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radiomics nomogram for
predicting the luminal from
non-luminal type in patients
with breast carcinoma
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of Diagnostic Ultrasound Imaging and Interventional Therapy, The Cancer Hospital of the University
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Introduction: Themolecular subtype plays a significant role in breast carcinoma

(BC), which is themain indicator to guide treatment and is closely associatedwith

prognosis. The aim of this study was to investigate the feasibility and efficacy of

an ultrasound-based radiomics nomogram in preoperatively discriminating the

luminal from non-luminal type in patients with BC.

Methods: A total of 264 BC patients who underwent routine ultrasound

examination were enrolled in this study, of which 184 patients belonged to

the training set and 80 patients to the test set. Breast tumors were delineated

manually on the ultrasound images and then radiomics features were

extracted. In the training set, the T test and least absolute shrinkage and

selection operator (LASSO) were used for selecting features, and the

radiomics score (Rad-score) for each patient was calculated. Based on the

clinical risk features, Rad-score, and combined clinical risk features and Rad-

score, three models were established, respectively. The performances of the

models were validated with receiver operator characteristic (ROC) curve and

decision curve analysis.

Results: In all, 788 radiomics features per case were obtained from the

ultrasound images. Through radiomics feature selection, 11 features were

selected to constitute the Rad-score. The area under the ROC curve (AUC)

of the Rad-score for predicting the luminal type was 0.828 in the training set

and 0.786 in the test set. The nomogram comprising the Rad-score and US-

reported tumor size showed AUCs of the training and test sets were 0.832 and

0.767, respectively, which were significantly higher than the AUCs of the clinical

model in the training and test sets (0.691 and 0.526, respectively). However,

there was no significant difference in predictive performance between the Rad-

score and nomogram.
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Conclusion: Both the Rad-score and nomogram can be applied as useful,

noninvasive tools for preoperatively discriminating the luminal from non-

luminal type in patients with BC. Furthermore, this study might provide a

novel technique to evaluate molecular subtypes of BC.
KEYWORDS
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Introduction

Breast carcinoma (BC) is among the tumors with the highest

morbidity and mortality in women, which accounts for one in

four cancer cases and for one in six cancer deaths in the great

majority of countries (1). BC is a heterogeneous disease with

different clinical characteristics, clinical behaviors, and

treatment response profiles (2). There are four major subtypes

of breast carcinoma based on estrogen receptor (ER),

progesterone receptor (PR) and human epidermal growth

factor receptor 2 (HER2) status. These intrinsic molecular

subtypes are defined as: luminal A and B, HER2-enriched, and

basal-like subtypes. Luminal A and B are luminal type, while

HER2-enriched and basal-like are non-luminal type (3).

Luminal type shows better prognosis and response to

hormone receptor-targeted therapies (4), while non-luminal

type is more aggressive, has poorer outcomes than luminal

type, and reveals a higher rate of locoregional recurrence and

lower survival rate after distant metastasis (5–7). Since the

prognosis of BC differs according to the molecular subtypes,

guidelines recommend for immunohistochemistry (IHC)

assessment of the molecular subtypes of BC during initial

diagnosis (8, 9).

Currently, the preoperative assessment of the molecular

subtypes of BC commonly relies on IHC results after core

needle biopsy. Whereas, biopsy is invasive and vulnerable to

sampling error that might negatively affect the treatment

decision and increase health care costs of BC diagnosis when

repeated biopsy is required (10, 11). Moreover, the limited
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biopsy tissue makes it difficult to fully evaluate the

heterogeneity within the tumor (12). Therefore, a noninvasive

approach that could precisely predict the molecular subtypes of

BC, would be high valuable in the early management of patients

with BC.

Radiomics is an innovative tool that usually extracts a large

number of quantitative features from medical images by using

mathematical algorithms, and the quantitative extracted features

can represent the shape, intensity, and texture of tumors. It

assumes that the quantitative features may be the reflection of

mechanisms occurring at a genetic and molecular level, and

relevant to tumor behavior or patient’s prognosis (13, 14).

Radiomics features have been employed to noninvasively

evaluate intratumoral heterogeneity. In recent years, studies

have found that radiomics analysis can be utilized to

determine sentinel lymph node metastasis (15, 16), distinguish

between the benign and malignant breast tumor (17, 18),

identify the molecular subtype (19), and evaluate the response

to neoadjuvant chemotherapy (20).
Several studies have demonstrated that radiomics features

based on computed tomography (CT) or magnetic resonance

imaging (MRI) have the ability to discriminate the luminal

from non-luminal BC. Wang and colleagues (21) established a

radiomics model based on chest CT to distinguish the luminal

from non-luminal type and achieved area under the curve

(AUC) values of 0.842 in the training set and 0.757 in the test

set, demonstrating that chest CT radiomics may provide a new

concept for the identification of breast cancer molecular

subtypes. The results of a former study by Leithner et al. (22)

indicated the potential of radiomics signatures from

multiparametric MRI to allow the separation of the hormone

receptor-positive and hormone receptor-negative BC.

However, no study based on ultrasound radiomics has been

published on distinguishing between the luminal and non-

luminal BC. Furthermore, compared to CT and MRI,

ultrasound regarded as a nonradioactive, available, and low-

cost tool is commonly adopted for breast tumor screening

and diagnosis.

Therefore, based on the above background, we studied

whether ultrasound radiomics features could be adopted as a

predictive biomarker for discriminating the luminal from non-
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luminal type in patients with BC, and the purpose of this study

was to develop and validate an ultrasound-based radiomics

nomogram by integrating the clinical risk factors and

radiomics score (Rad-score) to preoperatively predict the

luminal BC.
Materials and methods

The study was approved by our Institutional Ethics

Committee and performed on the basis of the Helsinki

Declaration, and patient informed consent requirement was

waived due to the retrospective nature of this study.
Patient cohort

Patients who were diagnosed with BC and had preoperative

breast ultrasound between March 2019 and July 2021

were included.

The inclusion criteria were (a) patients diagnosed as BC by

surgical or biopsy pathology; (b) lesions presenting as mass

(facilitating the subsequent segmentation of breast tumors); (c)

ultrasound examinations were performed within two weeks

before surgery; and (d) the presence of single malignant tumor.

The exclusion criteria were (a) patients with ductal

carcinoma in situ confirmed by histopathology; (b) images
Frontiers in Oncology 03
with prominent artifacts; (c) tumors larger than 50 mm in

diameter (incompletely displayed in a single plane); (d)

patients who underwent biopsy or chemoradiotherapy before

ultrasound examination; and (e) patients with missing clinical

characteristics and/or postoperative IHC.

On the basis of inclusion criteria, 446 patients were reviewed.

Applying our exclusion criteria, a total of 264 patients were

therefore included finally. The flowchart of patient selection

process was revealed in Figure 1. The 264 patients were

randomly divided into the training and test sets according to

the ratio of 7:3. we analyzed 184 patients in the training set and

80 patients in the test set. The training set included 143 and 41

patients with luminal and non-luminal type, respectively, while

the test set included 58 and 22 patients with luminal and non-

luminal type, respectively.
Pathological assessment

The surgical or ultrasound-guided needle biopsy pathology

was obtained for the diagnosis of the target breast tumor. If the

tumor was malignant, IHC analysis was further performed. IHC

analyses were carried out to detect the expression levels of ER,

PR, HER2, and Ki-67 in each patient with BC. The status of ER

and PR was considered as positive, if greater than 1% of tumor

cells revealing positively stained nuclei (23). For HER2 status

identification, a HER2 staining intensity score of 3+ was
FIGURE 1

The patient enrollment process for this study.
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regarded as positive, while a score of 0 or 1+ was considered as

negative. A HER2 staining intensity score of 2+, with

confirmation of gene amplification by fluorescence in situ

hybridization, was also regarded as positive (3). For Ki-67

status, tumors with greater than 14% positive nuclei were

considered as high expression, while other cases were

considered as low expression (3).
Clinical and pathological characteristics

Clinical data, such as age, US-reported tumor size, tumor

location, ultrasound equipment, ultrasound-reported lymph

node metastasis, ER status, PR status, HER2 status, Ki-67 level,

and pathology-reported lymph node metastasis were recorded

both in the training and test sets, and the molecular subtypes of

breast carcinoma were calculated by the status of ER, PR

and HER2.
Image acquisition and segmentation

All breast ultrasound examinations were performed by two

sonographers (JW and YW with more than 5 years’ experience

in breast ultrasound imaging) by using LOGIQ E9 ultrasound

system with a 6-15L linear array probe and Siemens Acuson

S2000 with a 6-18L linear array probe with radial, transverse,

and longitudinal scans on both breasts. Ultrasound was further

utilized to scan breast tumor from multiple angles and sections

to absorb the overall information. In addition, we carefully

observed the shape, size, blood supply and echo of the tumor.

The scan parameters were consistent among patients: image

depth was about 4.0 cm; gain was about 50%; and focus

paralleled to the tumor. The image of the largest section of the

breast tumor with the clearest imaging was saved as the format

of Digital Imaging and Communications in Medicine to

maximize the preservation of the image information. A two

dimensional region of interest (ROI) that covered the whole

lesion was manually delineated on the selected largest section of

the breast tumor by using ITK-SNAP software (open source

software; http://www.itk-snap.org). This was performed

independently by an experienced sonographer (YJ with more

than 5 years’ experience in breast ultrasound imaging) blinded to

patients’ postoperative IHC.
Feature extraction

A total of 788 quantitative radiomics features were then

extracted from each ROI using the “pyradiomics” package of

Python (version 3.7.11). These ultrasound radiomics features

were divided into four categories including shape, statistics,

texture and wavelet features: 14 two dimension shape-based
Frontiers in Oncology 04
features, 18 first-order statistics features, 22 gray-level co-

occurrence matrix (GLCM) features, 16 gray-level run length

matrix (GLRLM) features, 16 gray-level size zone matrix

(GLSZM) features, 14 gray-level dependence matrix (GLDM)

features, and 688 features derived from first-order, GLCM,

GLRLM, GLSZM and GLDM features using wavelet filter

images (24).
Evaluation of interclass
correlation coefficient

To ensure the reproducibility and accuracy, 50 patients were

randomly selected for a reproducibility analysis by using the

interclass correlation coefficient (ICC). Two sonographers (YJ

and YW with more than 5 years’ experience in breast ultrasound

imaging) drew ROIs on the same ultrasound images from the 50

selected patients and extracted the radiomics features. An ICC

greater than 0.70 suggested a good agreement.
Radiomics feature selection

The radiomics features data were normalized with z score

normalization in the training and test sets to ensure that the scale

of feature value was uniform and improve the comparability

between features. A two-step feature selection procedure was

designed for mining the valuable predictive features in the

training set. First, a T test was implemented to remove the

features that showed no significant difference between the

luminal and non-luminal BC. Next, the least absolute

shrinkage and selection operator (LASSO) with ten-fold cross

validation was adopted to further select the features through

regularization by optimizing the hyperparameter (Lambda). An

optimum Lambda was tuned to achieve minimum mean square

error. Coefficients of some candidate features were compressed

to zero at the optimum Lambda, and features with nonzero

coefficients were retained.
Construction and validation of
prediction models

After feature selection, The Rad-score of each patient with

BC was calculated with a linear combination of the final selection

of features weighted by logistic regression algorithm. Meanwhile,

logistic regression model based on Rad-score was developed for

identifying the luminal type. Furthermore, clinical features that

showed a statistical difference between the luminal and non-

luminal type in the training set was adopted to develop the

clinical model. At the same time, the nomogram based on the

clinical features and Rad-score would be constructed. The

sensitivity, specificity, positive predictive value (PPV), negative
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predictive value (NPV), accuracy, and AUC were adopted to

quantify the predictive performance of the models. To verify the

robustness of the nomogram, the calibration curve (25) was

plotted. Furthermore, decision curve analysis (DCA) (26) was

utilized to select the model that maximized patient benefits. The

flowchart of this research is shown in Figure 2.
Statistical analysis

All statistical analyses were performed with the R software

(version 3.5.1; www.r-project.org). The continuous variables

with normal distribution were shown as mean ± standard

deviation (SD), and non-normal were shown as the median.

For continuous clinical or pathological variables, independent

sample T test or Mann-Whitney U test was adopted to identify

differences between the training and test sets. The Fisher’s exact

test or Chi-square test was used for comparing categorical

variables. For all statistical tests, differences were considered

significant at p < 0.05.
Results

Clinical and pathological characteristics

The clinical and pathological characteristics of the training

and test sets were compared, and there was no statistically
Frontiers in Oncology 05
significant difference found (p > 0.05) (Table 1). This

suggested that the training and test sets were comparable in

these clinicopathological features.
Radiomics feature extraction
and selection

A total of 788 ultrasound radiomics features were extracted

from the ultrasound images of each patient. The details about

ultrasound radiomics extraction settings are available in

Supplementary Material Data S1. All the 788 features showed

an interclass correlation coefficient of greater than 0.70. After

validation of interobserver reproducibility, the following

analyses were based on the radiomics features extracted by

sonographer YJ.

After evaluating the differences of radiomics features by

using the T test, 135 radiomics features were used for the

subsequent analysis. Then, the optimum Lambda (Lambda =

0.018420699693267165) was determined for the LASSO

regression, and 11 radiomics features with nonzero coefficients

were selected to differentiate the luminal from non-luminal BC

(Figure 3). Detailed information on the luminal type related

features is revealed in Table 2 and the nonzero coefficients of the

selected features based on the LASSO regression are shown in

Figure 4. Moreover, the Pearson correlation coefficient between

any pair of selected features was computed, and the Pearson

correlation coefficient matrix heatmap is revealed in Figure 5.
FIGURE 2

Flowchart of the processing step using the radiomics method for predicting the luminal BC.
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Prediction based on Rad-score

The Rad-score for each patient in the training and test sets

was calculated with selected features by using the logistic

regression algorithm for further analysis and revealed in

Figure 6. The corresponding fitting formula is listed in

Supplementary Material Data S2. In the training set, the

medians of Rad-score were statistical difference between the

luminal and non-luminal type (2.267 vs. 0.133, p < 0.001), and

the same results were achieved in the test set (1.948 vs. 0.054, p <

0.001) (Figure 7, Table 3).

The predictive performance of the Rad-score was well, with

AUC values of 0.828 (95% confidence interval (CI), 0.747-0.911)

in the training set and 0.786 (95% CI, 0.635-0.924) in the test set.
Frontiers in Oncology 06
Furthermore, the sensitivity, specificity, accuracy, positive

predictive value (PPV) and negative predictive value (NPV)

were 81.82%, 78.05%, 80.98%, 92.86% and 55.17% in the training

set, and 86.21%, 77.27%, 83.75%, 90.91% and 68.00% in the

test set.
Prediction based on radiomics
nomogram

Comparison of the clinical features between the luminal and

non-luminal BC in the training set was performed. US-reported

tumor size (p < 0.001) and Rad-score (p < 0.001) were the

significant factors to distinguish the luminal from non-luminal
TABLE 1 The baseline characteristics of the enrolled patients in the training and test sets.

Characteristic Total set (n = 264) Training set (n = 184) Test set (n = 80) p-value

Age (year, mean ± SD) 53.41 ± 11.20 52.95 ± 11.61 54.46 ± 10.20 0.289

US-reported tumor size (mm, mean ± SD) 25.16 ± 11.36 24.45 ± 11.05 26.80 ± 11.96 0.136

Location of tumor 0.693

Right lobe 142 97 45

Left lobe 122 87 35

Molecular type 0.641

Luminal A 138 100 38

Luminal B 62 42 20

HER2-enriched 28 17 11

Triple negative 36 25 11

ER 0.384

Positive 199 142 57

Negative 65 42 23

PR 0.741

Positive 164 116 48

Negative 100 68 32

HER2 0.110

Positive 67 41 26

Negative 197 143 54

Histologic type 0.312

Invasive ductal 228 162 66

Other 36 22 14

Ultrasound equipment 0.645

Siemens Acuson S2000 214 151 63

LOGIQ E9 50 33 17

US-reported LN 0.097

Metastasis positive 115 74 41

Metastasis negative 149 110 39

Pathology-reported LN 0.677

Metastasis positive 155 106 49

Metastasis negative 109 78 31

Ki-67 (%, mean ± SD) 28.50 ± 22.36 28.32 ± 22.93 28.91 ± 21.13 0.837

Radiomics score (median, IQR) 1.767
(0.566, 2.821)

1.914
(0.562, 2.963)

1.679
(0.616, 2.629)

0.352
fronti
ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; SD, standard deviation; IQR, interquartile range; LN, lymph node; US, ultrasound.
ersin.org

https://doi.org/10.3389/fonc.2022.993466
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2022.993466
BC. Other clinical features such as age, tumor location,

ultrasound equipment and ultrasound-reported lymph node

status were not identified as potential factors for predicting the

luminal type (Table 4). Therefore, the Rad-score and US-

reported tumor size were incorporated to develop the

radiomics-based nomogram (Figure 8). The sensitivity,

specificity, accuracy, PPV, NPV and AUC value for the

nomogram were 85.31%, 80.49%, 84.24%, 93.85%, 61.11% and
Frontiers in Oncology 07
0.832 (95% CI, 0.751-0.915) in the training set, and 87.93%,

72.73%, 83.75%, 89.47%, 69.57% and 0.767 (95% CI, 0.614-

0.906) in the test set, respectively.

Ten-fold cross validation was applied to the nomogram

model, which yielded median AUC values of 0.825 and 0.765

for the separation of the luminal from non-luminal BC in the

training and test sets, with median accuracies of 83.36% in the

training set and 80.05% in the test set.
A

B

FIGURE 3

Tuning parameter selection using the LASSO regression in the training set. (A) The optimal penalization coefficient lambda was generated in the
LASSO via 10-fold cross validation. The lambda value of the minimum mean square error for the training set was given; (B) LASSO coefficient
profiles of the radiomics features.
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Prediction based on clinical risk factors

At the same time, the prediction model on the basis of US-

reported tumor size was constructed. The sensitivity, specificity,

accuracy, PPV, NPV and AUC value for the clinical model were

88.03%, 52.38%, 79.89%,86.21%, 56.41% and 0.691 (95% CI,

0.610-0.803) in the training set, and 75.86%, 40.91%, 66.25%,

77.19%, 39.13% and 0.526 (95% CI, 0.377-0.675) in the test

set, respectively.

The predictive values of three prediction models, including

Rad-score, radiomics nomogram and clinical feature, were

compared. In the training set, the AUC value of the

nomogram was higher than that of the clinical model alone

(AUC, 0.832 vs. 0.691; DeLong test, p < 0.001), and there was no

statistical difference between the nomogram and Rad-score
Frontiers in Oncology 08
(AUC, 0.832 vs. 0.828; DeLong test, p = 0.107). In the test set,

the AUC value of the nomogram was higher than that of the

clinical model alone (AUC, 0.767 vs. 0.526; DeLong test, p <

0.001), and there was no statistical difference between the

nomogram and Rad-score (AUC, 0.767 vs. 0.786; DeLong test,

p = 0.286). The discrimination performance for each model is

summarized in Table 5. Receiver operator characteristic (ROC)

curves of the three models to predict the luminal type are shown

in Figure 9.
Clinical application of prediction models

The calibration curve for the nomogram was tested using

Hosmer-Lemeshow test, and yielded nonsignificant results due to
TABLE 2 List of the selected features with nonzero coefficients.

Image type Feature class Feature name Coefficient

original firstorder Kurtosis -0.008190

original glrlm HighGrayLevelRunEmphasis 0.036799

original glszm SmallAreaEmphasis 0.033869

wavelet-LLH firstorder Kurtosis -0.024010

wavelet-LHL glszm SizeZoneNonUniformity -0.036624

wavelet-LHH glszm SizeZoneNonUniformityNormalized -0.015742

wavelet-LHH glszm SmallAreaLowGrayLevelEmphasis -0.007676

wavelet-HLL firstorder Entropy -0.023619

wavelet-HHL glszm LowGrayLevelZoneEmphasis 0.005541

wavelet-HHL gldm DependenceNonUniformityNormalized -0.045262

wavelet-HHH firstorder Energy -0.002819
f

FIGURE 4

A coefficient profile plot of the 11 selected radiomics features based on the LASSO algorithm was drawn.
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both p values > 0.05 in the training and test sets, showing good

agreements between the observed and predicted results. (Figure 10).

Decision curve analysis of the three prediction models are

revealed in Figure 11. The y-axis measures the net benefit. The

grey line represents the assumption that all lesions were luminal

type. The black line represents the assumption that all lesions

were non-luminal type. If the threshold probability was less than

92.1%, using the nomogram added more benefit (blue line).
Frontiers in Oncology 09
Discussion

In the present radiomics study, feature extraction was carried

out on the basis of ultrasound images, and three predictionmodels

were established using clinical feature, Rad-score and combined

clinical feature and Rad-score, respectively, for predicting the

luminal BC. The results demonstrated that the Rad-score and

nomogram had appreciable predictive performance and could be
FIGURE 5

Pearson correlation coefficient heatmap of the selected features on differentiation between the luminal and non-luminal BC. Orange color
denotes a positive correlation, blue color denotes a negative correlation, and the shade of the color indicates the correlation degree.
A B

FIGURE 6

Radiomics score for each breast carcinoma patient in the training (A) and test sets (B).
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applied as useful methods for preoperatively differentiating

between the luminal and non-luminal type in patients with BC.

The consistency between the nomogram-predicted probability of

luminal BC and actual results was assessed by the calibration

curve. On the calibration curve in our study, both p-values were >

0.05 in the training and test sets, indicating that the stability of the

nomogram was well. Decision curve analysis revealed that the net

benefit of using the nomogram (blue curve) and Rad-score

(orange curve) for predicting luminal BC was more considerable

than that of the treat-all or treat none approach, indicating well

clinical application of the novel models.

A number of studies have demonstrated that radiomics is

regarded as an useful and noninvasive method for predicting

molecular subtypes in patients with BC, most of which are on the

basis of mammography and MRI imaging. Son and colleagues

(27) built radiomics signatures based on synthetic mammography

reconstructed from digital breast tomosynthesis to predict

molecular subtypes of breast cancer. In the validation cohort,

the radiomics signature yielded an AUC of 0.838, 0.556, and 0.645

for the triple-negative, HER2 and luminal subtypes, respectively.

In our study, the AUC value of Rad-score predicting luminal BC

was higher than theirs (0.786 vs. 0.645). This might have some

relationship with low spatial resolution of mammography and

limited display effect for breast tumor. A prior study by Li et al.

(28) including a total of 351 patients and developing radiomics

models for predicting the HER2 status preoperatively, found that

the intratumoral and peritumoral radiomics scores achieved
Frontiers in Oncology 10
AUCs of 0.683 and 0.690 in the validation cohort, respectively.

Furthermore, the combined radiomics score improved the

predictive performance and yielded an AUC of 0.713. Huang

and colleagues (29) reported that the multi-parametric MRI-based

radiomics models could predict molecular subtypes of breast

cancer. The highest performances were obtained for

discriminating basal-like vs. non-basal-like (AUC, 0.965),

HER2-enriched vs. non-HER2-enriched (AUC, 0.840), and

hormone receptor-positive/non-HER2-enriched vs. others

(AUC, 0.860) using multilayer perceptron. Compared to

mammography and MRI imaging, ultrasound regarded as a

nonradiative, convenient, and low-cost technology is universally

used for breast tumor screening and diagnosis (30, 31). As far as

we know, few studies have evaluated the feasibility of utilizing an

ultrasound radiomics method in breast carcinoma to predict the

luminal BC, and currently most of these focus on predicting triple-

negative breast carcinoma, HER2 status, Ki-67 index, etc.

Leithner et al.’ study (22) including 91 breast cancers

adopted a multi-layer perceptron feed-forward artificial neural

network (MLP-ANN) to differentiate the hormone receptor-

positive from hormone receptor-negative BC based on

multiparametric MRI images, yielding an overall median AUC

of 0.69, with median accuracies of 64.7% in the training dataset

and 60.0% in the validation dataset. As compared to the above

study, more samples were included in our study and applied the

tenfold cross validation, the nomogram model achieved

significantly higher median accuracies of 83.36% in the
A B

FIGURE 7

Distribution of radiomics score value of the luminal and non-luminal BC in the training (A) and test sets (B).
TABLE 3 Rad-score for the training and test sets.

Rad-score Luminal type (median, IQR) Non-luminal type (median, IQR) p-value

Training set 2.267
(1.139, 3.100)

0.133
(-0.598, 0.734)

<0.001

Test set 1.948
(1.288, 2.667)

0.054
(-1.245, 0.885)

<0.001
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training set and 80.05% in the test set, with a median AUC value

of 0.765 in the test set. This might lead by that the ultimate effect

of the model is closely relevant to the generalization of the neural

network and sample size. If the sample dataset is weakly

representative, there are a number of conflictive or redundant

samples, and then it is difficult for the neural network to obtain

the expected result.

For the prediction of the luminal type, the AUC values of

the Rad-score and nomogram were 0.786 and 0.767 in the test

set. In a recent non-contrast-enhanced chest CT radiomics

study (21), Wang and colleagues established forty-two models

to predict the luminal type of breast cancer by the combination
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of six feature screening methods and seven machine learning

classifiers. The final optimal model for external validation on

the independent test set obtained an AUC value of 0.757. With

regard to feature dimensionality reduction algorithms, they

found that the overall performance of the LASSO regression

was better than other dimensionality reduction methods in the

field of AUC and accuracy. In our study, we also adopted

LASSO algorithm for feature dimensionality reduction. In their

study, the prediction model was established by seven different

machine learning classifiers, among which support vector

machine achieved the highest AUC value in both internal

and external validations. On the contrast, in our study,
FIGURE 8

Nomogram based on the combination of the US-reported tumor size and Rad-score was developed using logistic regression analysis. If a
patient with the radiomics score of 3.231 and US-reported tumor size of 17 mm, and then the probability of the luminal breast carcinoma is
0.964 (red numbers).
TABLE 4 Comparison of the clinical features between the luminal and non-luminal BC in the training set.

Training set (n = 184)

Clinical feature Luminal (n = 143) Non-luminal (n = 41) p-value

Age (year, mean ± SD) 53.13 ± 11.25 52.32 ± 12.92 0.718

Location 0.453

Right 78 19

Left 65 22

US-reported tumor size (mm, mean ± SD) 22.48 ± 10.01 31.32 ± 11.86 < 0.001

US equipment 0.946

Siemens Acuson S2000 118 33

LOGIQ E9 25 8

US-reported LN 0.147

Metastasis positive 53 21

Metastasis negative 90 20

Rad-score (median, IQR) 2.267
(1.139, 3.100)

0.133
(-0.598, 0.734)

< 0.001
fronti
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models were built by using logistic regression only, and thus,

further studies adopting other machine learning classifiers

should be taken account in future. However, in our study,

the Rad-score and nomogram all showed appreciable

performance in the training and test sets. We believe that

they could be utilized as a reliable technique in discriminating

the luminal from non-luminal BC and may promote to assist

clinicians for preoperative decision-making.

Clinical features including US-reported tumor size, age,

tumor location, ultrasound equipment and ultrasound-

reported lymph node metastasis were assessed in this study.

Among them, US-reported tumor size (p < 0.001) showed a

significantly statistical difference between the luminal and non-

luminal BC in the training set. Furthermore, several previous

studies have demonstrated that there was statistical difference in

the terms of tumor size between the luminal and non-luminal

BC (32, 33). The nomogram integrated with the US-reported

tumor size showed a little higher predictive performance than

that of Rad-score (AUC, 0.832 vs. 0.828) in the training set, but a

little lower (AUC, 0.767 vs. 0.786) in the test set. However, no

matter in the training set or in the test set, there was no statistical

difference in the field of predictive performance between the

nomogram and Rad-score in our study, indicating that the US-

reported tumor size had limited effect to predictive performance
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of the nomogram. Furthermore, the US-reported tumor size

could be acquired preoperatively, and then the model could be

utilized for individualized prediction of the luminal type in

patients with BC.

In the present study, the Rad-score was developed based on

11 luminal-related features, among which 1 first order feature, 5

glszm features, 1 glrlm feature and 1 gldm feature were included.

A mix of first-order, texture and wavelet features seemed to be of

importance for differentiation between the luminal and non-

luminal BC, suggesting the complementary value of the

combination of different radiomics features to capture different

functional aspects of tumor biology. Six out of eleven radiomics

features were texture features that showed the value of inter-

tumor heterogeneity in predicting the gene expression (34, 35).

At the same time, eight out of eleven radiomics features were

wavelet features, which can also be utilized to extensively

quantify heterogeneity of the tumor through different spatial

scales at respective directional orientations (36). Furthermore,

the first-order statistics feature such as Kurtosis appeared among

the final radiomics features. Kurtosis describes the intensity

value of the tumor, which is applied to many classification

tasks (37, 38). Besides, radiomics features including ‘wavelet-

HHL_gldm_DependenceNonUniformityNormalized ’ ,

‘original_glrlm_HighGrayLevelRunEmphasis’, ‘wavelet-
TABLE 5 Performances of the models in the prediction of the luminal breast carcinoma.

Model Cohort AUC (95% CI) SEN (%) SPE (%) ACC (%) PPV (%) NPV (%)

Clinical Training 0.691 (0.610-0.803) 88.03% 52.38% 79.89% 86.21% 56.41%

Test 0.526 (0.377-0.675) 75.86% 40.91% 66.25% 77.19% 39.13%

Rad-score Training 0.828 (0.747-0.911) 81.82% 78.05% 80.98% 92.86% 55.17%

Test 0.786 (0.635-0.924) 86.21% 77.27% 83.75% 90.91% 68.00%

Nomogram Training 0.832 (0.751-0.915) 85.31% 80.49% 84.24% 93.85% 61.11%

Test 0.767 (0.614-0.906) 87.93% 72.73% 83.75% 89.47% 69.57%
fro
AUC, area under the curve; SEN, sensitivity; SPE, specificity; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value; Rad-score, radiomics score.
A B

FIGURE 9

Receiver operating characteristic curves of the three models distinguishing the luminal from non-luminal type in the training (A) and test sets (B).
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LHL_glszm_SizeZoneNonUniformity’ and ‘original_glszm_

SmallAreaEmphasis’ were significantly associated with

molecular subtypes of BC in ultrasound images, which had a

higher proportion of the weight coefficient. However, the shape-

based feature was not selected to constitute the radiomics model,

indicating that the morphological characterization might be

less relevant to the luminal type. Hence, we believe that

tumor molecular level information can be obtained from

tumor radiomics analysis and radiomics features extracted

from ultrasound images of BC are available to predict

molecular subtypes.
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Our study had several limitations that should be taken into

account. First, the retrospective nature of the analyses might

have introduced selection bias. In addition, this was a single-

center study with a limited number of 264 patients. Hence,

future prospective studies are needed to further validate the

predictive performance of the models by using a large, multi-

center cohort. Second, the contour of tumor’s ROI was manually

depicted by sonographers, but the judgment of tumor’s contour

was easily influenced by personal subjective experience.

However, we believe that this was partially solved by

interobserver reproducibility assessment. Third, only gray-scale
A B

FIGURE 10

Calibration curves of the nomogram in the training (A) and test sets (B).
FIGURE 11

Decision curve of the nomogram. If the risk threshold is less than 92.1%, the nomogram model will obtain more benefit than all treatment
(assuming all breast carcinoma patients were luminal type) or no treatment (assuming all breast carcinoma patients were non-luminal type).
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ultrasound images were adopted in our study, and in the future,

we will add radiomics features of multimodal ultrasound to

further studies. For example, contrast-enhanced (39) and

elastography (40) ultrasound images, which may contain more

radiomics features than gray-scale ultrasound images. Finally,

our study was only conducted with two dimensional analysis of

the largest plane of the tumor, which might not comprehensively

capture the heterogeneous features of the tumor as compared to

a model on the basis of three dimensional analysis. Future

studies should focus on the establishment of a three-

dimensional model for distinguishing the luminal from non-

luminal BC.
Conclusions

In summary, both the Rad-score and nomogram can be

applied as useful, noninvasive tool for preoperatively

discriminating the luminal from non-luminal type in patients

with BC. Our study may provide a novel method to evaluate

molecular subtypes of BC. However, further studies with a

prospective design and larger population are required to

validate the conclusions.
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