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Ample evidence indicates that the development and progression of renal cell

carcinoma (RCC) are complex pathological processes involving interactions

between tumor cells, immune cells and stromal components. Tumor infiltrated

immune cells determine whether tumor advancement is promoted or

inhibited. Among them, infiltrated B lymphocytes are present in all stages of

RCC, playing amajor role in determining tumor formation and advancement, as

an essential part in the tumor microenvironment (TME). Although the advent of

targeted and immune therapies has remarkably improved the survival of

patients with advanced RCC, few cases can achieve complete response due

to drug resistance. In this review article, we intend to summary the recent

studies that outline the interaction networks of B cells with other cells, discuss

the role of B cells in RCC development and progression, and assess their impact

on RCC immunotherapy.
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Introduction

Renal cell carcinoma (RCC) is one of the most prevalent malignant tumors in the

human urinary system, accounting for 2-3% of all tumors worldwide (1). Although

considerable progress has been made in targeted therapies in improving the 5-year

survival rate, the overall clinical outcomes remain unsatisfied due to postoperative

recurrence, metastasis or chemotherapy resistance (2, 3). Recently, analysis of the

tumor microenvironment (TME) has emerged as a potential approach of RCC
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treatment (4). Researchers have concentrated on tertiary

lymphoid structures (TLS) and lymphoid aggregates in non-

lymphoid tissues, where B cells as the principal components in

surrounding T cell zones interact with other cells. TLS appear in

various stages of maturity in different tumor types, culminating

in germinal center (GC) formation (5). Tumor infiltrated B cells

are mostly associated with TLS compared with other immune

cells. Although B cells can also be recruited to the tumor bed

directly rather via TLS, the density of B cells is relatively low

under these circumstances. B cells and tumor-associated TLS can

be found in the TME of most cancer types and are correlated

with tumor immunotherapies (5).

The TME provides a complex tumor ecosystem composed of

cancer cells and multiple non-cancerous cells, playing decisive

roles in tumor initiation, progression and dissemination (6, 7).

Cancer cells interact with stromal cells and immune cells,

working together rather separately to form the principal

structure of the TME. As one of the characteristics of cancer,

prolonged inflammation initiates tumorigenesis or supports

tumor progression, during which the entire immune landscape

is altered drastically (8). To progress in the body, tumors have

derived many mechanisms to escape immune surveillance by

producing neoantigens to interfere with the immune system.

Therapies targeting the TME have been studied and

implemented from bench to bedside. It is described that the

therapy of PD-1 and PD-L1 blockade has made therapeutic

improvements about metastatic tumors in some reviews, but the

objective response rates still remain unsatisfactory. Thus, it is

worthwhile to investigate the multiple associations in TME to

further explore B lymphocyte-targeted therapies of RCC.

In this review, we address questions regarding the

interaction networks of B cells and other cell types by focusing

on the association of infiltrated B cells with tumorigenesis,

progression and response to immunotherapy of RCC. These

cells are collaboratively engaged in aspects of the tumor process

and immune TME. We will elucidate each part of B cell

interaction that affects immune response in RCC from four

specific sections, and review the advances of B cells and TLS with

tumor immunotherapies (Figure 1).
The interaction of B cells with
T cells

B lymphocytes first differentiate from hematopoietic stem

cells in the bone marrow, experiencing continuous development

into immature B cells, and migration to second lymphoid tissues,

where they mature (9). The process in the bone marrow involves

immunoglobulin light chain gene rearrangement, and VDJ gene

segment recombination. Upon stimulation by the antigen, B cells

experience antibody class switching and somatic hypermutation

in the GC, which has proved to be the mechanism for affinity
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maturation of antibodies (10, 11). The initiation of GC reaction

involves several distinct cell types via a coordinated cascade,

guiding antigen-engaged B cells into GC reaction. These

processes along with GC formation are well assisted by other

immune cells, especially T cells. Additionally, B cells are one of

the critical components of the humoral immune system,

regulated by numerous control mechanisms at both cellular

and molecular levels. The induction of antibody response also

requires the collaboration of T and B cells.

The function that T cells provide assistance for B cells has

been recognized for decades, resulting in the demonstration of

thymus-derived helper cells (12–14). This two-lymphocyte

lineage model indicates issues of synergistic function and their

cooperation. As the close partner, their history has been

reviewed in detail (15). For various types of cancers, the

associated T and B networks have already generated interests

in immune therapy in many recent studies, and research

highlighted the emerging roles of B cells in tumor immunity

and the focus on T cell response. These findings could guide a

protocol and provide potential therapeutic strategies for

RCC patients.
B cells with Tfh cells

T follicular helper (Tfh) cells are the crucial partner of

infiltrated B cells, whose crosstalk within TLS in the TME has

been verified to affect tumor immunotherapy (16). There exists a

bidirectional interaction in the Tfh-B combination. B cells are

essential for Tfh cell formation by mediating PI3K-dependent

migration of CD4+T cells into follicles (17). In a murine model

of lung adenocarcinoma, B cells were found to promote tumor-

specific CD4+Tfh cell differentiation, which then produced IL-

21 to enhance CD8+T cell responses to drive anti-tumor

immunity (18). In turn, mature Tfh cells provide binding

CD40 ligand (CD40L or CD154) and IL-21 for GC B cell

differentiation into memory B cells and plasma cells (19–21).

IL-21 also plays a pivotal role in Tfh cell formation, B cell growth

and class switch recombination (CSR), and maintains the

expression of Bcl-6 in GC B repertoires (20, 22, 23). These

processes are modulated by other Tfh cell cytokines, including

IL-4 and IL-10, which favor IgG and IgA production,

respectively (17). In addition to offering help for T-dependent

B cells, some specialized CXCL13-producing Tfh cells could

guide CXCR5+ lymphocyte migration, promote local memory B

cell differentiation, and behave as a potential surrogate marker

for GC reaction and TLS formation (24–26). Studies suggested

that anti-PD-1 therapy in cancer could strengthen B cell capacity

by increasing circulating Tfh cells (27). An investigation of the

clinical data of clear cell RCC (ccRCC) showed that immune-

related prognostic gene signatures were differentially expressed

in distinct lymphocyte clusters (28). In a study of metastatic
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FIGURE 1

Interaction networks between B cells and other cells in tertiary lymphoid structure (TLS) and tumor microenvironment (TME). B cells cooperate
with other cells to perform an immunomodulatory role on tumorigenesis and progression. B cells could be attracted to TLS by CXCL13, where
they mature and interact with different types of T cells through specific co-stimulatory and co-inhibitory signal pairs such as CD40-CD40L,
CD80-CD28. The class switch recombination and differentiation of B cells are promoted by cytokines including IL-4 and IL-10, and B cells
receive IL-21 to develop into plasma cells and memory B cells, migrating to tumor bed. They cooperate with NK cells and macrophages to
implement ADCC and ADCP process through antibodies including IgG1 in TME. Some inhibit regulatory effects of MDSCs and Tregs on B cells in
TME could promote tumor progression. NK, natural killer; MDSC, myeloid-derived suppressor cell; NO, nitric oxide; ROS, reactive oxygen
species; PGE2, prostaglandin E2.
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ccRCC patients under ICB therapy, unswitched memory B cells

correlated positively with Tfh cells, TLS and CD20+ B cells,

associated with higher response rate and better overall survival

(29). The related genes and the interaction mechanisms of B cells

and Tfh cells may prove to be a biomarker for assessing

prognosis of RCC and screening precise patients for

specific immunotherapies.
B cells with CD8+T cells

Effects of B cells on CD8+T cells
Some evidence proves that B cells can exert a direct or

indirect effect on CD8+T cells. B cells present tumor-specific

antigens that they have captured by B-cell receptors (BCRs) to

CD8+T cells (30), release cytokines, and participate in the

formation of co-stimulatory and co-inhibitory receptors (31).

Some cytokines such as IL-2 and IFN-g secreted by B cells can

bind to the receptors on CD8+T cells (31). The co-stimulatory

and co-inhibitory signal pairs include CD80-CD28, CD40-

CD40L, ICOS-L-ICOS; PD-L1-PD-1, HVEM-BTLA, SLAM-

SLAMF6 (32). In addition, B cells can indirectly support CD8

+T cells by interacting with Tfh cells through CD40-CD40L (32).

In vitro, B cells were found differentiating into plasmablast-like

cells and expressing T cell recruitment chemokines like CCL3,

CCL4 and CCL5. Plasmablast-like cells increased the activation

of PD-1+T cells via anti-PD-1 blockade, and their frequency

could predict response and survival to immune checkpoint

inhibitor (ICB) (33). In a metastatic RCC pre-surgical trial, B

cell signatures were found enriched in tumors of responders of

ICB treatment, which was also confirmed in another ICB-treated

cohort of melanoma patients (34). Accordingly, we speculate

that B cell subpopulations within the TLS could modulate T cell

antitumor response and serve as a possible ICB response

predictor of RCC.

Effects of CD8+T cells on B cells
Current reports suggest that T cells may appear first in the

tumor sites and then promote the recruitment of B cells. CD8+T

cells activated by TGF-b will upregulate CD103 and release

CXCL13, a potent B cell chemoattractant that binds to CXCR5

receptor of B cells, and then mediate B cell recruitment and TLS

formation (35). Researchers observed similar phenomenon that

infiltrated B cells were prone to colocalize with CD8+T cells (36),

and the significant correlations between them imply their

cooperation in a tumor-killing effect of several malignancies

(31). A study on ccRCC demonstrated that the abundance of

intratumoral CD8+T cells secreting CXCL13 was associated with

increased TLS and immunoevasive TME, functioning as a
Frontiers in Oncology 04
potential immunotherapeutic marker for ccRCC treatment

(37). Another study illustrated the prognostic value of CCL4,

CCL5, CCL8, CCL19 and CXCL13 expression in ccRCC.

Besides, DNA deletion of TLS gene signatures could greatly

indicate poor outcome in ccRCC patients compared with wild-

type gene signature (38). All these results provide insights into

how B cells cooperate with CD8+T cells and their roles in ICB

treatment, which may assist the development of RCC

therapeutic targets.
Roles of Tregs on B cells and plasma
cells

Direct regulations
Regulatory T cells (Tregs) dampen B cell proliferation and

plasma cell formation (39). Hyung et al. reported that Tregs

could directly interact with B cells to suppress immunoglobin

(Ig) response, production and CSR without the help of Tfh cells,

and downregulate relative gene expressions of naïve B cells via

contact-dependent mechanisms (40, 41). Interestingly, it was

elucidated that Tregs reduced all other Ig production but

induced B cells to produce IgG4 in a cell contact-, TGF-b- and
IL-10-dependent manner (42, 43). Studies have demonstrated

that Tregs are related to negative outcomes in RCC patients (44),

and the expansion of Tregs could limit the function of IL-2 in

RCC treatment (45).

Indirect regulations
Tregs downregulate the function of T helper (Th) cells

through various mechanisms, resulting in adverse effects on B

cells (46). Tregs could also suppress in vitro B cell Ig production

by inhibiting Th function via TGF-b (47). In addition, Tregs

migrate to follicles in the GC and regulate GC B cell responses

(48). A population of follicular regulatory T (Tfr) cells is also

described, which share phenotypes of both Tregs and Tfh

recruited during GC reaction, yet are distinct from both (49,

50). Tfr cells could balance the Tfh-mediated B cell responses

through CTLA-4 expression (17), and it has been proved that a

lack of Tfr expressing CXCR5 and Bcl-6 could lead to greater GC

reaction, associated with GC B cells, affinity maturation of

antibodies and plasma cells differentiation (51). Consequently,

the regulation of B cells in the GC reaction is well

counterbalanced by Tfh and Tfr cells. A recently published

study indicated another population of Foxp3+T cells which

existed in the end-stage of GC, displaying an immediate

phenotype of Tfh and Tfr cells (52). Collectively, these suggest

the indirect effects of Tregs on B and plasma cells, mainly

through Tfh and Tfr cells in the GC.
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B cells cooperate with NK and
macrophages

ADCC and ADCP

The antitumor activity of NK cells depends on their

antibody-dependent cell-mediated cytotoxicity (ADCC) when

they encounter tumor-specific IgG1 antibodies secreted by

plasma cells (30, 53). Unfortunately, some tumor-derived IgG

may impede the ADCC process by binding with specific antigens

lacking complement activation. To against high PD-L1-

expressing tumors, NK cells combining with anti-PD-L1

antibodies helps promote ADCC activity (54). However, NK

cells are generally scarce and become anergic in the TME (55).

Tumor-associated macrophages (TAM) participate in the

ADCC or phagocytosis process via antibody-dependent cell-

mediated phagocytosis (ADCP). Intriguingly, Su et al. reported

an unexpected finding that ADCP macrophages may inhibit

ADCC and T cell-mediated cytotoxicity by upregulating

immune checkpoint such as PD-L1 and indoleamine 2,3-

dioxygenase to cause immunosuppression (56). Therefore, a

combination of therapeutic antibodies and ICB potentially

provide synergistic effects in RCC treatment.
B cells with macrophages

Fc gamma receptor (FcRg), a receptor binding to Fc region of
an antibody, could modulate protumor bioactivities of

macrophages. In the absence of B cells or FcRg, macrophages

were found reprogramming towards the M1-type inflammatory

state (57). Specifically, B cells could foster tumor development

through FcRg by activating pro-angiogenesis and tissue

remodeling of myeloid cells, especially macrophages and mast

cells (57). Besides, the reprogramming of macrophages also

regulates CD8+T cell recruitment. Researchers discovered that

by using B cell-depleting aCD20 monoclonal antibody as an

anticancer monotherapy in mice, the chemokine expression of

macrophages altered, thus improving CD8+lymphocyte

infiltration and chemotherapy response in squamous cell

carcinoma (58). A study of pancreatic ductal adenocarcinoma

showed that Bregs could induce polarization of M2macrophages

and aggregation of Tregs, thus resulting in T cell suppression

(59). Likewise, in ccRCC cohorts, researchers observed that

compared with early stage tumors, pro-inflammatory

macrophages were reduced, while suppressive M2-like

macrophages were elevated in advanced disease (60). In

conclusion, immunosuppressive B cells and plasma cells tend

to facilitate TAM conversion to protumoral M2 phenotype,

while effector B cells could promote TAM conversion to

tumoricidal M1 phenotype (30). In the study of ccRCC,

researchers found that TAM-derived chemokine CCL5
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and decreased CD4+T cells. Elevated CCL5+TAMs infiltration

exhibited higher tumor-infiltrated lymphocytes, but reduced

TLS, correlated with a distant prognosis of ccRCC patients (61).

Although interactions of lymphocytes are regulated with

various cell-bound proteins, small metabolites, as essential

intermediates in biochemical processes, could reflect

neighboring cells when released into extracellular milieu (62,

63). Metabolite and neurotransmitter GABA, synthesized and

secreted by activated B cells and plasma cells, could promote

monocyte differentiation into macrophages, polarizing

towards an anti-inflammatory phenotype. They function as

protumor cells through releasing interleukin (IL)-10 and

limiting CD8+T cell function (64). Furthermore, in RCC

microenvironment where B cells and IgA+ plasma cells were

highly infiltrated, GABA was almost exclusively detected. It

may suggest that GABA could regulate T cells and monocytes

in the TME of RCC (64). Further studies are needed to unravel

the occasions of intracellular metabolites mediate interactions

between cells to inhibit tumor growth or enhance B cell

immunity to cancer.
The interaction between fibroblasts,
dendritic cells and B cells

Fibroblast reticular cells (FRCs) are considered

immunologically specialized myofibroblasts originating from

mesenchymal stem cells (65). Inside the encapsulated sponge-

like network of FRCs in lymph node congregated B cells, T cells,

plasma cells, dendritic cells (DCs) and macrophages. FRCs in B

cell zone provide B cell growth factor—B cell-activating factor

(BAFF) and transcribe B cell chemoattractant CXCL13 to

maintain and attract B cells in support of B cell survival (66).

During infection, FRCs rapidly upregulate the CXCL13

expression via crosstalk with B cells, and control the

expansion of B cell follicle boundaries upon inflammation (67).

Of note, DCs are specialized non-hematopoietic stromal

cells residing in lymphoid follicles and GC. They participate in

optimal selection of B cells that secret antibodies (68). In

addition, B cells populate in the network of follicular dendritic

cells (FDCs). Mature TLS comprise a GC with CD23+FDCs,

which could present antigens to B cell selection with high-

affinity BCRs, and promote B cell activation and differentiation

(69). FDCs present naïve antigens to GC B cells via complement

receptors 1 (CR1) (70). In cohorts of prospective and

retrospective lung cancers, a high density of mature DC is

strongly linked with a substantial infiltration of T cells with

effector-memory characteristics, T-cell activation gene

expression and T-helper 1 phenotype (71). These results

indicate that mature DCs may generate some specific immune

contexture that influences infiltrated B cells and TLS in TME.
frontiersin.org

https://doi.org/10.3389/fonc.2022.995519
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2022.995519
Researchers have demonstrated that fibroblasts could

directly support TLS formation and development (72). In the

settings of inflammation and persistent antigen presentation,

TLS-associated fibroblasts differentiate from locally activated

mesenchyme (73). Likewise, stromal cell priming and

lymphocytes accumulation have close relationships and the

former might occur before lymphocyte migration. This kind of

cancer-associated fibroblasts (CAFs) play a pivotal role as

lymphoid tissue organizer cells (LTo) and coordinate with

multiple cell types that synergistically act as lymphoid tissue

inducer cells (LTi) cells, such as Intratumoral CD8+T cells and B

cells that drive TLS development. CAFs work as surrogate LTo

and participate in TLS formation and orchestration. On the

other hand, the reticular network of CAF is mediated by CD8+T

cells, and its accumulation relies on the recruitment of B cells

expressing lymphotoxin, namely intratumoral LTa1b2+B cells.

Imaging analysis has confirmed an elevated density of B cells

coexisting with a reticular network of LTo-like CAF (74).

Analysis of TCGA data of RCC showed that CAF infiltration

was higher in RCC, especially in RCC with advanced tumor

pathological grades and stages, than that in normal tissues (75).

In addition, studies of RCC have revealed that TLS are sites of in

situ B cell maturation into plasma cells. The plasma cells formed

in the TLS are embedded in the dense network of fibroblasts, and

disseminate into the tumor beds along fibroblastic tracks (76).
MDSC-mediated regulation of B cell
response

Myeloid-derived suppressor cells (MDSCs) were first termed

in 2007, representing a series of immunosuppressive

macrophages, DCs and granulocyte precursor cells produced

in response to tumor-derived cytokines (77). Since then, MDSCs

have been considered a great obstac le for cancer

immunotherapies because they have close relationships with

other immune cells. Studies have identified that normal B cells

could be transformed into a subtype of immune regulatory B

cells (Bregs) inhibiting T cell response in the presence of

MDSCs. Besides, some immune checkpoint molecules

including PD-1 and PD-L1 might be changed and remolded

predominantly. A novel MDSC-Induced B cell subset (PD-1-

PD-L1+CD19+) has been demonstrated to inhibit T cell

responses (78). Specifically, activation of the PI3K/AKT/NF-kB

axis enhances the PD-1-PD-L1+ Breg protumor function (79).

Another study on glioblastoma discovered that MDSCs

de l ivered funct iona l membrane-bound PD-L1 v ia

microvesicles to Bregs, conferring the effector phenotype and

function (80). Cell experiments have elucidated that 1) MDSCs

suppress B cell proliferation by releasing suppressive mediators;

2) MDSCs induce decreased expression of B cell surface markers
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specific B cell subset phenotypic alterations including antibody-

secreting cells death; and 4) MDSCs elicit specific gene

transcriptional changes which are associated with apoptosis,

class-switch regulation and B cell differentiation and effector

function (81).

In addition, some indirect regulatory effects of MDSCs on B

cells have also been elaborated. MDSCs increase the number of

FoxP3+ Treg cells, and facilitate the development of Tregs (82,

83). Tregs, along with Bregs, have similar suppressive

characteristics and close relationships with B cells. FoxP3

+Treg cells inhibit antibody production, activation and

differentiation of B cells. Besides, it is reported that MDSCs

modulate B cells via different pathways, including TNF, STAT3

and TGF-signaling, and MDSC-derived nitric oxide (NO),

reactive oxygen species (ROS), TGF-b, and prostaglandin E2

(PGE2) play roles in suppressing B cells (84). RCC is regarded as

an immunogenic tumor, which elicits the influx of immune-

inhibitory cells such as Tregs and MDSCs into the TME,

resulting in immune dysfunction (85). Many possible

mechanisms have been proposed to explain how MDSCs

target immune suppression (86), and it has resulted in clinical

response in some patients with RCC (85, 87). The regulation of B

cells by MDSCs may be a prospective target for immunotherapy

in RCC.
Indications of TLS and
immunotherapy

TLS have been identified in various types of tumors at every

stage of disease, but their presence is in high heterogeneity

between different cancer types and patients (88, 89). It is thought

that TLS actively modulate antitumor immune activities rather

than simply being a surrogate marker of rapid immune response

(34). Mature TLS show indications of GC development. In

colorectal cancer, TLS are associated with favorable outcomes

and harbor prognostic information of disease recurrence (90). In

lung squamous cell carcinoma, TLS are the independent

prognostic marker and their development can be affected by

chemotherapy and steroids (91). Interestingly, between different

types of genitourinary cancer, one study showed that TLS

displayed a distinct status in terms of the clinical outcome and

immunogenomic profile (92). Researchers showed that the TLS

detected in RCC cohort were less mature, contributing to poor

outcomes, while in bladder cancer cohort, TLS were more

mature with GC structures and associated with better

outcomes (92). Another study certificated that in three gradual

levels of immune infiltration of ccRCC clusters, higher

abundance of T cells and TLS, suggesting an immune-enriched

TME, was related to poor clinical outcome (93). These results
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suggest the heterogeneity of TLS and indicate that comparison of

the TLS characteristics may help show differences in the immune

TME and prognostic effects in RCC.
B cells and immunotherapy

Recent studies have contributed to an appreciation for B cells

influencing immunotherapy outcome (30). Researchers have

already reached consensus on the surface phenotype markers of

various B subtypes except Bregs (94), and single-cell RNA

sequencing (scRNA-seq) technique provides a broader perspective

on cell markers and characteristics. scRNA-seq and cell-cell

communication analysis in several recent studies have

demonstrated that interactions of infiltrated B cells could

influence tumor clinical outcomes (Table 1). The heterogeneity

across B-cell subpopulations has been studied by single-cell

techniques. Some single cell methods have helped dissect tumor

heterogeneity and study the anti-tumor drug responses. However,

the specific B-cell gene signatures between different cancer types still

need more investigations. When initiating an antitumor response,

tumor-infiltrated B cells (TIL-Bs) are first required to be recognized

by tumor-specific neoantigens via BCRs. Studies have suggested

that complementarity determining region-3 (CDR3), highly

changeable regions in the BCR, have the potential to be

prognostic biomarkers of different malignancies (104–106).

Furthermore, the diversity of intratumoral BCR repertoires could

reflect clonal expansion in response to tumor-associated antigens.

Compared to scRNA-seq, repertoire studies may better characterize

TIL-Bs including the investigation of B-cell phenotypes and BCR

diversity within the RCC microenvironment (107). Some distinct

RCC-associated gene mutations displayed by genomic techniques

also have correlations with BCR repertories. Researchers found that

among RCC patients with mutations in KDM5C, PBRM1, VHL

and PTEN, BCR repertoire diversity was decreased (108).

Intriguingly, PBRM1 mutation is pertinent with immune

checkpoint inhibiters (ICI) response of RCC (109, 110). Some

gene segments may be enriched in TIL-Bs with particular gene

expression phenotypes. Besides, some BCR pathway molecules are

upregulated and BCR-related kinases play a role in the TME of

various tumors, suggesting an anticancer activity of targeting BCR-

immune complex and BCR-related kinases (106, 111). Overall, this

may provide a new insight of exploring B cell subpopulations most

affected by molecular features of tumor and contribute to new

targets of immunotherapy with the combination of scRNA-seq and

BCR repertories.

Antibodies produced by B cells have associations with effective

antitumor immune response. Researchers demonstrated a high level

of plasmablasts in the blood of metastatic RCC patients who had

not exhibited tumor progression for over a year, and reactive

antibodies from B cell response are commonly detected, which

exhibit a great level of somatic hypermutation (112). A study

indicated that TIL-Bs had unique antibody repertoire
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somatic hypermutation rates in treated-tumor-bearing mice (113).

The signs of B cell activation and clonal expansion were similarly

discovered in other human malignancies (111, 114). These results

suggest a possible persistent B cell response targeting tumor

antigens. The identification of antibody repertoire signatures

could perform as markers to identify tumor-reactive B cells, and

provide a new paradigm for discovering antitumor antibodies with

RCC diagnosis and immunotherapy.
Can B cells and TLS be predictive
and prognostic factors in RCC?

We have reviewed the crosstalk between B cells and other cells

in the TME, highly expecting that indications of B cells and TLS

with immunotherapy could be the predictive and prognostic factor

in RCC. Some current studies and clinical trials have confirmed the

value for different B subsets in RCC. A clinical study on the plasma

sample of RCC patients demonstrated that the blood concentration

of unswitched memory B cells was correlated with the response

condition to immune checkpoint blockade and survival rate in

metastatic ccRCC patients (29). Similarly, researchers found that a

subset of B cells with a memory phenotype was associated with

positive outcomes in RCC patients treated with immune checkpoint

inhibitors, and could predict response to checkpoint

immunotherapy (115). Meylan et al. (76) used spatial

transcriptomics to investigate B cell immunity within

intratumoral TLS in RCC, and proved that TLS sustained B cell

maturation and antibody generation, with response to

immunotherapy possibly via direct antitumor effects (76). It has

been proved that RCC exhibits distinct immune phenotypes and

proteogenomic characteristics (116). Growing evidence indicates

the diversity and heterogeneity of TME and tumor cells affect

immunotherapy (117). Although no large comparative study has

been reported to explore the specific effects and mechanisms of B

cells on RCC patients in clinical trials, the clinically related

outcomes of B cells and TLS with RCC occurred in previous

studies. Therefore, further investigations are needed to confirm

the predictive and prognostic value of B cells and TLS in RCC.
Conclusion

Increasing evidence has demonstrated the important role of B

cells in tumor immunotherapy, and some innovative techniques

including scRNA-seq and BCR repertoires have provided intensive

insights into B cells and TME. In this review, we focus on the

interaction networks of B cells with other cells in RCC

microenvironment. Some subtypes of T cells including CD8+T

cells and Tfh cells contribute to the recruitment, maturation and

differentiation of B cells. Besides, B cells also act as a provider of
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TABLE 1 Current research about the interactions of B cells influencing tumor clinical outcomes, using scRNA-seq or cell-cell communication
analysis.

Tumor type Interactions Outcomes Reference

Non-small cell lung cancer
(NSCLC), malignant pleural
effusion (MPE)

In MPE, Bregs interact primarily with CD4+ T cells (including Th1/17,
Treg and Tfh), but not CD8+ T cells.

Bregs in MPE show great cell proliferation
signaling and are related to poor clinical
outcomes.

(95)

Colorectal Cancer (CRC) Compared to non-tumor tissues
- Enhanced interactions between non-immune cells (including
MKI67+ goblet cells, DEFA5+DEFA6+ metaplastic paneth cells,
colonocytes, and fibroblasts) and immune cells (including B cells, T
cells and myeloid cells) in tumor tissues.
- Altered interaction pathways between B cells and T cells.

- B, plasma and non-immune cells in
tumor tissues exert important roles in
shaping tumor microenvironment.
- Proliferative B-cell signatures are
enriched in tumors that respond to
immunotherapy.

(96)

CRC Compared to non-tumor tissues
- Enhanced interactions between myeloid cells and lymphocytes
(including B cells, plasma cells and T cells) in tumor tissue.
- Enhanced interactions between B cells and T cells through CD48-
CD244.
- B cells tend to interact with SIGLEC10+ T cells and inhibit T cell
activation.
- Enhanced interactions between IgA+ IGLC2+ plasma cells and
multiple types of T cells.
- CCL8+ IGLC2+ plasma cells and cycling B cells interacte with
CCR5+ T cells in CRC and recruit CCR5+ T cells to the tumor foci.
- Attenuated interactions between epithelial cells and B cells, but the
SIRPA-CD47 and NRG1-ERBB3 pathways are enhanced. These are
associated with immune escape and epithelial-mesenchymal transition
(EMT)-associated metastasis.
Compared to early stage tumor tissue
- Enhanced interaction of B cells with other immune cells in
advanced tumor tissue.
- IgA+IGLC2+ plasma cells, which are associated with poor
prognosis, have significant interactions with myeloid cells and cytotoxic
T cells.

- B cells and myeloid cells are
predominantly responsible for
immunoregulatory functions in CRC rather
than CD4+ regulatory T cells.
- B cells in early CRC tumors exhibit pre-
B like tumor suppressors, while B cells in
advanced CRC tumors tend to develop into
plasma cells.
- B cells in CRC may contribute to tumor
progression.

(97)

CRC B cells, MKI67+ T cells and dysfunctional T cells, interact with tumor-
associated macrophages (TAMs), which are enriched by preoperative
chemotherapy, through HLA-F-LILRB2 and HLA-DPB1-NRG1
pathways in the cell niche of primary tumors.

- Less-activated B cells are more prevalent
in the tumor microenvironment of
treatment-naïve tumors.
- B cell activation is observed in tumors
treated with preoperative chemotherapy.

(98)

Nasopharyngeal Carcinoma
(NPC)

- The three exhausted T cell populations in TME (HAVCR2+, TOX+,
and LAG3+ T cells) preferentially interact with memory B cells, innate-
like B cells, unactivated B cells, and IFN-induced B cells, but not with
plasma cells, naive B cells, and double-negative B cells.
- Among them, B cells interact with HAVCR2+ and TOX+ exhausted
T cell populations mainly through the CXCL13-CXCR5 axis.

- A higher abundance of B cells is
correlated with a better clinical prognosis in
NPC patients.
- A higher percentage of double-negative B
cells is predictive of worse survival rate in
NPC patients.

(99)

Esophageal squamous cell
carcinoma (ESCC)

Attenuated interactions between tumor cells and B cells compared to
interactions between tumor cells and other immune cells in TME.

The specific cellular communication
potentially shapes the unique TME in ESCC.

(100)

Ovarian Cancer - Tumor-infiltrating B cells (B-TILs) interact with CD4+CXCL13 T
cells as well as dysfunctional CD8+GZMB T cells through CXCR5-
CXCL13, which is a possible mechanism for recruiting B cells into the
tumor microenvironment.
- B-TILs interact with endothelial cells via CCR7-CCL21, suggesting
another possible mechanism for recruiting B cells into the tumor
microenvironment.

Stromal cells and T cells participate in the
recruitment of B cells in tumor and stromal
compartments of ovarian cancer.

(101)

Lymphoma - Malignant B cells receive suppressive signals from all four major T
cell subsets (T helper, T toxic, Tfh, Treg) through CD80/CD86-CD28
and CD80/CD86-CTLA.
- Malignant B cells interact with T helper cells and Tregs through
BCMA-BAFF, BAFF-R-BAFF, and CD40-CD40LG.
- Malignant B cells interact with Tfh cells through IL4-IL4R, IL4-
IL13RA1 and IL21-IL21R.

- B cells modulate the frequency of various
lymphoma-infiltrated T cell subsets to shape
the microenvironment.
- Malignant B cells are heterogenous
among lymphoma patients with different
proliferative activity. This is associated with
lymphoma-specific transcriptional features.

(102)

Head and neck squamous cell
carcinoma (HNSCC), caused by
environmental carcinogens or
human papilloma virus (HPV)

- B cells interact with CD4+ T cells in both HPV- and HPV+ TME.
Besides, the spatial distance between B cells and CD4+ T cells is closer,
which reflects the probability of interaction.
- Interactions between GC B cells and TFH are only in HPV+ TME.

B cells in germinal center are observed in
HPV+ tumor microenvironment, and
correlate positively with the overall survival
in HNSCC.

(103)
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antigen presenting cells and release cytokines to help T cells

perform their duties in tumor sites. On the contrary, subsets of

Tregs and MDSCs suppress the performance of B cells. In addition,

NK cells and macrophages perform ADCC and ADCP function

through using antibodies, and fibroblasts perform an essential role

in the maturation of B cells in TLS. We speculate that the study of

the interaction networks of immune cells can provide valuable

information for RCC treatment, and how to improve the response

rate to immunotherapy of RCC is an important issue that needs to

be considered seriously.
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