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Protein-protein interactions (PPIs) play vital roles in normal cellular processes.

Dysregulated PPIs are involved in the process of various diseases, including

cancer. Thus, these PPIs may serve as potential therapeutic targets in cancer

treatment. However, despite rapid advances in small-molecule drugs and

biologics, it is still hard to target PPIs, especially for those intracellular PPIs.

Macrocyclic peptides have gained growing attention for their therapeutic

properties in targeting dysregulated PPIs. Macrocyclic peptides have some

unique features, such as moderate sizes, high selectivity, and high binding

affinities, which make them good drug candidates. In addition, some oncology

macrocyclic peptide drugs have been approved by the US Food and Drug

Administration (FDA) for clinical use. Here, we reviewed the recent

development of macrocyclic peptides in cancer treatment. The opportunities

and challenges were also discussed to inspire new perspectives.

KEYWORDS

protein-protein interactions, macrocyclic peptide, cancer, treatment, drug
Introduction

Protein-protein interactions (PPIs) are the centers of most cellular processes. It has

been proven that the dysregulation of PPIs can lead to the pathogenesis of various

diseases, including cancer (1). One famous example is the negative regulation of tumor

suppressor protein p53 by mouse double minute 2 (MDM2) and its homolog MDMX.

Disruption of these PPIs exerts oncogenic activity (2). Another famous example is the

interaction between programmed cell death protein 1 (PD-1) and programmed cell death

ligand 1 (PD-L1), which plays a critical role in attenuating the immune response to
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cancer cells, thus leading to cancer immune escape (3, 4). Thus,

targeting pathologic PPIs has gained more attention as an

attractive strategy for cancer therapy.

Macrocyclic peptides have emerged as a class of ideal drug

candidates to target PPIs. They are composed of various

groups of molecules with a macrocyclic scaffold spanning

from 5 to 14 amino acid residues, and their molecular weight

is around 500-2000 (5, 6). As a structurally diverse class of

molecules, macrocyclic peptides contain different types of

molecules , including natural macrocycl ic peptides ,

peptidomimetics, stapled peptides, b-hairpin mimetics,

bicyclic peptides, and some macrocyclic peptides with

unnamed structures (7, 8). Stapled peptides refer to cyclic

peptides with a-helical conformations. Similarly, b-hairpin
mimetics refer to cyclic peptides with b-hairpin motifs. Both

a-helices and b-hairpins can locate at the active sites of

various PPIs, and the conformations are the main

determinants of the bioavailability and the bioactivity of

such peptides (9, 10). Thus, stapled peptides and b-hairpin
mimetics are ideal drug candidates. On the other hand,

bicyclic peptides and other peptides with unnamed

structures have also been developed to serve as novel drug

candidates for disease therapy. And bicyclic peptides are a

kind of peptides with two macrocyclic rings that allow

bicyclic peptides to be bifunctional (11). All four types of

macrocyclic peptides were used in drug development.
Frontiers in Oncology 02
The diverse conformational space of macrocyclic peptides

has captivated the imagination of medicinal chemists. With

rapid advances in peptide drug discovery, there is a robust

increase in the number of macrocyclic peptide antitumor

agents having undergone or completed the early phase of

clinical trials (12, 13). The details of those compounds tested

in clinical trials including indications and targets were in

Table 1. Furthermore, the FDA has approved two macrocyclic

peptide drugs, pasireotide (2014) and lanreotide (2014), to treat

pat ients with Cushing ’s d isease , acromegaly , and

neuroendocrine tumors (Table 2) (13, 14). And these two

drugs are derivatives of human hormones. To date, several

platforms have been used to develop macrocyclic peptide

drugs, including phage/mRNA display, splitintein circular

ligation of peptides and proteins (SICLOPPS), one-bead one-

compound (OBOC) libraries, and the random nonstandard

peptides integrated discovery (RaPID) system. These prolific

technologies enable researchers to generate specific and potent

macrocyclic peptides against almost any protein target. The

details of these technologies have already been well

summarized in several previous reviews (5, 8, 15).

In this manuscript, we reviewed the progress of macrocyclic

peptide drugs focusing on their application in cancer treatment.

First, we compared the benefits of using macrocyclic peptides to

target protein-protein interactions instead of other drug candidates,

such as small-molecule drugs and biologics. Then, we reviewed the
TABLE 1 Details of oncology macrocyclic peptide drugs in clinical trials.

Name Indications
(Phase, NCT number) a

Molecular
target

Target
location

Discovery platform Molecular
Weight

Company

Cilengitide Glioblastoma (phase III, NCT00689221)
NSCLC (phase II, NCT00842712)
Squamous cell carcinoma of the head and
neck (phase II, NCT00705016)
Melanoma (phase II, NCT00082875)
Prostate cancer (phase II, NCT00103337)
Leukemia (phase II, NCT00089388)

the integrins
avb3 and avb5

Extracellular
PPIs

Designed based on the RGD motif
and spatial screening

588 Merck-Serono

Balixafortide Breast cancer (phase III, NCT03786094)
MM (phase 2, NCT01105403)
Leukemia (phase II, NCT01413568)

CXCR4 Extracellular
PPIs

Protein epitope mimetic 1864 Polyphor Ltd.

LY2510924 Leukemia (phase II, NCT02642871)
Renal cell carcinoma (phase II,
NCT01391130)
Small cell lung carcinoma (phase II,
NCT01439568)

CXCR4 Extracellular
PPIs

Medium throughput screen and
rational design

1189 Eli Lilly and
Company

Motixafortide
(BL-8040)

MM (phase III, NCT03246529)
Pancreatic adenocarcinoma (phase II,
NCT02826486)
Gastric adenocarcinoma (phase I, II,
NCT03281369)
Leukemia (phase II, NCT02763384)

CXCR4 Extracellular
PPIs

Downsized and modify-ed from a
natural protein named T22

2159 BioLineRx Ltd.

ALRN-6924 solid tumor and lymphoma (phase II,
NCT2264613)
lung cancer (phase I, NCT04022876)

MDMX/MDM2 Intracellular
PPIs

Phage display and further
modifications

1930 Aileron
Therapeutics,
Inc.
aFor drugs tested for different indications, the most advanced phase and latest trial are listed.
MDM, mouse double minute; PPI, protein-protein interaction; NSCLC, non-small cell lung cancer; RGD, Arg-Gly-Asp; MM, Multiple Myeloma; CXCR, C-X-C chemokine receptor.
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progress of two types of oncology macrocyclic peptides separately

based on the locations of their targets: extracellular or intracellular

PPIs. Finally, we discussed the opportunities and challenges in

discovering new macrocyclic peptide drugs.
The advantages of using
macrocyclic peptides to target PPIs

There are several advantages of using macrocyclic peptides to

target PPIs over small-molecule drugs, linear peptides, and biologics

[proteins andmonoclonal antibodies (mAbs)] (Table 3). First, it can

target protein PPIs interfaces generally ‘undruggable’ to both small-

molecule drugs and biologics. It is difficult for small molecules to

modulate PPIs because of a lack of binding pockets, poor selectivity,

or small binding-surface area. However, peptides can interact with

PPIs at multiple and distant sites with higher selectivity due to larger

surface area and higher structural complexity (12). Biologics, on the

other hand, are restricted to target extracellular PPIs because of

poor cell permeability. Macrocyclic peptides can target extracellular

and intracellular PPIs with relatively better cell permeability and

tissue penetration. Second, it was estimated that the overall expense

of peptide drugs might be lower than that of small-molecule drugs

with the progression in synthetic methodology (16). Third, peptides

have less immunogenicity, toxicity, and reduced off-target effects (5,

8). Furthermore, in comparison to linear peptides, cyclization not

only can decrease polar surface area, increase cell permeability, and
Frontiers in Oncology 03
elevate stability to protease enzymes but also can enable peptides to

interact with targeting proteins with less entropic binding cost in the

correct three-dimensional conformation (17). Thus, macrocyclic

peptides have occupied a specific space in targeting PPIs and

attracted attention in recent years (Table 4).
Macrocyclic peptides targeting
extracellular PPIs

According to the ‘Rule of Five (Ro5)’, molecules with low

molecular weight (MW below 500), the calculated logP below 5,

fewer than five hydrogen bond donors, and fewer than ten

hydrogen bond acceptors demonstrate good cell-permeability

(6). Macrocyclic peptides violate all of the above parameters and

lead to the fact that the unsatisfying cell permeability might be

the Achilles’ heel of macrocyclic peptides. In this circumstance,

targeting extracellular PPIs, especially the interactions between

cell-surface receptors and their ligands, seems to provide an

avenue for the clinical applications of macrocyclic peptides to

bypass delivery challenges (Figure 1) (5, 58).
Somatostatin analogs

Somatostatins are a family of natural cyclic peptide

hormones expressed in pancreatic d-cells, the gastrointestinal
TABLE 3 The difference among three major classes of therapeutic molecules.

Properties Small molecules Peptides Biologics

Linear Macrocyclic

Molecular weight <500 500-2000 >5000

Binding surface area (Å2) 300-1000 1500-3000 1000-3000

Protease resistance High Moderate High Low

Cell permeability High Low Moderate Inability

Affinity for PPIs Low Moderate High High

Optimal targets Enzymes Intracellular/extracellular PPIs Extracellular PPIs

Oral bioavailability High Low to moderate Inability

Subtype selectivity Low to moderate Moderate to high High

Representative drug Crizotinib Degarelix Lanreotide Nivolumab
PPIs: protein-protein interactions.
TABLE 2 Details of oncology macrocyclic peptide drugs approved by the FDA (2008-2022).

Name Indication Molecular
target

Target
location

Source Molecular
Weight

Company

Lanreotide Cushing’s disease, acromegaly, neuroendocrine
tumors

Somatostatin
receptor

Extracellular
PPIs

Somatostatin
analogs

1096 Ipsen

Pasireotide Cushing’s disease, acromegaly Somatostatin
receptor

Extracellular
PPIs

Somatostatin
analogs

1047 Recordati
Inc.
fro
PPIs: protein-protein interactions.
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TABLE 4 Examples of macrocyclic peptides.

Compound
no. and
name

Target (Kd or EC50 or
IC50 value for target)

Biological activity Refs

1. Lanreotide Somatostatin receptors (IC50 =

57 nM in GH cells)
Approved to treat Cushing’s disease, acromegaly, and neuroendocrine tumors; in vitro (antitumor effect in
oral squamous cell carcinoma cell lines)

(18,
19)

2. pasireotide Somatostatin receptors (IC50 =

0.4 ± 0.1 nM in rat pituitary
cells)

Approved to treat Cushing’s disease and acromegaly; in vitro (antitumor effect in multiple thyroid cancer,
prostate cancer and oral squamous cell carcinoma cell lines); in vivo (reduced metastasis in ductal pancreatic
adenocarcinoma and pancreatic mouse xenograft models and antitumor effect in thyroid cancer mouse
xenograft models)

(19–
26)

3.
Motixafortide

CXCR4 (IC50 = 1 nM) In vitro (induction of CXCR4-dependent cell death in leukemia and MM cell lines); in vivo (antitumor effect
in leukemia, MM, NSCLC mouse xenograft models); clinical trials (NCT02826486, NCT01838395, and
NCT02073019)

(27–
34)

4. Balixafortide CXCR4 (IC50<10 nM) In vitro (inhibition of pERK/pAKT signaling in Namalwa and Jurkat cell lines and SDF-1 dependent
chemotaxis in MDA-MB-231, Namalwa, and Jurkat cell lines); clinical trials (NCT01837095)

(35,
36)

5. LY2510924 CXCR4 (IC50 = 0.0797 nM and
Ki= 0.0495 nM in CCRF-CEM
cells)

In vitro (inhibition of SDR-1- and CXCR4-mediated signaling pathways in HeLa cells); in vivo (antitumor
effect in human NHL and multiple solid tumor xenograft models)

(37)

6. Peptide R54 CXCR4 (IC50 = 1.5± 0.5 nM in
CCRF-CEM cells)

In vivo (antiproliferative effect in a PES43 mouse xenograft model) (38)

7. BMSpep-57 PD-L1(IC50 = 9 nM and EC50 =

566± 122 nM in Jurkat cells)
Untested in vitro (39)

8. BMSpep-71 PD-L1(IC50 = 7 nM and EC50 =

293± 93 nM in Jurkat cells)
Untested in vitro (39)

9. BMSpep-99 PD-L1(IC50 = 153 nM and
EC50 = 6.3± 3.28 mM in Jurkat
cells)

Untested in vitro (39)

10. BMS-
986189

PD-L1 (IC50 = 1.03 nM) Untested in vitro (40)

11. C8 PD-1 (Kd= 0.64± 0.19 mM) In vitro (activated CD8+ and CD4+ T cells); in vivo (antitumor effect in the CT26 mouse xenograft model) (41)

12. D4-2 SIRPa (IC50 = 0.18 mM) In vitro (improved the Ab-dependent cellular phagocytosis activity of macrophages); in vivo (antitumor effect
in Raji and B16BL6 mouse xenograft models)

(42)

13. HL2-m5 Sonic hedgehog (Shh) protein
(Kd= 170± 20 nM and IC50 =

250 nM)

In vitro (inhibition of Shh-dependent Hedgehog signaling in NIH-3T3 cell lines, IC50 = 250 nM) (43)

14. HiP-8 Hepatocyte growth factor
(HGF) (Kd= 0.93 nM and IC50

= 0.9 nM)

In vitro (inhibition of HGF-induced activation of the MET in human mesothelioma, B16-F10 melanoma, and
lung cancer cell lines); in vivo (inhibition of HGF in the PC-9 mouse xenograft model)

(44)

15. SUPR4B1w microtubule-associate protein
light chain (LC)3 (Kd= 120
nM for LC3A and 192 nM for
LC3B)

In vitro (inhibition of autophagy in HeLa cells) (45)

16. CM11-1 E3 ligase E6-associated protein
(E6AP) (Kd= 0.6 nM)

In vitro (inhibition of ubiquitination of targets protein catalyzed by E6AP) (46)

17. ATSP-7041 MDM2 and MDMX (Kd= 0.91
nM for MDM2 and 2.31 nM
for MDMX)

In vitro (activation of p53 signaling in SJSA-1 and MCF-7 cell lines); in vivo (anti-tumor effect in SJSA-1 and
MCF-7 mouse xenograft models)

(47)

18. ALRN-6924 MDM2 and MDMX (IC50 =
7.7 nM for MDM2 and IC50 =
24.7 nM for MDMX)

In vitro (activated p53-dependent transcription); in vivo (antitumor effect in a MOLM13 mouse xenograft
model and eight TCL PDX models, activated anti-tumor immune response in Colon26 allografts, and
synergistic effect in MCF-7 and ZR-75-1 mouse xenograft models); clinical trial (NCT02264613)

(48–
52)

19. hD1 USP22 (Ki=180 nM and IC50 =

100 nM)
In vitro (increased H2B ubiquitination in HEK293T cells) (53)

20. Ub4a Lys48-linked Ub chains (Kd=9
± 3 nM)

In vitro (induction of apoptosis in U87, SH-SY5Y, MDA-MB-231, and HeLa cell lines); in vivo (antitumor
effect in the human CAG myeloma cell mouse xenograft model)

(54)

21. mJ08-L8W Lys48-linked Ub chains (Kd=
1.2 nM)

In vitro (induction of apoptosis in U87 cell lines) (55)

22. KS-58 KRAS-G12D (EC50 = 22 nM) In vivo (anti-cancer activity in the PANC-1 mouse xenograft model) (56)

23. MP-3995 KRAS (IC50 = 0.5 nM) In vitro (antiproliferative effect in eight KRAS mutant cell lines) (57)
Frontiers in On
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tract, neuronal cells, and certain tumors. Somatostatins can

activate somatostatin receptors (SSTRs) which culminate in

the inhibition of hormonal secretion, modulation of neuronal

ion channel transmission, and cell growth arrest (59–61). SSTRs

are a family of G-protein-coupled receptors (GPCRs), which

include five subtypes termed SSTR1-5. The SSTRs incidence

varies among different tumor types. Neuroendocrine tumors and

tumors of nervous systems express high densities of SSTR2. But

other tumor types, such as renal cell carcinoma (RCC),

lymphoma, and inactive adenoma, have less SSTR2 or other

SSTR subtypes (62, 63). The rationale for the oncology

therapeutic use of SSAs depends on the expression of SSTR
Frontiers in Oncology 05
subtypes in relevant tumor tissues. The activation of SSTRs

induced by SSAs results in the inhibition of tumor-associated

pathophysiological hormonal secretion and tumor growth

(Figure 1A) (61). Two macrocyclic peptide drugs derived from

somatostatin, lanreotide (Table 1; Figure 2A, compound 1) and

pasireotide (Table 1; Figure 2B, compound2), have been

approved by the FDA in clinical practice up to now.

Lanreotide, the first-generation SSA, is a cyclic octapeptide.

It has a high affinity to SSTR2 and less affinity to SSTR3 and

SSTR5. Pasireotide, the second-generation SSA, is a cyclic

hexapeptide. It has the same affinity to SSTR2 but a higher

affinity to SSTR1, 3, and 5 than lanreotide (64, 65). Both have
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FIGURE 1

Macrocyclic peptides targeting extracellular protein-protein interactions. This scheme shows macrocyclic peptides-targeted extracellular proteins, the related
signaling pathways, and their cellular functions. (A) somatostatin analogs. Lanreotide and pasireotide are somatostatin analogs. They can inhibit the activation
of somatostatin receptors by endogenous somatostatin to inhibit cell proliferation. (B) C-X-C chemokine receptor (CXCR4) antagonists. Motixafortide,
balixfortide, LY2510924, and Pep R54 can inhibit the interaction between CXCR4 and CXCL12, which is essential for cancer cell proliferation. (C) Inhibitory
immune checkpoint inhibitors. BMSpep-57,77,99, BMS-986189, and C8 can inhibit the interaction between programmed cell death protein 1 (PD-1) and
programmed cell death ligand 1 (PD-L1), which negatively modulate the adaptive immune systems. D4-2 can inhibit the interaction between CD47 and
signal-regulatory protein (SIRP)a, which releases an inhibitory ‘do not eat me’ signal to lead to cancer cell evasion of immune detection and clearance. The
PD-1/PD-L1 axis and CD47/SIRPa axis are critical for cancer immunotherapy. (D) Hedgehog (HH) signaling protein inhibitors. HL2-m5 can inhibit the
activation of the HH pathway, which regulates target gene expression. (E) Receptor tyrosine kinase (RTK) inhibitors. HiP-8 can inhibit the hepatocyte growth
factor (HGF)-mesenchymal-epithelial transition tyrosine kinase receptor (MET) interaction which is critical for cancer cell proliferation, migration, and invasion.
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been approved by the FDA to treat Cushing’s disease and

acromegaly, which are characterized by chronic hypersecretion

of hormones from a pituitary adenoma (Table 2) (14, 66, 67). In

addition, lanreotide has been approved to treat neuroendocrine

tumors. In addition, lanreotide has been approved to treat

neuroendocrine tumors. It was reported that lanreotide

inhibited the growth of the rat GH3 pituitary tumor cell line

(IC50 = 57 nM) (18). And, pasireotide inhibited the growth

hormone release in rat pituitary cell lines (IC50 = 0.4 ± 0.1 nM)

(20). Multiple high-quality clinical trials and case series have

demonstrated alleviated symptoms, a statistically significant

increase in time to progression (TTP)/progression-free survival

(PFS), long-term safety profile, and sustained antitumor effects

upon treatment with lanreotide or pasireotide in patients with

Cushing’s disease, acromegaly or neuroendocrine tumors

(68–77).

On the other hand, SSAs may also have potential

applications in non-endocrine tumor types because these

tumors also express SSTRs. Thus, the off-label use of

lanreotide or pasireotide to treat such diseases may also be

promising. Despite the complete mechanisms of the antitumoral

activity of SSAs not been demonstrated yet, some of the possible

action mechanisms, including tyrosine kinase inhibition,

induction of cell cycle arrest, proapoptotic effect, and

inhibition of cancer cell adhesion and tumor angiogenesis,

have been reported (78, 79). Lanreotide and pasireotide

demonstrated antitumor effects in several preclinical models,

including those for pancreatic ductal adenocarcinoma (PDAC),

oral cavity squamous cell carcinoma, thyroid cancer, and

prostate cancer (19, 21–26). However, the clinical data

obtained from these non-endocrine tumors are still limited

and discouraging. These two drugs showed no or limited

benefit in several clinical cohorts (78, 80–83). The controversy

between the preclinical and clinical data may result from
Frontiers in Oncology 06
uninvestigated SSTR statutes of enrolled patients and

insufficient tumor cytotoxicity of SSAs. New generation SSAs

with a better affinity to a broader range of SSTR subtypes and

bigger tumor cytotoxicity and better planned clinical trials are

needed to evaluate the role of SSAs in non-endocrine tumors.
CXC chemokine receptor 4
(CXCR4) antagonists

CXCR4 is overexpressed in more than 20 human cancer

types and correlated with advanced disease status and poor

prognosis (84–86). The interaction between CXCR4 and its

natural ligand CXCL12 (also known as stromal cell-derived

factor-1a, SDF-1a) comprises a biological axis that is a well-

validated PPI therapeutic target. It plays critical roles in

mobilizing cancer cells and hematopoietic stem cells from the

bone marrow to the peripheral blood and cancer progression,

including the proliferation, invasion, and angiogenesis of cancer

cells (87). Currently, the only marketed CXCR4 inhibitor is

plerixafor (AMD 3100, a small-molecule drug) for stem cell

mobilization in non-Hodgkin’s lymphoma (NHL) and multiple

myeloma (MM) patients. Up to now, four macrocyclic peptide

drugs serving as CXCR4 antagonists have been reported, and

three of them are in clinical trials (Table 2; Figure 1B) (88, 89).

Motixafortide (BL-8040, BKT140) (Table 2; Figure 3A,

compound 3), a heterodetic cyclic peptide, is the first peptide

antagonist for CXCR4 and receives orphan drug designation for

the treatment of pancreatic cancer from the European

Commission and the FDA. It was modified from a natural

protein named T22 (27, 90, 91). The inhibition mechanism of

motixafortide is different from that of plerixafor. While

plerixafor works as a weak partial agonist, motixafortide works

as an inverse agonist with a higher affinity and a more lasting
FIGURE 2

Macrocyclic peptides targeting somatostatin receptors. (A) Lanrenotide. IC50: 57 nM in GH cells; (B) Pasireotide, IC50: 0.4±0.1 nM in rat
pituitary cells.
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CXCR4 occupancy, showing an IC50 of 1 nM (28). It introduced

unique cell-specific pro-apoptotic signaling pathways in MM

and leukemia cells and induced apoptosis of acute myeloid

leukemia (AML) blasts by altering the expression of miR-15a/

16-1 (27, 29, 92). In addition, motixafortide may be an immune-

modulatory agent by recruiting peripheral immune progenitor

cells, which results in an enhanced antitumor immune response

(93, 94). Both motixafortide monotherapy and combined

therapy with chemotherapy or immunotherapy are safe with

the profit from combination treatments in various cancer types

(28, 30–34, 92). These cancers included AML, chronic myeloid

leukemia (CML), MM, PDAC, and non-small cell lung

cancer (NSCLC).

Balixafortide (POL6326) (Table 2; Figure 3B, compound 4)

is also modified from T22 by the protein epitope mimetic

approach (95). The ADME properties of balixafortide

demonstrated a higher binding affinity (100-fold) and a

prolonged binding to CXCR4 than plerixafor (96). Binding to

CXCR4 with the b-hairpin mimicry, balixafortide inhibited the

CXCL12-induced activation of downstream MAPK-ERK/PI3K-
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AKT pathways in the lymphoma and AML cell lines and blocked

the CXCL12-dependent chemotaxis in breast cancer and

leukemia cell lines (35, 95, 97). In addition, balixafortide can

enhance the efficacy of chemotherapy by mobilizing AML cells

that locate in a protective stromal microenvironment into

circulation and lead to prolonged survival in the murine

leukemia model (98). The profiles with excellent safety and

tolerability of this drug have been observed in three early-

phase clinical trials (36, 99, 100). Additionally, balixafortide

plus eribulin showed potential anti-cancer activities among

patients with HER2-negative metastatic breast cancer in a

phase I clinical trial (NCT01837095) (36). Further evaluation

of the comparative efficacy and safety of this combination versus

eribulin monotherapy among patients with metastatic breast

cancer in a randomized phase III trial (NCT03786094)

is ongoing.

LY2510924 (Table 2; Figure 3C, compound 5) was developed

by a medium throughput screen and rational design (37). It is a

CXCR4 inhibitor featuring high in vivo stability but potentially

with some safety issues and limited drug efficacy. Firstly, it
FIGURE 3

Macrocyclic peptides targeting CXC chemokine receptor 4 (CXCR4). (A) Motixafortide, IC50: 1 nM; (B) Balixafortide, IC50: 10 nM; (C) LY2510924,
IC50: 0.0797 nM in CCRF-CEM cells; (D) Peptide R54, IC50: 1.5 nM in CCRF-CEM cells.
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showed reasonable preclinical activities in man tumor models.

According to the structural modeling analysis, LY2510924

occupies the binding pocket in CXCR4 and possesses contacts

with CXCR4 residues, including Arg30, Asp187, Arg188,

Phe189, Gln200, His 113, Tyr190, and Glu288 (37). The

potential mechanism of LY2510924 is that it may induce cell

cycle arrest (G1 to G2-M progression) via inhibiting CXCL12-

stimulated MAPK-ERK/PI3K-AKT and b-catenin pathways (37,

101). Monodrug therapy with LY2510924 demonstrated dose-

dependent antitumor growth and anti-metastasis activities in

leukemia, multiple solid tumor xenograft models, and a breast

cancer metastatic model. When used in combination, it

increased the efficiency of FLT3 inhibitors in preclinical FLT3-

mutated AML models by suppressing TGF-b signaling (102).

Secondly, the feature and advantage of LY2510924 is its high in

vivo stability. The elimination half-life of LY2510924 is 9.16

hours (20 mg/day) in one phase I clinical trial, which was much

higher than that of plerixafor (4.4-5.6 hours), motixafotide

(0.29-0.72 hours) and balixafortide (5 hours) (28, 100, 103).

Thus, a once-daily injection of LY2510924 for chronic treatment

in clinical applications seems to be possible. However, the safety

and clinical anti-cancer ability of LY2510924 need to be

concerned. Serious adverse events occurred more frequently in

the LY2510924 plus first-line standard of care (SOC) group than

the SOC alone group (51% vs. 30.2%) in a small cell lung cancer

(SCLC) phase II clinical trial (104). Additionally, the

combination did not improve the drug efficacy over SOC

monotherapy (median PFS: 5.88 months versus 5.85 months,

p=0.98) (104). Similarly, LY2510924 also did not improve the

drug efficacy when added to sunitinib in an RCC clinical trial

(median PFS: 8.1 months versus 12.3 months) (105). Further

investigation of LY2510924 to uncover the clinical mechanisms

of LY2510924 is warranted.

Maro et al. (38, 106, 107) reported a novel macrocyclic

peptide named Peptide R54 (Pep R54, Figure 3D, compound 6).

According to the molecular dynamics results, the Arg4, 2-Nal5,

and His6 side chains of Pep R54 occupied the minor and major

pockets of CXCR4 (106). It mimiced CXCL12 to selectively bind

the transmembrane bundle of CXCR4, which resulted in more

efficient inhibition of CXCL12-mediated cell migration in a

dose-dependent manner than plerixafor in vitro. In addition,

Pep R54 displayed synergistic effects in combination with

immunotherapy in a PES43 mouse xenograft model (38).

These macrocyclic peptides of CXCR4 antagonists described

above provide a valuable tool to target the CXCR4/CXCL12 axis

in cancer therapy.
Immune checkpoint inhibitors

Over the past decades, inhibitory immune checkpoint

blockade has become the fifth pillar of cancer treatment

beyond surgery, chemotherapy, radiation, and targeted
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therapy. Inhibitory immune checkpoints are critical for

maintaining self-tolerance and minimizing collateral tissue

damage when responding to pathogenic infection. This

complex immune response relies on an interplay of both

adaptive and innate immune systems (108, 109). However,

these checkpoints may be engaged in cancer development and

progression, leading to tumor immune surveillance escape and

suppressed antitumor immune responses (110). Thus, increasing

efforts have been paid to target inhibitory immune checkpoints

with ICIs to enhance anti-cancer immunity.

The PD-1/PD-L1 axis is a well-established T cell immune

checkpoint that negatively controls the adaptive immune

systems (Figure 1C). PD-1 is predominantly expressed on the

surface of antigen-stimulated T cells. Upon binding to PD-L1,

which is frequently expressed on cancer cells and antigen-

presenting cells, the PD-1/PD-L1 interaction reduces T cell

activation, proliferation, and survival leading to T cell

exhaustion and protecting cancer cells from destruction

mediated by cytolytic T cells (3, 4).

Several macrocyclic peptide inhibitors targeting the PD-1/

PD-L1 axis have been developed. Bristol-Myers Squibb has

reported two types of macrocyclic peptides for PD-1/PD-L1

blockade (Figure 1C) (111, 112). The first type of macrocyclic

peptide includes BMSpep-57, BMSpep-71, and BMSpep-99

(Figures 4A–C, compound 7, 8, and 9). The IC50 values of

these peptides were 9 nM, 7 nM, and 153 nM, respectively, in a

homogeneous time-resolved fluorescence assay to determine

their activities in inhibiting the interaction of PD-1/PD-L1

(39). These peptides restored the activities of the T-cell

receptor-responsive promoter in vitro in a dose-dependent

manner, and BMSpep-57 is the strongest one. The

pharmacophore of these peptides is not related to other

reported small-molecule PD-1/PD-L1 inhibitors, offering a

blueprint for designing novel and more powerful antagonists

of the PD-1/PD-L1 axis (113). The representative of another

type of macrocyclic peptide developed by Bristol-Myers Squibb

is BMS-986189 (compound 10), which completed the phase I

clinical trial in 2018 (NCT0273973) in healthy people, but its

structure was not released. BMS-986189 has a strong affinity for

PD-L1 with an IC50 value of 1.03 nM, according to the related

patents (40). Gao et al. (41) also reported a macrocyclic peptide

named C8 (Figure 4D, compound 11) with high binding affinity

with PD-1. The Arg5 and Cys9 of C8 form hydrogen bonds with

the Thr76 and Asn 74 of the PD-1 to interfere with the PD-1/

PD-L1 interaction. By interfering with the interaction and

activating CD8+ T cells, C8 exerted antitumor effects in the

CT26 mouse xenograft model in a CD8+ T cel ls-

dependent manner.

On the other hand, due to the suboptimal response rates to ICIs

targeting adaptive immune checkpoints, interest is growing in the

innate immune checkpoints, especially the phagocytosis checkpoint

(108). The signal-regulatory protein (SIRP)a-CD47 axis is the first
identified tumor phagocytosis checkpoint. SIRPa, an inhibitory
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receptor, is expressed on myeloid cells such as macrophages and

dendritic cells (DCs). It has an extracellular immunoglobulin (Ig)-

like domain to bind its ligand CD47 which is often over-expressed

on cancer cells. The interaction between CD47 and SIRPa transmits

an inhibitory ‘do not eat me’ signal resulting in cancer cell evasion

of immune detection and clearance (114–116). D4-2 is a

macrocyclic peptide (Figure 4E, compound 12) containing 15

amino acids. It was developed as an allosteric inhibitor to target
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the Ig-like domain of SIRPa (Figure 1C) (42). It can tightly bind to

SIRPa and form multiple intramolecular hydrogen bonds and salt

bridges. D4-2 can not only enhance the antibody-dependent cellular

phagocytosis activity of macrophages for antibody-opsonized

cancer cells in vitro but also demonstrate a synergistic effect on

tumor growth or metastasis in combination with rituximab and

TA-99 in vivo. Besides, the preclinical safety profile of D4-2 is also

encouraging. Only weak declines in total cholesterol and blood urea
FIGURE 4

Macrocyclic peptides targeting immune checkpoints. (A) BMSpep-57, IC50=9nM and EC50 =566±122 nM in Jurkat cells; (B) BMSpep-71, IC50=
7nM and EC50 =293±93 nM in Jurkat cells; (C) BMSpep-99, IC50=153 nM and EC50 =6.3±3.28 µM in Jurkat cell; (D) C8, Kd=0.64±0.19 µM; (E)
D4-2, IC50 = 0.18 µM
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nitrogen were observed in immunocompetent mice when treated

with D4-2.
Hedgehog signaling protein inhibitors

The HH signaling pathway plays a crucial role in embryonic

patterning and development. However, the HH protein secreted

by cancer cells induces the excessive activation of the HH

signaling pathway in tumor-infiltrating stromal cells, which in

turn contributes to the growth of cancer through several

paracrine signals (117). Thus, the ligand-induced activation of

the HH signaling pathway has emerged as one therapeutic target

(Figure 1D). Owens et al. (43) identified a macrocyclic peptide

named HL2-m5 (Figure 5A, compound 13) based on the HH

protein-binding loop of the HH-interaction protein (Figure 1D).

The Trp4 and Met10 residues of HL2-m5 formed potential

interactions with the HH protein. HL2-m5 inhibited ligand-

dependent HH signaling pathway activation and suppressed HH

signaling-dependent gene transcriptions in vitro. In addition, the

inhibitory activity of HL2-m5 is superior to that of robotnikinin,

which is a small-molecule inhibitor (IC50: 250 nM vs. 15 mM).
Receptor tyrosine kinase inhibitors

RTKs are a family of transmembrane receptors that play

pivotal roles in regulating cell-to-cell communications and

various cellular processes. Abnormal activation of RTKs leads

to many types of human malignancies. Thus, RTKs have

become important targets for therapeutic intervention, and
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RTK-based cancer therapies have reached widespread clinical

use nowadays (118, 119). Macrocyclic peptides have been

proposed to interfere with RTK activation by disrupting the

ligand-receptor PPIs.

Mesenchymal-epithelial transition (MET) tyrosine kinase

receptor is encoded by MET proto-oncogene. The abnormal

activation of MET by its natural ligand hepatocyte growth factor

(HGF) triggers a multistep signal transduction cascade involved in

tumorigenesis and seems invariably correlated with poor prognosis

(120–122). Thus, the oncogenic role of HGF/MET signaling has

underpinned the clinical investigation of MET inhibitors. HiP-8

(Figure 1E, 5B, compound 14), a macrocyclic peptide consisting of

12 amino acids, is identified by Katsuya et al. (44). It allosterically

inhibited the HGF/MET interaction by interacting with the NK4 and

SP domains of HGF in a dose-dependent manner, which, in turn,

prevented MET activation in vivo (Figure 1E). In addition, when

labeled with 64Cu, theHiP-8 variant served as a specific biomarker for

noninvasive imaging of HGF-positive tumors using PET.

Other RTKs, such as epidermal growth factor receptor

(EGFR), vascular endothelial growth factor receptor (VEGFR),

and fibroblast growth factor receptor (FGFR), are also frequently

over-expressed in many forms of human malignancies. They play

critical roles in the malignant growth and the progression of solid

tumors (123, 124). Yin et al. (125), Imanishi et al. (126), and

Stanton et al. (127) reported several macrocyclic peptides against

EGFR and VEGFR by inhibiting the ligand-receptor PPIs.

Similarly, Lipok et al. (128) reported a macrocyclic peptide, an

FGF-FGFR interaction antagonist, which can block FGF-induced

cell proliferation by 40%. Although more studies on the efficacy of

these compounds are required, these macrocyclic peptides provide

promising tools to target RTKs in cancer therapy.
FIGURE 5

Macrocyclic peptides targeting Hedgehog (HH) signaling protein and receptor tyrosine kinases. (A) HL2-m5, Kdh170±20nM and IC50=290 nM;
(B) HIP-8, Kd=0.93 nM and IC50=0.9 nM.
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Macrocyclic peptides targeting
intracellular PPIs

It is estimated that there are about 130,000 binary

interactions between human proteins and most of which are

intracellular PPIs. These PPIs are generally undruggable to

traditional small-molecule drugs. Thus, it has been pursued for

many years to target these intracellular PPIs with macrocyclic

peptides. Although violating the Ro5, some macrocyclic peptides

can enter cells by passive diffusion, endocytosis and endosomal

escape, direction translocation, or binding to membrane

transporters (Figure 6A) (129, 130). Although the cellular

activities of some of these cell-penetrating macrocyclic

peptides have not been tested, macrocyclic peptides have

emerged as promising modalities for regulating intracellular

PPIs and are being exploited for drug discovery (Figure 6) (129).

This schematic shows the cell uptake mechanisms of

macrocyclic peptides, intracellular proteins, related signaling

pathways, and cellular functions. A) Overview of cell uptake

mechanisms of macrocyclic peptides. Some macrocyclic peptides

can passively cross the cell membrane as small-molecule drugs.

Other macrocyclic peptides may cross the cell membrane via

receptor-mediated endocytosis, pinocytosis and pinosomal escape,
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and active transportation. B) Macrocyclic peptides can target

microtubule-associate protein light chain (LC3) which is essential

for the maturation of the autophagosome. C) Macrocyclic peptides

can target the ubiquitin-proteasome system which regulates many

aspects of cell biology. D) Macrocyclic peptides can target KRAS

mutations which are important for cell survival, proliferation, and

cytoskeletal organization.
Inhibitors of autophagy

Massive preclinical studies have suggested that the inhibition

of autophagy may be a possible and powerful therapeutic

strategy to improve outcomes in cancer patients (131, 132).

Chloroquine and hydroxychloroquine are the only clinically

available autophagy inhibitors (132, 133). However, the

therapeutic windows of these two drugs are very narrow, and

the toxicity caused by the drugs at therapeutically relevant doses

illustrates the need to develop new drugs to target autophagy.

Gray et al. (45) identified a macrocyclic peptide named

SUPR4B1w (Figure 7, compound 15), which targets

microtubule-associate protein light chain (LC)3. LC3, as the

core of the autophagy process, is essential for the maturation of

the autophagosome (134). The Trp1 and Val5 residues of
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SUPR4B1w interacted with LC3 and further blocked

autophagosome maturation in a dose-dependent manner and

re-sensitized several resistant cell lines to cisplatin-mediated

cytotoxicity (Figure 6B). Furthermore, the combination of

SUPR4B1w with carboplatin induced almost complete

inhibition of intraperitoneal tumor outgrowth in a mouse

model of metastatic cancer.
Ubiquitin-proteasome system

TheUPS plays important roles inmany aspects of cell biological

processes by marking proteins with ubiquitin followed by

degradation of target proteins. The core of ubiquitination is the

modification of protein substrates by ubiquitin (Ub) or polyUb

chains. This process is precisely regulated by both the sequential

interaction of ubiquitin-activating enzymes (E1s), ubiquitin-

conjugating enzymes (E2s) and ubiquitin ligases (E3s) and

deubiquitinating enzymes (DUBs) (135, 136). E3 ligases, as the

key components at the last step of the ubiquitination cascade, are

responsible for transferring ubiquitin to substrates and Ub chain
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topology. DUBs, conversely, cleave Ub from Ub chains to reverse

the ubiquitination. Dysregulation of the UPS is associated with

carcinogenesis, invasion, and cancer cell proliferation. Thus,

targeting the UPS has been an attractive target for cancer therapy

(Figure 6C) (137–139).

Inhibitors for E3 ubiquitin ligases
The homeostasis of the transcription factor p53, a famous

tumor suppressor, is critical for its tumor-suppressive function.

The inactivation of p53 is a hallmark of virtually all cancers

(140). Ubiquitination is one key regulator of p53 stability (141).

In epithelial tumors induced by human papillomaviruses

(HPV), p53 is recruited and degraded by the HPV oncoprotein

E6 and E3 ligase E6-associated protein (E6AP) (142). Yamagishi

et al. (46) identified an anti-E6AP macrocyclic peptide inhibitor

named CM11-1 (Figure 8A, compound 16) that can prevent the

E6AP-catalyzing polyubiquitination on p53 in vitro.

Later, an E3 ligase MDM2 and its homologMDMXwere found

to degrade p53 without exogenous factors. The heterodimerization

of MDM2 with MDMX plays a crucial role in p53 inhibition

contributing to cancer progression (2, 143). Aileron Therapeutics
FIGURE 7

Macrocyclic peptide targeting autophagy. HL2-m5, Kd= 120 nM for LC3A and 192 nM for LC3B.
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developed two stapled a-helical peptides named ATSP-7041

(Figure 8B, compound 17) and ALRN-6924 (Figure 8C,

compound 18) as dual inhibitors of MDM2 and MDMX. These

two macrocyclic peptides mimiced the transactivation domain of

p53 with an a-helical to bind MDM2 and MDMX. ATSP-7041

interacted with the MDMX binding pocket through Van der Waals

contacts, hydrogen bonds, and a cation-p interaction (47). ATSP-

7041 reactivated p53 by disrupting p53/MDM2 and p53/MDMX

complexes, leading to suppressed proliferation in multiple cancer

cell lines in vivo (47, 144–146). ALRN-6924 is the advanced analog

of ATSP-7041. The investigational new drug (IND) application of

ALRN-6924 has been accepted by the FDA as a myelopreservation

agent in patients with p53-mutant cancer who received

chemotherapy. Similarly, the potent in vivo and in vitro anti-

cancer effects of ALRN-6924 through the dose- and time-

dependent dual inhibition of MDM2/MDMX have been observed
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in various preclinical models (48, 49, 147). In addition, ALRN-692

overcame resistance to ICI therapy in vivo and improved the

antitumor efficacy of chemotherapy in breast cancer models (50,

51). The data from the phase I clinical trial (NCT02264613) of

ALRN-6924 in 71 patients with solid tumors and lymphomas

showed that ALRN-6924 was well-tolerated and demonstrated

promising antitumor activity (52). The disease control rate was

59%, including two confirmed complete response cases and two

confirmed partial responses. In addition, Li et al. (148) and Sang

et al. (149) also reported several macrocyclic peptides targeting

MDM2/MDMX.

Inhibitors of deubiquitinase or Ub chains
USP22 is a deubiquitinase that removes ubiquitin from

histone 2B and serves as an oncogenic driver (150).

Macrocyclic peptide inhibitors of USP22 have been developed
FIGURE 8

Macrocyclic peptides targeting the ubiquitin-proteasome system (UPS). (A) CM11-1, Kd= 0.6 nM; (B) ATSP-7041, Kd= 0.91 nM for MDM2 and 2.3
nM for MDMX; (C) ALRN-6924, IC50=7.7 nM for MDM2 and 24.7 nM for MDMX; (D) hD1, Ki= 180 nM and IC50=100 nM; (E) Ub4a, Kd= 9±3 nM;
(F) mJ08-L8W, Kd= 1.2 nM.
frontiersin.org

https://doi.org/10.3389/fonc.2022.992171
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2022.992171
by Morgan et al. (53) with one representative named hD1

(Figure 8D, compound 19). It can selectively inhibit USP22

in vivo.

Some macrocyclic peptides specifically target Lys48-linked

Ub chains, which are critical in inducing target protein

degradation by the 26s proteasome (54, 55, 151, 152). Ub4a

(Figure 8E, compound 20) and mJ08-L8W (Figure 8F,

compound 21) are two representatives of these compounds. By

binding to the Lys48-linked Ub chains and Lys48-linked

ubiquitin dimers, they disrupted the recognition of proteasome

in a dose-dependent manner which further resulted in the

apoptosis of tumor cells in vitro and inhibited tumor growth

in vivo.
KRAS inhibitors

The Rat sarcoma (RAS) family of proto-oncogenes are the

most frequently mutated oncogenes observed in about 30% of

cancers. The protein members of this family include HRAS,

NRAS, and KRAS. KRAS is the most commonly mutated

isoform in cancers. When binding to GTP, small GTPases

encoded by RAS are converted into active forms to stimulate

downstream signaling pathways and regulate various cell

functions. Mutated small GTPases encoded by oncogenic RAS

are locked in an active state, thereby constitutively triggering

downstream oncogenic pathways (153, 154). Due to a lack of

suitable surface pockets for small-molecule inhibitors, RAS has

once been considered an undruggable target (155). In 2021,

based on several encouraging results from clinical trials,

sotorasib, a small-molecule inhibitor, resulted in the FDA
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accelerated approval as the first KRAS-targeted therapy (156).

In 2022, the FDA accepted the New Drug Application for

adagrasib, another small-molecule inhibitor, for treating

patients with NSCLC harboring the KRAS G12C mutation

(157). Although progress has been made, targeting KRAS

mutations remains a significant challenge in drug development.

Macrocyclic peptides against RAS have been shown as

promising strategies to treat such RAS mutant cancers

(Figure 6D). Buyanova et al. (158) reported a pan-RAS

inhibitor named B4-27, a bicyclic peptide. It blocked the

interaction between activated RAS and effector proteins,

leading to the apoptosis of RAS-mutant cancer cells and

suppressed tumor growth in vivo at low doses (≤5 mg/kg).

However, pan-RAS inhibition may not be applicable in clinical

because wild-type RAS is essential in normal cell signaling and

may create toxicity concerns. In addition, different mutations in

KRAS have distinct biochemical properties which may influence

the therapeutic response (159). Thus, inhibitors against these

specific mutants are being developed for RAS-targeted therapy.

KRpep-2d, a macrocyclic peptide, is the first reported

selective KRAS-G12D inhibitor (160, 161). Although this

compound has the disadvantages of low cellular activity and

induction of mast cell degranulation, it provides a solid basis for

the subsequent development of KRAS inhibitors (57). Based on

its scaffold, two macrocyclic peptides, KS-58 (Figure 9A,

compound 22) and MP-3995 (Figure 9B, compound 23) were

developed with higher binding affinity, increased cell

permeability, and better cellular activity. KS-58 is the first

KRAS-G12D inhibitor with anti-cancer activity in vivo

reported by Sakamoto et al. (56). KS-58 formed hydrophobic

and cation–p stacking interactions with KRAS. In addition, KS-
FIGURE 9

Macrocyclic peptides targeting KRAS. (A) KS-58, EC50= 22 nM; (B) MP-3995, IC50= 0.5 nM.
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58 had synergistic growth inhibitory effects in the PANC-1

mouse xenograft model when combined with the drug

gemcitabine. However, KS-58 required a high dose to show its

efficacy despite no adverse side effects observe. Later, Lim et al.

(57) reported another improved peptide named MP-3995 with

anti-cancer activity in vitro. The favorable attribute is that MP-

3995 only shows the antiproliferative effect in KRAS dependent

cancer cell lines but has no effect in KRAS independent cell lines,

displaying its high selectivity and potential lower toxicity. These

compounds are still in their infancy but are likely to enter a

clinical trial for KRAS mutant tumors. Additionally, Zhang et al.

(162) reported three new macrocyclic peptides scaffold targeting

the KRAS-G12D mutation, which was different from KRpep-2d.

Cell-permeable macrocyclic peptides for KRAS-G12V mutation

have also been developed by Pei et al. which blocked KRAS

activated signaling pathway and induced apoptosis of cancer

cells in vitro (163, 164). They may begin a new chapter in the

discovery of KRAS inhibitors.
Discussions

Molecules following the ‘Rule of Five (Ro5)’ are proposed to

demonstrate good cell permeability (6). However, macrocyclic

peptides seem to violate all five parameters to be perfect drug

candidates because their molecular weights are higher than 500

(Table 3) and because they have more hydrogen bond donors

and acceptors in their structures (Figures 2–5, 7–9). But this does

not prevent them from being successful drugs. First, the cell

permeability of macrocyclic peptides was moderate between the

high permeability of small molecules and the low cell

permeabilities of acyclic peptides (Table 3). Second, many

macrocyclic peptides have shown high efficacy in vivo in

mouse models and clinical trials. Third, the facts have proved

that macrocyclic peptides can serve as successful drug

candidates. The FDA has now approved many macrocyclic

peptide drugs to treat human diseases, including cancer

(Table 1). The successful use of these drugs in disease

treatment has stimulated increasing attention to developing

more macrocyclic peptide drugs.

The field of macrocyclic peptides is currently at an exciting

stage. Macrocyclic peptides have displayed functional

diversification and broad signaling plasticity. Targeting

dysregulated PPIs with macrocyclic peptides is a promising

strategy in cancer therapy. According to the statistics from the

website of the National Cancer Institute, cancer is one of the

leading causes of death worldwide, and each year cancer

incidence increases gradually. The number of new cancer cases

is expected to rise to 29.5 million by 2040. Additionally, the

annual cancer-related cost is also huge. For example, the

estimated national expenditures for cancer care in the united
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states in 2018 were $150.8 billion. And in the future, cancer costs

are likely to elevate due to the increase in cancer incidence.

Therefore, the sales of cancer drugs, including macrocyclic

peptide drugs, are huge. Meanwhile, the estimated overall

expense of peptide drugs might be lower than that of small-

molecule drugs with the progression in synthetic methodology.

Thus, macrocyclic peptide drugs will provide a more cost-

effective way to treat cancer patients.

However, it remains premature to judge whether

macrocyclic peptides are more favored over small-molecule

drugs or biologics in all cases. There are still some challenges

that need to be addressed.

First, membrane permeability remains one of the most critical

challenges. Key advances in developing highly active cell-

penetrating peptides have been achieved in recent decades, such

as amino acid substitution and modifications of the peptide

backbone. Some of these studies have been well-reviewed recently

(129, 165). With the progress on new synthetic methodologies, for

example, computer-aided design strategy, MOrPH-PhD,

engineered tRNA, and ‘catch–release’ strategy, this obstacle may

be conquered shortly (126, 166–172). In the meanwhile, studies on

the pharmacokinetics of macrocyclic peptides, especially the tissue

selectivity, elimination mechanism, and interaction between

macrocyclic peptides and concomitant medications, are rare.

Given that macrocyclic peptides are not identical to small-

molecule drugs and biologics as drugs, a good understanding of

these factors is critical for drug development timelines, which will

influence the success probabilities for these novel compounds.

Further research on the pharmacodynamics of macrocyclic

peptides is required to warrant a better understanding of

macrocyclic peptides.

Second, although some macrocyclic peptides have

demonstrated excellent pre-clinical anti-cancer activities, the

efficacy does not always successfully translate into the clinic.

The most representative case is cilengitide, developed by Merck.

Cilengitide, an avb3 and avb5 integrin inhibitor, is a macrocyclic

RGD-containing peptide. In several early-phase clinical trials,

cilengitide has demonstrated potential antitumor activity with

improved survival in glioblastoma patients. However, the

multicenter randomized phase 3 trial (NCT00689221) showed

that cilengitide therapy did not improve the progression-free

survival (PFS) and overall survival in glioblastoma patients. And

cilengitide was announced as not being developed as an anti-

cancer drug in the future (173). There were some possible reasons

accounting for this. The first reason may lie in the inherent nature

of the macrocyclic peptides. The poor membrane permeability,

off-target effects, and insufficient bioactivity may contribute to the

failure. Second, most proof-of-concept studies of macrocyclic

peptides were conducted in cancer cell lines and animal models.

Although animal disease models can simulate some aspects of

cancer, these models cannot fully model human cancers’
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complexity. Most pre-clinical studies used murine models for the

activity and pharmacokinetics studies, which are different from

human patients. In the future, more tools will be necessary to

model cancer to validate potential drug candidates more reliably.

Third, few reliable pre-clinical biomarkers are suitable to predict

the clinical benefit of macrocyclic peptide drugs. Forth,

comorbidities in patients with cancer can influence clinical trial

decisions, which may lead to bias when conducting clinical trials

(174). At last, the future design of clinical trials should base on

pre-clinical research, biomarker status of patients, and clinical

knowledge. It is puzzling that the tumor type can significantly

impact drug response. The antitumor effects of SSAs were only

observed in patients with a few specific tumors. It contradicts the

fact that therapeutic targets broadly exist in various tumors.

Future research directions can also focus on improving the anti-

cancer efficacy of these drugs in other cancer types to expand their

clinical indications. On the other hand, due to the heterogeneity of

cancers, it is crucial to design efficient combination therapies in

cancer treatment (175). However, the combination therapies of

macrocycl ic peptides with either chemotherapy or

immunotherapy do not always show a profit. And, sometimes,

they even increase toxicity. To further improve the success rate of

these peptides in cancer treatment, it would be necessary to

develop suitable combination therapies with other forms of

therapy, such as chemotherapy, radiotherapy, or immunotherapy.

In summary, the boundary of oncology macrocyclic peptide

drugs is expanding. While some challenges exist in the field,

macrocyclic peptides still provide a unique opportunity to treat

cancer. Macrocyclic peptides can be a weapon in our arsenal of

anti-cancer therapeutics.
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Glossary

AML acute myeloid leukemia

CML chronic myeloid leukemia

CXCR4 CXC chemokine receptor 4

DCs dendritic cells

DUBs deubiquitinating enzymes

E6AP E6-associated protein

EGFR epidermal growth factor receptor

FDA US Food and Drug Administration

FGFR fibroblast growth factor receptor

GPCRs G-protein-coupled receptors

HGF hepatocyte growth factor

HH hedgehog

HPV human papilloma viruses

IC50 half maximal inhibitory concentration

ICIs immune checkpoint inhibitors

Ig immunoglobulin

LC microtubule-associate protein light chain

MDM2 mouse double minute 2

MET mesenchymal-epithelial transition

MM multiple myeloma

NHL non-Hodgki's lymphoma

NSCLC non-small cell lung cancer

PD-1 programmed cell death protein 1

PD-L1 programmed cell death ligand 1

PDAC pancreatic ductal adenocarcinoma

PFS progression-free survival

PPIs protein-protein interactions

PTCL cutaneous T-cell lymphoma

RAS Rat sarcoma

Ro5 Rule of Five

RTKs receptor tyrosine kinases

SCLC small cell lung cancer

SDF-1a stromal cell-derived factor-1a

SIRPa signal-regulatory protein &alpha;

SOC standard of care

SSTRs somatostatin receptors

TTP time to progression

Ub ubiquitin

UPS ubiquitin-proteasome system

VEGFR vascular endothelial growth factor receptor
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