility, and
cancer cell invasiveness. Some tumors express RAS mutations that activate downstream signal transduction independently from upstream
receptor activation. The increased cell proliferation relies on increased protein translation that is a source of ER stress in these tumors. On the
same line, the lack of the activity of oncosuppressors such as p53 triggers uncontrolled cell proliferation and growth, which might induce ER
stress. Extrinsic factors, i.e., independent from the genetic makeup of the tumor, as a low concentration of oxygen, hypoxia, might induce ER
stress in tumors. Indeed, this is a common condition of solid tumors, which not only leads to the assembly of the two components HIF1alpha
and HIF1beta of HIF1, rendering it an active transcription factor of genes involved in angiogenesis and cell proliferation, but also impairs the
formation of post-translational disulfide bonds in proteins, triggering ER stress.
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leukemia and lymphoma) (26) and play a role in cancer-related

processes that favor cancer thrive and metastasis.

For example, as regards tumor angiogenesis, i.e., the formation

of new blood vessels, oxygen levels can fall to 0.01% in tumor cells

and under such low-oxygen tension, the two HIF-1 components

alpha and beta are assembled, promoting the transcription of

angiogenic factors and hence angiogenesis (27). Angiogenesis

feeds the tumor by delivering nutrients and oxygen and removing

the waste products of the aerobic metabolism (28).

Furthermore, newly formed vessels, i.e., de novo angiogenesis,

increase the cells’ ability to spread from the primary tumor

throughout the body, forming metastatic niches. Thus,

angiogenesis correlates with tumor aggressiveness by leading the

formation of tumors with high metastatic potential (29).

The inhibition of all three UPR sensors, PERK, IRE1 alpha

(henceforth, IRE1), and ATF6 limits cancer angiogenesis (30)

(31) (32). Downstream from PERK, ATF4 promotes a direct

transcription of the angiogenic master regulator vascular
Frontiers in Oncology 04
endothelial growth factor A (VEGFA) (31). ERO1 is a protein

disulfide oxidase that participates to the process of the disulfide

bond formation of the new nascent protein of the ER. ERO1 is

strongly induced in hypoxia (33), and is highly expressed in the

most aggressive basal breast cancer, and analysis from the

Metastatic Breast Cancer project indicates an inverse relation

between ERO1 levels in the primary aggressive triple-negative

breast cancer (TNBC) and the time at which distant metastases

are detected, arguing for a pivotal role of ERO1 in the aggressive

metastatic breast cancer phenotype (34).

Recent secretomic analyses indicate that the lack of ERO1 in

breast cancer cells has no major impact in normoxia but impairs

different angiogenic factors in hypoxia, suggesting a selective

effect on angiogenesis. At the molecular level, the lack of ERO1

not only impairs the intermolecular disulfide bonds of VEGFA

but also promotes a hyper-N-glycosylation of the isoform

VEGF121 that blunts its secretion (35). This explains why

ERO1-defic i en t TNBC xenogra f t s have decreased
FIGURE 2

Unfolded protein response (UPR) and ER-phagy in cancer. UPR is a homeostatic response to ER stress that is present in many cancer types. UPR
is activated by three different sensors on the ER membrane: IRE1, PERK, and ATF6. IRE1 dimerizes following ER stress, activating an RNAse
domain that promotes the unconventional splicing of XBP1 mRNA (XBP1s). The translated XBP1s acts as a transcription factor of genes involved
in ER-associated degradation (ERAD) and chaperones. ER stress–activated PERK phosphorylates eIF2 alpha, promoting the attenuation of
protein translation while also promoting the phosphorylation of NRF2, thereby the transcription of genes with an antioxidant function. The PERK
signal also favors the selective translation of ATF4, which regulates the redox control, the genes involved in autophagy, and the CHOP-ERO1
axis. Regarding the axis CHOP-ERO1, we have seen that in breast cancer cells under hypoxic conditions, ERO1 is not downstream to CHOP.
However, the lack of ERO1 converges and activates the PERK signal (21). ATF6 translocates in the Golgi where it is cleaved by SP1 and SP2
proteases and acts as a transcription factor of ER chaperones. ER stress also activates ER-phagy, a mechanism that leads to the clearance of ER
portions containing misfolded proteins. FAM134B is an ER-phagy receptor that, through a physical interaction with a protein adaptor, such as
calnexin, might sense unfolded proteins and starts the autophagy of the ER. SEC62 is another ER-phagy receptor that leads to the ER-phagy of
ER portions containing ERAD-insensitive unfolded proteins.
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vasculogenesis, together with a reduced ability to generate lung

metastases, suggesting that ERO1 inhibition might be a good

tool to selectively impair angiogenesis in solid tumors and limit

metastasis (34). The detrimental effect of ERO1 loss on tumor

angiogenesis following impairment in the secretion of

angiogenic factors also potentiates the cytotoxic effect of

VEGF-target antiangiogenic therapy in breast tumor

xenografts, which is not particularly effective as single

therapy (34).

Gene expression analysis in breast cancer patients supports a

more positive outcome in terms of overall survival when the

ratio between the levels of PERK and ERO1 is high, indicating

some kind of cooperation between these two in breast tumor

growth and spread (21).

While ERO1 activity as protein disulfide oxidase is well

compensated by other ER oxidases in normoxic conditions, its

lack predisposes to proteotoxicity in hypoxic conditions as

manifested by the accumulation of detergent-insoluble protein

aggregates. As a consequence, ERO1 loss activates the PERK

branch in hypoxic conditions in TNBC, thus repressing protein

translation, quite likely as an adaptive pro-survival mechanism

of cells that lack an enzyme involved in protein folding, and are

thus susceptible to impaired proteostasis (Figure 2).

The forced restart of protein translation by the inhibitor of

the integrated stress response (ISRIB), which limits the activity

of P-eiF2 alpha, triggers proteotoxicity and death in ERO1-

devoid TNBC xenografts. This suggests that of some tumors

ERO1 loss or inhibition might enhance the cytotoxic response to

some drugs that promote the restart of protein translation when

proteostasis is impaired (21).

Like in tumor angiogenesis, the UPR is also involved in

EMT, which is the switching of cells from an epithelial

phenotype with adhesion properties to a mesenchymal one.

EMT leads to the loss of contacts between cells and

upregulates extracellular matrix proteins, facilitating the

migration and invasion of cancer cells. The branch PERK-eiF2

alpha was upregulated in tumor cells expressing EMT markers

and is required for malignancy (36). Furthermore, the small

molecule 4m8c, which blocks the IRE1-alpha signal, hinders

EMT, suggesting that both PERK and IRE1-alpha might be

involved in cancer EMT (37).

Targeting ATF6 in dormant tumor cells prolonged the survival

of dormant tumor cell–bearing nude mice, suggesting that the

ATF6 signal was involved in acquiring a dormant phenotype of

tumor cells, which causes cancer recrudescence (38).

Other tumor-related conditions in which the UPR is

involved are related to chemotherapy resistance and

consequent tumor relapse. The taxane drug paclitaxel is one of

the first-line chemotherapies in breast tumors. Its cytotoxic effect

is due to the ability to be an inhibitor of the spindle formation

and is dependent on the cells’ capacity to divide. A paclitaxel-

induced UPR is well documented in breast tumors and in TNBC

(7, 39, 40) and the consequent UPR induction is considered
Frontiers in Oncology 05
among the reasons for the chemotherapy resistance and tumor

relapse. Paclitaxel enhances IRE1 RNase activity and contributes

to the tumor relapse in a xenograft mouse model of TNBC (40).

The ERO1-devoid xenograft mouse model of TNBC grows

slowly, and so, the cells also divide slowly. This might explain

the lower response of ERO1-devoid TNBC to paclitaxel.

However paclitaxel-treated ERO1-devoid TNBC blunts the

UPR suggesting that the lack of ERO1 might contribute to the

inhibition of tumor relapse and chemotherapy resistance in

these tumors by attenuating the UPR (21).

The knockdown of PERK promotes the survival of luminal

breast cancer cells treated with the combination of lapatinib (a

tyrosine kinase inhibitor) and obatoclax (a pro-survival BCL-2

family inhibitor) by reducing autophagy (41). In contrast, ATF4,

downstream to PERK, was important in mediating a pan-

peptidylarginase deiminase to kill TNBC cells through the

activation of mTOR signaling and the enhancement of

autophagy (42). This suggests a double role of PERK and its

signaling in both promoting and inhibiting autophagy, with

consequent reduced and increased tumor survival, respectively.
Targeting endoplasmic reticulum
stress and unfolded protein
response in cancer

Some drugs might push ER stress in cancer cells beyond

their tolerance threshold and trigger apoptosis, exploiting the

chronic ER stress as a tumor weakness. For example, this is the

case of celecoxib, a COX-2 specific non-steroidal anti-

inflammatory drug approved by the US Food and Drug

Administration (FDA) for treating pain and inflammation,

which leads cancer cells to death by potentiating its intrinsic

ER stress (43).

On the basis of the same rationale, bortezomib (BTZ), a

dipeptidyl boronic acid, is used to fight some tumors with highly

secretory features such as hematologic malignancies. BTZ was

approved by the FDA in 2003, for the treatment of relapsed/

refractory multiple myeloma (MM), in 2006, for the treatment of

refractory/relapsed mantle cell lymphoma, and, in 2014, for

previously untreated mantle cell lymphoma (44).

BTZ is a reversible inhibitor of the 26S proteasome, which is

part of the ubiquitin proteasome pathway and a central player in

ERAD, so it inhibits misfolded protein degradation, resulting in

a consequent increased accumulation of misfolded protein and

thus proteotoxicity in highly secretory cells. Its cytotoxic effect in

MM is directly related to the conspicuous amount of

immunoglobulin retained inside MM cells and thus to their

highly secretory phenotype, which predisposes them to the

proteotoxicity. Indeed, there is a good correlation between the

secretory cell phenotype of some hematological malignancies

and the BTZ cytotoxic effect: the suppression of XBP1s facilitates
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resistance to the cytotoxic effect of proteosome inhibitors in the

progenitors of plasmablasts by inhibiting plasma cell maturation

and hence immunoglobulin production (45).

Sunitinib is an orally delivered tyrosine kinase inhibitor that

is FDA-approved for the treatment of metastatic renal cell

carcinoma. By virtue of its activity as a kinase inhibitor, it also

inhibits IRE1 kinase activity (46).

An array of drugs that selectively inhibit the signal

transductions of the three sensors of the ER stress response

(UPR) are also now available.

A first-in-class PERK inhibitor, GSK2656157, was selective

for the PERK inhibition of multiple human tumor xenograft

growth in mice by impairing angiogenesis. However, this

inhibitor is associated with a serious side effect due to the

inhibition of PERK activity in the pancreas, the so-called effect

on the target off-tumor, which leads to impaired pancreatic

function (47). Studies on GSK2656157 observed that the

molecule repressed TNF-mediated RIPK1 kinase-dependent

death in a PERK-independent manner, suggesting a potential

off-target effect of this inhibitor that had instead previously been

considered a highly selective PERK inhibitor (48).

MKC8866 is a small-molecule IRE1 RNase inhibitor, which

was first described by Patterson and colleagues in 2011 (49). In a

xenograft mouse model of TNBC, MKC8866 increases

paclitaxel-mediated tumor suppression and reduces tumor

relapse after therapy with taxane, suggesting that it can render

chemotherapy with taxane more effectively, limiting tumor

relapse (40).

Currently, given the off-target effects, the only UPR

modulator that entered clinical testing is MKC-8866

(ORIN1001), which is tested in breast cancer patients with

advanced tumors in combination with taxanes (https://

clinicaltrials.gov/ct2/show/NCT03950570).

Among the small-molecule-type UPR modulators that have

a good safety profile and are still not EMA/FDA approved, ISRIB

is worth being mentioned. ISRIB enhances the guanine

nucleotide exchange factor (GEF) activity of eIF2B, generating

GTP, which is one of the three components of the ternary

complex required to initiate protein translation. Thus, eIF2B

becomes resistant to the inhibitory effect of p-eIF2alpha and

reactivates the repression of the protein translation, downstream

to the PERK signal transduction. At the moment, ISRIB has not

shown any off-target effects and its good safety profile in

preclinical cancer models suggests the possibility of using it in

humans (50–55).

ISRIB was effective on chemotherapy-resistant KRAS

mutant lung cancer with high PERK/p-eIF2alpha (56), on

hypoxic breast tumors (56) and on TNBC devoid of ERO1

(21). We detected an important cytotoxic effect in ERO1-devoid

TNBC xenograft-bearing mice treated with the combination of

paclitaxel and ISRIB, suggesting that the proteotoxic effect due to

the loss of the ER oxidase ERO1 predisposes cells to the cytotoxic
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effect of the ISRIB-dependent restart of protein synthesis in

breast cancer (Figure 3).

To conclude, the dual effect of ER stress in generating cell

death, if it is excessive, or UPR-mediated cell survival, if

moderate, may undermine the rationale of ER stress/UPR-

targeting drugs in cancer and calls for careful analysis before

starting targeting these two mechanisms for the pharmacological

treatment of cancer.
ER-phagy

In 2006, a seminal paper from Peter Walter’s laboratory

revealed, through electron microscopy analysis, the presence of

ER membranes in autophagosome-like structures. They noticed

that after treatment with the reducing agent DTT, which, by

inhibiting disulfide bond formation, induces ER stress and the

UPR, yeast developed autophagosomes containing the

membrane stacks derived from the UPR-expanded ER (57)

(58). This suggested that ER sequestration controls ER size

and thus might represent a way to reach a new steady state in

an ER that is engulfed together with unfolded proteins.

Subsequent studies suggested that autophagy of the ER, later

called ER-phagy, is also active in cells in basal conditions but

increases under ER stress stimuli (10), also suggesting a role of

ER-phagy in basal conditions.

ER-phagy operates on both the reshaping of ER expansion

following ER stress and the lysosomal degradation of protein

aggregates in the ER lumen. ER-phagy can be mediated by

autophagosome (macro-ER-phagy) or independently from

autophagosomes (micro-ER-phagy) through the direct

engulfment of ER fragments by the endolysosomal system

(59). For a long time, autophagy was thought of as a non-

selective pathway that randomly degrades parts of organelles.

However, the selectivity and the fine-tuned regulation of macro-

ER-phagy (henceforth ER-phagy) was recently appreciated

following the identification of specific receptors. These

activated receptors recruit LC3s/GABARAPs, a complex at the

membrane of the phagophore (a precursor cysterna of the

autophagosomes), through an LC3-interacting region, which

proceeds with the sequestration of ER fragments into the

double-membrane vesicles of autophagosomes, thus delivering

the ER for vacuolar/lysosomal clearance (9, 60).

The last 10 years have witnessed the discovery of different

ER-phagy receptors, and now, the family of mammalian ER-

phagy receptors is large and includes proteins with two

reticulon-like homology domains (RHDs), such as FAM134A,

FAM134B, FAM134B-2, FAM134C, and RTN3L (61, 62), and a

series of others such as SEC62 (63), CCPG1 (64), ATL3 (65), and

TEX264 (66, 67). Many ER phagy receptors, such as those of the

FAM134 family, contain their LC3-interacting region at the end

of a long intrinsically disordered region (LIR). This long region
frontiersin.org
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makes the receptor protrude through the ribosome of the rough

ER and binds the membrane of the phagophore to promote

rough ER clearance (9). Thus, RHD mediates the fragmentation

of the ER and the LIR motif sequesters the fragmented ER

into autophagosomes.

ER misfolded proteins are degraded by the ER-associated

degradation (ERAD) pathways, a complex that leads the

recognition of the misfolded polypeptides, their dislocation

across the ER membrane, and the retrotranslocation in the

cytosol to degrade them by the cytosolic ubiquitin proteasome

system. This occurs through retrotranslocation complexes

including E3 ubiquitin ligases together with adaptor proteins,

which are engaged in a client-specific manner depending on the

position of the folding defect, the disulfide bonds, and the N-

glycans of the misfolded proteins. ERAD-incompetent proteins

segregate in specialized ER subdomains and are eventually

cleared by ER-phagy. Thus, in mammals, ER-phagy is a

homeostatic mechanism to eliminate misfolded proteins

resistant to ERAD (68, 69).

SEC62 selectively delivers an excess of ER generated after ER

stress and containing molecular chaperones but not proteins

belonging to ERAD, for endolysosomal degradation, thus forming

the catabolic pathway of recov-ER-phagy (Figure 2) (70).
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Differently from ER stress sensors (IRE1, PERK, and ATF6)

that contain a luminal domain through which they sense the

stress of the organelle, some ER-phagy receptors (FAM134B and

RTN3) lack the luminal domain and thus engage adaptors that

have domains facing the ER lumen to sense the condition of the

ER. For example, FAM134B associates with the lectin chaperone

calnexin, which binds ERAD-resistant glycoproteins and

segregates them in ER subdomains that may be cleared from

cells together with their toxic content by ER-phagy (Figure 2)

(9, 71, 72). Some pathogens such as Dengue and Zika viruses,

have evolved mechanisms to escape ER-phagy by encoding a

protease, NS2B3, that cleaves FAM134B, inhibiting its activity

and enhancing viral replication, suggesting the mechanisms of

ER-phagy inactivation (73).
Crosstalk between ER-phagy and
unfolded protein response

The crosstalk between ER stress/the UPR and ER-phagy is

well documented: cell-cycle progression gene 1 (CCPG1) is an

ER-resident and a non-canonical cargo receptor that directly

binds to core autophagy and thus facilitates ER-phagy. The
FIGURE 3

Drugs targeting UPR and ER-phagy. Many selective modulators or inhibitors of UPR sensors and downstream mediators are available. However,
a large number of these modulators/inhibitors fail to enter clinical practice because of off-target effects. At the moment, only MKC8866, an
inhibitor of the RNAse activity of IRE1, is under clinical trial. It is worth mentioning that ISRIB, an inhibitor of the activity of P-eIF2 alpha in
repressing protein translation, thus reactivates protein translation. ISRIB has a good safety profile in the preclinical models of cancer; at the
moment no off-target effects are reported, and it was proven to be a valid drug in counteracting prostate cancer, KRAS-positive lung xenografts,
hypoxic breast xenografts, and ERO1-devoid TNBC xenografts. We still lack the selective inhibitors/modulators of ER-phagy. Recently, vitexin, a
plant-derived flavone O-glycoside, was shown to disrupt the complex FAM134B-BIP and inhibit breast cancer (MCF7-derived) xenografts.
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CCPG1 gene is induced by ER stress and thus directly links ER

stress to ER-phagy. Functionally, CCPG1 protects the exocrine

pancreas from the consequences of unfolded proteins and

proteotoxicity (64).

Pathogen infections induce the UPR together with ER-phagy

to promote multiple homeostatic responses for cell survival after

infection (74). ER-localized UFMylation, an ubiquitin-like post-

translational modification, is required for ER-phagy to repress

an IRE1a-mediated unfolded protein response (75). SEC62-

mediated recov-ER-phagy is activated upon ER stress to

degrade excessive ER and resume ER function (70). All this

evidence suggests that ER stress and the consequent UPR is well

interconnected with ER-phagy, also through several regulatory

steps that, in many cases, favor one of the two while repressing

the other.
ER-phagy and cancer

Here, we will analyze a few examples of the involvement of

some ER-phagy receptors in cancer pathogenesis.

FAM134B was overexpressed in esophageal squamous

carcinoma (ESCC), and its mutations were detected in cases of

ESCC with lymph node metastases (76, 77), suggesting a

correlation between the levels of expression/mutations in

FAM134B and the aggressiveness of this cancer. The

overexpression of FAM134B, quite likely induced by hypoxia,

was found in chronic myeloid leukemia (CML) cells and

correlated with a poor prognosis (78).

Differently, the small molecule Z36 upregulates FAM134B

and causes cell death by generating excessive ER-phagy (79).

Recent findings indicate that during hypoxia, FAM134B forms a

complex with the ER stress-induced chaperone BIP to target the

damaged portions of ER to autophagosomes. Interestingly, the

small molecule vitexin, a plant-derived flavone O-glycoside,

inhibits ER-phagy by disrupting the FAM134B-BIP complex,

together with the ability of BIP to chaperone proteins (Figure 3).

This double effect of the inhibition of BIP’s folding capacity and

of ER-phagy repression suppresses breast cancer growth (80).

Thus, it has been suggested that targeting the FAM134-BIP

complex may offer a valid strategy to treat cancer.

In contrast, FAM134B loss may promote colorectal cancer

tumorigenicity (81) pointing to a tumor suppressor role for

FAM134B-mediated ER-phagy, suggesting that targeting this

pathway in colorectal cancer is not a good strategy.

High levels of SEC62 are associated with non-small cell lung

cancer and thyroid cancer, and silencing SEC62 makes cells

more sensitive to ER stress-induced death (82). Likewise, SEC62

amplifications correlate with the highest incidence of high-grade

squamous intraepithelial lesions and squamous cell cervical

carcinomas, while its silencing inhibits the migration of HeLa
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cells (83). This suggests that the SEC62-mediated recov-ER-

phagy is a homeostatic response to ER stress that might promote

cancer survival and migration.

The role of ER-phagy in cancer is still seen as quite complex,

and we have no univocal answer whether ER-phagy aids the

proliferation and survival of cancer cells or their death. What

emerges is the need to pay attention to the delicate balance

between ER-phagy, which can help cancer cells to survive, and

excessive ER-phagy that instead promotes their death. This

mirrors a somewhat-similar scenario of the consequences of

ER stress in cancer: moderate ER stress triggers the homeostatic

UPR and favors cancer thrive, while unresolved excessive ER

stress triggers a maladaptive UPR and cell death (6).

To conclude, ER-phagy receptors may aid or counteract the

pathogenesis of different cancers, so their involvement in this

process is highly contextual. The thought-provoking question is

how to deal with the quantification of ER-phagy in cancers to see

whether in certain cancer contexts, it is excessive, and so,

pushing it might be detrimental. In this direction, it is

envisioned as the strategical analysis for measuring the

amount of ER-phagic flux, using tandem fluorescent protein-

tagged ER reporters directly in cancer cells (84).

Another important point to help in solving this conundrum

between adaptive and maladaptive ER-phagy in cancer is to look

at it in relation to the proteostasis. Clearly, some cancer cells, i.e.,

the highly secretory ones, may not easily deal with defects in

proteostasis, so the loss of function of ER-phagy receptors might

be not tolerated and the cancer cells succumb. However, more

studies are needed to see whether and in what cancer context

targeting ER-phagy might be an effective anticancer

pharmacological strategy.
Conclusion

We have described the main modulators of the UPR and ER-

phagy, as these might be new targets for impeding cancer growth

and spread. The role of the UPR in cancer-relevant processes like

angiogenesis, EMT, metastasis, and chemotherapy resistance has

been clearly established, as well as the UPR endows cancer cells

with greater malignant potential, but the role of ER-phagy in

cancer is still controversial. However, initial evidence suggests

that the two processes of the UPR and ER-phagy are triggered by

common ER stressors and linked, to favor ER homeostasis,

while, sometimes, targeting them might trigger cancer death

by raising the ER stress levels. The fine-tuned balance in cancer

between ER-phagy and excessive ER-phagy might offer the key

interpretation to the final output of life versus death in cancer

cells, so quantitative measurements of the process are required

for rational targeting. Furthermore, given the connection

between the PERK and the autophagy pathway in tumors and
frontiersin.org

https://doi.org/10.3389/fonc.2022.997235
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Cherubini and Zito 10.3389/fonc.2022.997235
to study the layers of interconnection and complementarity

between the two pathways, we aim to test whether drugs

inhibiting the PERK pathway, for example, ISRIB, which has a

good safety profile and is effective in restraining the growth of

some tumors, can also act on ER-phagy.
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