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Objective: To develop a multi-modality radiomics nomogram based on DCE-

MRI, B-mode ultrasound (BMUS) and strain elastography (SE) images for

classifying benign and malignant breast lesions.

Material and Methods: In this retrospective study, 345 breast lesions from 305

patients who underwent DCE-MRI, BMUS and SE examinations were randomly

divided into training (n = 241) and testing (n = 104) datasets. Radiomics features

were extracted from manually contoured images. The inter-class correlation

coefficient (ICC), Mann-Whitney U test and the least absolute shrinkage and

selection operator (LASSO) regression were applied for feature selection and

radiomics signature building. Multivariable logistic regression was used to

develop a radiomics nomogram incorporating radiomics signature and

clinical factors. The performance of the radiomics nomogram was evaluated

by its discrimination, calibration, and clinical usefulness andwas compared with

BI-RADS classification evaluated by a senior breast radiologist.

Results: The All-Combination radiomics signature derived from the

combination of DCE-MRI, BMUS and SE images showed better diagnostic

performance than signatures derived from single modality alone, with area

under the curves (AUCs) of 0.953 and 0.941 in training and testing datasets,

respectively. The multi-modality radiomics nomogram incorporating the All-

Combination radiomics signature and age showed excellent discrimination

with the highest AUCs of 0.964 and 0.951 in two datasets, respectively, which

outperformed all single modality radiomics signatures and BI-RADS

classification. Furthermore, the specificity of radiomics nomogram was
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significantly higher than BI-RADS classification (both p < 0.04) with the same

sensitivity in both datasets.

Conclusion: The proposed multi-modality radiomics nomogram based on

DCE-MRI and ultrasound images has the potential to serve as a non-invasive

tool for classifying benign and malignant breast lesions and reduce

unnecessary biopsy.
KEYWORDS

breast neoplasms, radiomics, magnetic resonance imaging, ultrasound,
strain elastography
Introduction

Breast cancer (BC) is the most prevalent cancer and the

leading cause of cancer-related death in females worldwide (1,

2). Early detection and diagnosis are the keys to reduce mortality

for patients with BC (3). Mammography, ultrasound (US), and

magnetic resonance imaging (MRI) are well-known imaging

modalities for the detection and differentiation of breast lesions

(4–6). Among them, mammography and US are commonly used

for breast screening (7, 8). However, limited by the overlap of

breast parenchyma, lesions in mammography may be missed or

misidentified, particularly in women with dense breast tissue (9).

US and MRI, which are two common imaging modalities for the

clinical diagnosis of breast tumor besides mammography, can

provide different and supplementary information for the same

regions of breast lesion (10).

Breast US is an important non-radiation imaging modality

to reveal morphological characteristics of breast tumors as an

initial examination or to evaluate the suspicious findings at

mammography or MRI (8). However, conventional B-mode

ultrasound (BMUS) cannot provide spatial information of

breast tumors and has been reported with limited accuracy for

diagnosis of BC (11, 12). In recent years, US elastography is

increasingly used in the diagnosis of BC and included as an
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important parameter in the Breast Imaging Reporting and Data

System (BI-RADS) category (13). Strain elastography (SE) and

shear wave elastography (SWE) are two main types of US

elastography, in which SE is a semi-quantitative elastographic

technique based on the displacement of the tissue and can reflect

stiffness of the target lesion. SE plays an important role in

differentiating breast lesions based on the fact that malignant

lesions are usually stiffer than benign lesions and has the

potential to reduce unnecessary biopsy by improving the

specificity of breast US (14). Dynamic contrast enhanced MRI

(DCE-MRI) has a high spatial resolution with the availability of

3D images and is widely adopted in the clinical diagnosis of BC

(15). Although a high sensitivity (85%-97%) of DCE-MRI was

achieved in the differentiation of BC, especially for the

evaluation of vascular properties, relatively poor and variable

specificity (37%-86%) was reported (16–18). Combining US and

DCE-MRI to improve the diagnostic performance of BC has

been reported (19).

BI-RADS provides a standardized classification system of

breast imaging and is widely used in the clinical diagnosis of BC

(13). However, visual assessment and subjective reading based

on the qualitative descriptions of image features will inevitably

lead to large interpretation variability, which only achieved

moderate levels of inter-observer agreement (20). In order to

tackle these problems, radiomics analysis based on high-

throughput quantitative features extracted from radiographic

images has been proposed and developed to improve the

diagnosis of BC (21). Studies demonstrated that radiomics

analysis based on US or DCE-MRI was useful in breast tumor

classification (22, 23), prediction of lymph node metastasis (24)

and Ki-67 expression levels (25). Multiparametric MRI (26) and

dual-model US radiomics (27) have also been investigated, but

only one single imaging method was used. To the best of our

knowledge, multi-modality radiomics analysis based on the

combination of DCE-MRI and US images was rarely reported,

especially combined with US elastography. Different imaging

methods can make up for the shortcomings of a single modality
frontiersin.org
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and the combining of radiomics features extracted from different

imaging modalities can build better models based on their

complementary information.

The purpose of this study is to develop a multi-modality

radiomics nomogram based on DCE-MRI, BMUS and SE images

for the classification of benign and malignant breast lesions.

Materials and methods

Study population

Patients with breast lesions who underwent biopsy or surgical

resection between October 2018 and December 2020 were

retrospectively reviewed in this study. This retrospective study

was approved by the Ethics Committee in Clinical Research

(ECCR) of the authors’ hospitals and informed consent was

waived. The exclusion criteria were as follows: (1) pathological

result of biopsy or surgical specimen was unavailable for the target

lesion; (2) patientswithoutDCE-MRI,BMUSandSEexaminations

before biopsy or surgery within one month; (3) patients had

performed radiotherapy, chemotherapy, or breast biopsy before

MRI and ultrasound examinations; (4) patients without complete

DICOM data for each examination; (5) patients with poor-quality

images. Finally, 345 breast lesions from 305 patients were enrolled

in this study. The lesions were randomly divided into training (n =

241) and testing (n=104)datasets at a ratio of 7:3. Theflowchart for

patient selection was shown in Figure 1.

Conventional clinical characteristics for all patients,

including age and primary site, were obtained from electronic
Frontiers in Oncology 03
medical records. The maximal diameter of the lesion was

measured on DCE-MRI image by a radiologist with 16 years

of experience in breast disease.
Image acquisition and tumor
segmentation

All patients were scanned in the prone position with a 3.0T

MRI scanner (SIGNA HDx, GE Healthcare) using a dedicated 8-

channel bilateral breast coil with identical imaging protocol.

BMUS and SE were performed using the HI VISION Preirus

system (Hitachi Medical, Tokyo, Japan) equipped with a 5-13

MHz linear array transducer. The examinations were performed

by two radiologists with 11 and 10 years of experience in breast

US. The BMUS was first used to detect and evaluate the lesion,

and SE was further performed to access the stiffness of the target

lesion. As the SE elastogram was a composite of translucent color

elastographic image and the corresponding BMUS image, the

elasticity data was reconstructed to generate a purified gray-scale

elasticity image for feature extraction (28, 29). The detailed

imaging information and post-process for DCE-MRI, BMUS

and SE images are provided in Supplementary Appendix A1.

The tumors were manually contoured in three imaging

modalities by a junior breast radiologist and verified by a

senior radiologist using the 3D Slicer software (version 4.11,

https://www.slicer.org). To assess the stability of radiomics

features, manual segmentation was also performed

independently by another radiologist with fifty-five randomly
FIGURE 1

The flowchart of patient selection for this retrospective study.
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selected lesions to calculate the inter-class correlation coefficient

(ICC) of radiomics features (30). Two radiologists were both

blinded to the final pathological diagnosis. As the contrast

between tumor and background tissue reached a peak in DCE-

MRI, the second post-contrast phase of DCE sequence was used

for tumor segmentation and radiomics feature extraction (31).

Two types of tumor segmentation for DCE-MRI: DCE-2D and

DCE-3D, were used to compare their performance of radiomics

signatures in this study. DCE-2D and DCE-3D indicated the

maximum slice of the tumor and the full slices of the tumor in

DCE-MRI, respectively. For US image, the lesion regions were

manually delineated on BMUS images and then mapped to the

SE images (28). For patients with 2 or more lesions, the lesions

with available pathological results were all contoured. Radiomics

features were extracted and analyzed for individual lesion. The

contours for the same lesion between three imaging modalities

of a typical patient were shown in Figure 2.
Radiomics feature extraction

Artificial Intelligence Kit software (A.K, version V3.2.0, GE

Healthcare) was used for radiomics feature extraction, according

to the reporting guidelines of Image Biomarker Standardisation

Initiative (IBSI) (32). Spatial resampling to 1 mm isotropic

voxels was applied on DCE-MRI images to standardize for

pixel size and slice thickness variations. For DCE-MRI, BMUS

and SE images, the bin width of pixel level was set to 25. Seven

groups of features were extracted from the tumor regions of the

original, Laplacian of Gaussian (LoG), wavelet and local binary

pattern (LBP) of each image, respectively: first order, shape,

gray-level co-occurrence matrix (GLCM), gray-level size zone

matrix (GLSZM), gray-level run length matrix (GLRLM),

neighboring gray tone difference matrix (NGTDM) and gray-

level dependence matrix (GLDM).
Frontiers in Oncology 04
Radiomics feature selection and
signature construction

The data were randomly divided into training (70%) and

testing datasets (30%) based on lesions. A three-step feature

selection methodology was designed to reduce the data

dimension and select key features for signature construction in

the training dataset. The ICCs were first used to estimate the

reproducibility and stability of radiomics features. Radiomics

features with ICCs greater than 0.90 were selected. Then Mann-

Whitney U tests were employed to select radiomics features with

p < 0.05 as potentially robust features. Finally, the least absolute

shrinkage and selection operator (LASSO) was applied to further

select key features by elastic net parameter tuning and 10-fold

cross-validation.

The selected features were combined linearly with relative

weights to calculate the radiomics score (Rad-score) and construct

the single modality radiomics signature for each lesion. For the

combination of multiple imaging modalities, all the selected key

features of corresponding images were combined and introduced

into logistic regression to construct the radiomics signature. The

Rad-score of the multi-modality radiomics signature was obtained

via a linear combination of all selected features weighted by their

corresponding coefficients of the logistic regression. The

performance of radiomics signatures were evaluated by the

receiver operator characteristic (ROC) curve and area under the

curve (AUC) in both training and testing datasets. The

corresponding accuracy, sensitivity and specificity were calculated.
Development, performance, and
validation of radiomics nomogram

In the training dataset, univariate logistic regression

analysis was first applied to identify potential predictors
FIGURE 2

The contours for the same lesion between three imaging modalities of a typical patient. (A) DCE-2D; (B) DCE-3D; (C) BMUS; (D) SE elastogram,
displayed as a translucent color elastographic image superimposed on the corresponding BMUS image; (E) Pure color elasticity image, obtained
by subtracting the BMUS from the SE elastogram; (F) Pure gray-scale elasticity image, the contour was mapped from BMUS.
frontiersin.org

https://doi.org/10.3389/fonc.2022.992509
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2022.992509
associated with BC, such as clinical characteristics and

radiomics signature. Then, the multivariate logistic regression

analysis was used to select independent predictors to develop a

radiomics nomogram for benign and malignant breast lesion

classification. Nomograms are widely used for diagnosis of

malignancy and cancer prognosis, primarily because of their

ability to generate an individual probability of a clinical event

by integrating diverse prognostic and determinant variables,

which meet our desire for clinically integrated models (33).

User-friendly graphical interfaces facilitate the use of

nomograms during clinical encounters to aid clinical decision

making. The discrimination performance of the radiomics

nomogram was quantitatively evaluated using ROC analysis

and AUC. The calibration of the nomogram was assessed using

the calibration curve and the Hosmer-Lemeshow test. The

diagnostic performance of the established nomogram was

further tested in the testing dataset.
Radiological evaluation and clinical use

A senior radiologist (with 26 years of experience) who was

blinded to the pathological results reviewed the MRI and US

images of each lesion by following the ACR BI-RADS 5th edition

(13). Then, the BI-RADS category of 345 lesions was classified

into 2, 3, 4A, 4B, 4C, and 5 with the combination of MRI and US

evaluation (34).

To evaluate the clinical usefulness of the radiomics

nomogram, a decision curve analysis (DCA) was performed by

guiding biopsy at different threshold probabilities in the testing

dataset (35). Moreover, the DCA was also used to compare the

additional value of radiomics nomogram relative to BI-

RADS classification.
Frontiers in Oncology 05
Statistical analysis

Statistical analysis was performedwith R software (version 4.1.0,

http://www.R-project.org), SPSS software (version 19.0, IBM,

Armonk, NY, USA), and MedCalc software (version 19.8,

Mariakerke, Belgium). The Chi-Squared test or Fisher exact test

and theStudent t-test orMann-WhitneyUtestwereused tocompare

categorical variables and continuous variables, respectively. The ICC

and LASSO regression was performed using the “irr” and “glmnet”

packages. The nomogram and DCA were plotted by the “rms” and

“rmda” packages. The MedCalc software was used to perform the

ROC curves. Delong test was performed to compare different AUCs.

A value of p < 0.05 was considered as statistically significant.

Results

Patients and lesions

A total of 345 breast lesions in 305 patients (mean age 47.9 ± 10.1

years, range 22-78 years) were enrolled in this retrospective study.

The characteristics and pathological information of breast lesions

from corresponding patients were shown in Table 1 and

Supplementary Tables S1, S2. Statistical differences were found

between malignant group and benign group in age, maximal diameter

and BI-RADS category in both datasets (p < 0.05). The characteristics

were well balanced between the training and testing datasets.
Feature selection and radiomics
signature construction

A total of 1316 radiomics features were extracted fromDCE-2D

and DCE-3D regions of DCE-MRI, respectively. For BMUS and SE
TABLE 1 Characteristics of breast lesions from corresponding patients in the training and testing datasets.

Characteristics Training dataset (n = 241) p value Testing dataset (n = 104) p value

Malignant (n = 152) Benign (n = 89) Malignant (n = 66) Benign (n = 38)

Age (years)

Mean ± SD 49.7 ± 9.9 44.7 ± 9.1 <0.001 50.3 ± 9.7 44.3 ± 11.5 0.006

Range 22–72 24–78 34–68 23–72

Maximal diameter (cm)

Mean ± SD 2.3 ± 1.3 1.6 ± 1.2 <0.001 2.5 ± 1.2 1.9 ± 1.4 0.022

Range 0.5–7.8 0.3–6.5 0.7–6.3 0.5–6.5

Primary site 0.482 0.712

Left 72 (47.4%) 38 (42.7%) 34 (51.5%) 21 (55.3%)

Right 80 (52.6%) 51 (57.3%) 32 (48.5%) 17 (44.7%)

BI-RADS category <0.001 <0.001

2–4A 16 (10.5%) 72 (80.9%) 6 (9.1%) 27 (71.1%)

4B–5 136 (89.5%) 17 (19.1%) 60 (90.9%) 11 (28.9%)
fronti
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images, a total of 1130 radiomics features were extracted from the

region of target lesion, respectively. Therewere 767, 863, 831 and854

radiomics featureswithhighstabilityandreproducibility (ICCs>0.9)

for DCE-2D, DCE-3D, BMUS and SE images, respectively.

Subsequently, according to the Mann-Whitney U test with a p <

0.05, there were 555, 643, 379 and 592 features remained fromDCE-

2D, DCE-3D, BMUS and SE images, respectively. Based on the

LASSO logistic regression, in which 10-fold cross-validation was

applied, 8, 18, 8 and 7 radiomics features were screened out to build

radiomics signatures from DCE-2D, DCE-3D, BMUS and SE

images, respectively (Supplementary Figure S1). The selected

features from corresponding images were combined linearly with

relative weights to calculate the Rad-score and construct the

radiomics signature for each lesion. The Rad-score calculation

formula of each radiomics signature was presented in

Supplementary Appendix A2.

Performance of radiomics signatures
based on single imaging modality

Table 2 and Supplementary Figure S2 showed the detailed

diagnostic performance and ROC curve analysis of single modality

radiomics signatures. The AUCs comparison between DCE-2D and

DCE-3D radiomics signatures in the training and testing datasets

were 0.801 vs. 0.877 and 0.782 vs. 0.810, respectively. The DCE-3D

radiomics signature showed better diagnostic performance than

DCE-2D radiomics signature according to all evaluation metrics in

both datasets. Therefore, the selected features of DCE-3D radiomics

signature were used to construct the multi-modality radiomics

signatures. In addition, the radiomics signatures derived from

BMUS and SE images achieved AUCs of 0.819, 0.785 and 0.880,

0.866 in the training and testing datasets, respectively.

Performance of radiomics signatures
based on multiple imaging modalities

The detailed diagnostic performance and ROC curve

analysis of four established multi-modality radiomics
Frontiers in Oncology 06
signatures were shown in Table 3 and Supplementary Figure

S3. The AUCs of four multi-modality radiomics signatures

(BMUS + SE, DCE-3D + BMUS, DCE-3D + SE and All-

Combination) were 0.895, 0.929, 0.945 and 0.953 in the

training dataset, and then confirmed in the testing dataset with

the AUCs of 0.874, 0.862, 0.935 and 0.941, respectively. The All-

Combination radiomics signature based on DCE-3D, BMUS and

SE images achieved the best AUC of 0.941 in the testing dataset

with accuracy, sensitivity and specificity of 85.6%, 87.9% and

81.6%, respectively. Rad-score of the All-Combination radiomics

signature for each lesion in the training and testing datasets was

shown in Supplementary Figure S4 and the optimal cutoff value

was determined to be 0.797. The All-Combination radiomics

signature was introduced into the multivariate logistic regression

analysis to construct the radiomics nomogram.
Construction and validation of the
radiomics nomogram

Multivariate logistic regression analysis showed that the All-

Combination radiomics signature and age were identified as

independent predictors for benign and malignant breast lesion

classification (Table 4). A multi-modality radiomics nomogram

incorporating the All-Combination radiomics signature and age

was developed (Figure 3A). The calibration curve for the

radiomics nomogram was tested using Hosmer-Lemeshow

test, and yielded a non-significant result (both p > 0.1 in

training and testing datasets) providing evidence of good

calibration (Figures 3B, C). The radiomics nomogram achieved

an AUC of 0.964 in the training dataset with accuracy, sensitivity

and specificity of 90.9%, 89.5% and 93.3%, respectively (Table 5).

In the testing dataset, it also showed excellent diagnostic

performance, with the AUC, accuracy, sensitivity and

specificity of 0.951, 90.4%, 90.9% and 89.5%, respectively. As

shown in Supplementary Table S3, the AUCs of radiomics

nomogram were significantly higher than all single modality

radiomics signatures in both datasets (all p < 0.03).
TABLE 2 The diagnostic performance of single modality radiomics signatures.

Radiomics signatures Training dataset Testing dataset

AUC ACC,% SEN,% SPE,% AUC ACC,% SEN,% SPE,%

DCE-2D 0.801
(0.745–0.850)

77.2
(71.4–82.3)

81.6
(74.5–87.4)

69.7
(59.0–79.0)

0.782
(0.690–0.857)

74.0
(64.5–82.1)

84.9
(73.9–92.5)

55.3
(38.3–71.4)

DCE-3D 0.877
(0.828–0.915)

81.7
(76.3–86.4)

82.9
(76.0–88.5)

79.8
(69.9–87.6)

0.810
(0.722–0.880)

78.8
(69.7–86.2)

89.4
(79.4–95.6)

60.5
(43.4–76.0)

SE 0.880
(0.832–0.918)

80.9
(75.4–85.7)

78.9
(71.6–85.1)

84.3
(75.0–91.1)

0.866
(0.785–0.925)

78.8
(69.7–86.2)

78.8
(67.0–87.9)

78.9
(62.7–90.4)

BMUS 0.819
(0.765–0.866)

75.5
(69.6–80.8)

72.4
(64.5–79.3)

80.9
(71.2–88.5)

0.785
(0.693–0.859)

70.2
(60.4–78.8)

69.7
(57.1–80.4)

71.1
(54.1–84.6)
fron
Data in parentheses are 95% confidence intervals.
DCE, dynamic contrast enhanced; SE, strain elastography; BMUS, B-Mode ultrasound; AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPE, specificity.
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Comparison of radiomics nomogram and
BI-RADS classification

The detailed diagnostic performance and ROC curve

analysis between radiomics nomogram and BI-RADS

classification were shown in Table 5 and Figure 4. Compared

with the BI-RADS classification evaluated by a senior breast

radiologist, the radiomics nomogram achieved a significantly

higher AUC in the training dataset (0.964 vs. 0.910, p = 0.01) and

a comparable AUC in the testing dataset (0.951 vs. 0.909, p =

0.16). Besides, the accuracy of the radiomics nomogram was

better than BI-RADS classification in both datasets. It’s worth

noting that the specificity of radiomics nomogram was

significantly higher than BI-RADS classification in the training

dataset (93.3% vs. 80.9%, p = 0.03) and testing dataset (89.5% vs.

71.1%, p = 0.04) with the same sensitivity.
Clinical use

The DCA for the radiomics nomogram and BI-RADS

classification were presented in Figure 5. The DCA showed

that if the threshold probability was more than 5%, the

application of radiomics nomogram could provide a better net

benefit than BI-RADS classification, none-biopsy scheme and

all-biopsy scheme.
Frontiers in Oncology 07
Discussion

In this study, we developed a multi-modality radiomics

nomogram incorporating the All-Combination radiomics

signature and age for classifying benign and malignant breast

lesions. While multiple studies have reported the radiomics

analysis developed using MRI (26, 36) or US images (22, 28),

the multi-modality analysis was rarely reported. The proposed

radiomics nomogram demonstrated excellent diagnostic

performance with the highest AUC and accuracy of 0.964,

0.951 and 90.9%, 90.4% in the training and testing datasets,

respectively, which outperformed all single modality radiomics

signatures and BI-RADS classification evaluated by a senior

breast radiologist.

Radiomics based on DCE-MRI has been proven to be useful

in the classification of benign and malignant breast lesions (23).

Ji et al. used support-vector machine (SVM) to classify breast

lesions and achieved an AUC of 0.89 on the independent set

(36). It’s notable that the proportion of malignant and benign

cases in our study (1.7:1) is more balanced compared to the

study of Ji et al. (3:1). Besides, multiple lesions from the same

patient in the study of Ji et al. may led to the intra-patient

dependence, which was similar to our research. The global

analysis of two model selection procedures (LASSO and

stepwise models) was proposed for data with intra-patient

dependence to best define the set of radiomics features (37).
TABLE 3 The diagnostic performance of multi-modality radiomics signatures.

Radiomics signatures Training dataset Testing dataset

AUC ACC,% SEN,% SPE,% AUC ACC,% SEN,% SPE,%

BMUS + SE 0.895
(0.849–0.931)

83.0
(77.6–87.5)

80.9
(73.8–86.8)

86.5
(77.6–92.8)

0.874
(0.795–0.931)

77.9
(68.7–85.4)

77.3
(65.3–86.7)

79.0
(62.7–90.4)

DCE-3D + BMUS 0.929
(0.889–0.958)

85.5
(80.4–89.7)

86.2
(79.7–91.2)

84.3
(75.0–91.1)

0.862
(0.781–0.922)

79.8
(70.8–87.0)

86.4
(75.7–93.6)

68.4
(51.3–82.5)

DCE-3D + SE 0.945
(0.909–0.971)

89.6
(85.1–93.2)

92.1
(86.6–95.9)

85.4
(76.3–92.0)

0.935
(0.870–0.974)

85.6
(77.3–91.7)

90.9
(81.3–96.6)

76.3
(59.8–88.6)

All-Combination 0.953
(0.918–0.976)

89.2
(84.6–92.8)

89.5
(83.5–93.9)

88.8
(80.3–94.5)

0.941
(0.877–0.978)

85.6
(77.3–91.7)

87.9
(77.5–94.6)

81.6
(65.7–92.3)
fron
Data in parentheses are 95% confidence intervals.
DCE, dynamic contrast enhanced; SE, strain elastography; BMUS, B-Mode ultrasound; AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPE, specificity.
TABLE 4 Risk factors associated with malignancy of breast lesions using univariate and multivariate analysis.

Variables Univariate analysis Multivariate analysis

b Odds ratio (95% CI) p b Odds ratio (95% CI) p

Age 0.055 1.056 (1.026–1.088) <0.001 0.091 1.095 (1.036–1.158) 0.001

Maximal diameter 0.614 1.847 (1.384–2.465) <0.001 0.052 1.054 (0.648–1.715) 0.833

Primary site –0.189 0.828 (0.489–1.402) 0.482

All-Combination
radiomics signature

0.984 2.676 (2.044–3.504) <0.001 1.023 2.782 (2.059–3.759) <0.001
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Moreover, the robustness of radiomics features was also

important in radiomics analysis and several studies have

investigated feature robustness using novel approaches recently

(38, 39). In this study, radiomics features with ICC greater than

0.90 were selected as highly robust features. In our research, we

further compared the performance of radiomics analysis based

on 3D tumor volume and 2D segmentation on the maximum

slice of the tumor. The result demonstrated that the DCE-3D

radiomics signature showed better diagnostic efficacy and

outperformed DCE-2D radiomics signature according to all

evaluation metrics. This observation was consistent with the

previously reported study, suggesting that the additional benefit

may be obtained from using 3D tumor volume, which can better

depict spatial heterogeneity (40). However, a recent study

indicated that the 3D radiomics analysis showed a similar

performance to 2D analysis in predicting axillary lymph node

metastasis of BC (41). These studies demonstrated that the

effects of 2D or 3D radiomics analysis do not reach a

consensus and further studies are required.

Multiple studies have reported that radiomics based on US

image can be a useful clinical tool for classifying breast lesions.

Romeo et al. proposed a radiomics analysis combined with
Frontiers in Oncology 08
machine learning to classify breast lesions on BMUS images

and achieved an AUC of 0.82, which was similar to our result

(22). Additionally, radiomics features extracted from

elastography have also been investigated for breast tumor

differentiation, achieving an AUC of 0.917 using SE image

(28), which was slightly higher than our result of 0.866. The

difference may be mainly due to the advanced sonoelastomics

method (Cluster-Fv) proposed in the study of Zhang et al, which

makes great contributions to model building. Moreover, an

automatic image segmentation method using the Chan-Vese

level sets was applied in the study of Zhang et al. Recently,

several automated segmentation methods have been developed

for DCE-MRI and US images, and have the potential to be

applied in radiomics analysis (42, 43). However, the manual

segmentation by experienced experts is often regarded as the

“ground truth” or “gold standard” despite high inter-reader

variability (44, 45). It is interesting to note that the AUC of SE

radiomics signature in our study was higher than that of BMUS

radiomics signature, which is consistent with previous research

(46). This finding demonstrated that radiomics features

extracted from elastography may be the more valuable

predictors for breast lesion classification.
B C

A

FIGURE 3

Radiomics nomogram and calibration curves. (A) Radiomics nomogram developed in the training dataset incorporates the All-Combination
radiomics signature and age. Calibration curves of the radiomics nomogram in the training (B) and testing (C) datasets.
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Combination of radiomics features extracted from different

imaging modalities has been researched for improving the

diagnosis of breast cancer based on their complementary

information (26, 47). A multimodal US-based radiomics with

attribute bagging was developed using the approach of eight-fold

cross-validation and achieved an AUC of 0.919 (47). The cross-

validation and bootstrapping methods have been investigated to

mitigate the lack of independent external testing set in radiomics

analysis recently (48, 49). In our study, we further investigated

the value of combining DCE-MRI, BMUS and SE images for the

diagnosis of breast lesions using a radiomics approach. Among

four multi-modality radiomics signatures, the All-Combination

radiomics signature based on DCE-3D, BMUS and SE images

showed the best diagnostic performance with an AUC of 0.953

and 0.941 in training and testing datasets, respectively.

Interestingly, we observed that the performance of radiomics

signature derived from the combination of DCE-3D and SE

images is comparable to the All-Combination radiomics

signature with a similarly AUC value, demonstrating that

DCE-MRI and SE imaging modalities may contribute most to

the classification of breast lesions. In this study, the All-

Combination radiomics signature and age were identified as

independent predictors for benign and malignant breast lesion

classification. Older women had a higher probability of

malignancy, as has been reported in previous studies (50, 51).

The main contribution of this work is that we developed a

multi-modality radiomics nomogram incorporating the All-

Combination radiomics signature and age, showing an

excellent diagnostic performance in breast lesion classification.

The radiomics nomogram achieved AUCs of 0.964 and 0.951 in

training and testing datasets, respectively. According to our best

knowledge, this is the first study combining MRI and US

elastography images for radiomics nomogram building. A

dual-model US radiomics nomogram was developed based on

shear wave elastography (SWE) and BMUS with performance
Frontiers in Oncology 09
comparable to BI-RADS classification. The nomogram achieved

an AUC of 0.92 which was slightly lower than our result (27). A

multimodal classifier combining mammography and DCE-MRI

achieved a better diagnostic performance than any single

modality model and was in line with our result (52). Recently,

Qiao et al. built a MUM-Net classifier based on DCE-MRI and

conventional US, which achieved AUCs of 0.858, 0.870 and

0.857 for predicting lymph node metastasis, histological grades,

and Ki-67 expression levels, respectively (53). Although the tasks

were different and could not be directly compared with our

study, they can serve as a reference for the performance of our

model. Their result was comparable to our radiomics signature

derived from the combination of DCE-MRI and BMUS images

with an AUC of 0.862 for breast lesion classification. It’s notable

that when the radiomics features of SE images were added to the

multi-modality radiomics signature in our study, the AUC was

increased to 0.941, indicating the importance of SE

imaging modality.

Furthermore, compared with the BI-RADS classification

evaluated by a senior breast radiologist, the radiomics

nomogram showed better diagnostic performance in both

training and testing datasets. It is worth noting that the

specificity of radiomics nomogram was significantly higher

than BI-RADS classification in both datasets (both p < 0.04)

with the same sensitivity. The correct benign diagnosis is helpful

to avoid unnecessary biopsy. DCA demonstrated that the

nomogram could improve breast lesion management non-

invasively. Overall, the proposed radiomics nomogram was

expected to assist the diagnosis of radiologists and could be

possibly implemented in routine clinical practice.

This study had several limitations. First, this was a

retrospective study and the included patients were from one

institution. Future, the application of cross-validation and

bootstrapping approaches may alleviate this question and

multicenter studies are necessary to verify the reliability of
TABLE 5 The diagnostic performance of radiomics nomogram and BI-RADS classification.

Metrics Radiomics nomogram BI-RADS

Training dataset Testing dataset Training dataset Testing dataset

AUC 0.964 [0.932–0.984] 0.951 [0.890–0.983] 0.910 [0.867–0.943] 0.909 [0.837–0.957]

Accuracy† 90.9 (219/241)
[86.5–94.2]

90.4 (94/104)
[83.0–95.3]

86.3 (208/241)
[81.3–90.4]

83.7 (87/104)
[75.1–90.2]

Sensitivity† 89.5 (136/152)
[83.5–93.9]

90.9 (60/66)
[81.3–96.6]

89.5 (136/152)
[83.5–93.9]

90.9 (60/66)
[81.3–96.6]

Specificity† 93.3 (83/89)
[85.9–97.5]

89.5 (34/38)
[75.2–97.1]

80.9 (72/89)
[71.2–88.5]

71.1 (27/38)
[54.1–84.6]

PPV† 95.8 (136/142)
[91.3–98.0]

93.8 (60/64)
[85.5–97.4]

88.9 (136/153)
[83.9–92.5]

84.5 (60/71)
[76.7–90.0]

NPV† 83.8 (83/99)
[76.5–89.2]

85.0 (34/40)
[72.4–92.5]

81.8 (72/88)
[73.7–87.9]

81.8 (27/33)
[67.1–90.8]
†Data are percentages, with numerator/denominator in parentheses, and 95% confidence intervals in brackets.
AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value; BI-RADS, Breast Imaging Reporting and Data System.
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developed radiomics nomogram. Second, tumor segmentation

was performed manually and lacked reproducibility. Thus, we

selected radiomics features with ICC > 0.9 to address this

problem. An automated and stable segmentation method

should be developed in the future. Third, the type of

ultrasound elastography we used was SE imaging modality.

However, it was reported that SWE is more reproducible and

less operator-dependent than SE. The combination of DCE-MRI

and SWE radiomics features for classifying breast lesions is in

our future research directions. Fourth, carbohydrate antigen 153

(CA153) was not included for analysis due to the lack of

available data on some patients in this study, which is a

commonly used blood marker for breast cancer diagnosis and
Frontiers in Oncology 10
management. Furthermore, for MRI images, only the DCE-MRI

was included in radiomics analysis, and other sequences such as

DWI and T2WI were not analyzed.

In the future, the standardization of DCE-MRI and US

imaging between different institutions should be first

established. Then a multicenter study should be conducted to

verify the generalizability of the proposed nomogram. Further

improvements of nomogram could be achieved by merging

larger independent datasets from different institutions.

Moreover, multiparametric MRI and mammography could be

included to enrich the imaging modalities of radiomics analysis.

Future work should also include more meaningful clinical

characteristics, such as CA153, to further improve the
BA

FIGURE 4

Receiver operating characteristic (ROC) curves of the radiomics nomogram and BI-RADS classification in the training (A) and testing (B) datasets.
FIGURE 5

Decision curve analysis (DCA) for the radiomics nomogram and BI-RADS classification in the testing dataset. The y-axis represents the net benefit.
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diagnostic performance of radiomics model and finally apply the

proposed nomogram to clinical practice.

In conclusion, the multi-modality radiomics nomogram

incorporating the All-Combination radiomics signature and

age showed better diagnostic performance than all single

modality radiomics signatures and BI-RADS classification,

which may serve as a non-invasive tool for classifying benign

and malignant breast lesions and reduce unnecessary biopsy.
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