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DNA methylation topology
differentiates between normal
and malignant in cell models,
resected human tissues, and
exfoliated sputum cells of
lung epithelium
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and Nirdesh K. Gupta3

1Department of Surgery, Cedars-Sinai, Los Angeles, CA, United States, 2Samuel Oschin
Comprehensive Cancer Institute, Cedars-Sinai, Los Angeles, CA, United States, 33rd Street
Diagnostics, Cedars-Sinai, Los Angeles, CA, United States, 4Division of Hematology/Oncology, West
Los Angeles Veterans Affairs (VA) Medical Center, Los Angeles, CA, United States, 5Department of
Medicine, University of California, Los Angeles, CA, United States
Background: Global DNA hypomethylation is a prominent feature of cancer

cells including lung cancer, that has not been widely explored towards cancer

diagnosis. In this study we assess the comparative distribution of global DNA

methylation in normal cells versus cancer cells in various specimen models.

Methods: We used in situ immunofluorescence labeling of overall 5-

methylcytosine (5mC) and covisualization of global DNA (gDNA) by 4’,6-

diamidino-2-phenylindole (DAPI), confocal microscopy and 3D image

analysis to derive 5mC/DAPI colocalization patterns in human cell lines

(BEAS-2B, A549, H157) and upper respiratory epithelial cells derived from

various sources (i.e., sputum from healthy and cancer patients, and resected

tissues from normal parenchyma and lung tumors).

Results: By introducing 5mC/DAPI colocalization index as a metric we could

distinguish between normal epithelial cells and aberrantly hypomethylated

cancer cells. Cultured lung cancer cells (H157 and A549) had significantly

lower indices compared to normal cells (BEAS-2B). Furthermore, we were able

to identify such extensively hypomethylated low-index cells in tumor tissues

and the matching sputum from cancer patients. In contrast, the indices of cells

derived from sputum of healthy individuals hadmore similarity to epithelial cells

of normal parenchyma and the phenotypically normal BEAS-2B cells.
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Conclusions: The results suggest that 5mC topology using high-resolution

image cytometry shows potential for identifying hypomethylated cancerous

cells in human tissues and amongst normal cells in matching sputum, which

may render a valuable surrogate for biopsied tissues. This promising feature

deserves further validation in more comprehensive studies.
KEYWORDS

global DNA methylation, 5-methylcytosine, sputum, lung cancer, confocal
microscopy, 3D image cytometry, single-cell analysis, nuclear topology
Introduction

In cancer cells two types of aberrant DNA methylation

features coexist: 1) promoter hypermethylation of a few genes

and 2) global hypomethylation, mostly attributed to severe

hypomethylation of repeat sequences that comprise more than

two-thirds of the human genome (1–3). The most prevalent

types of repetitive sequences include long interspersed

nucleotide element 1 (LINE-1) and Alu sequences that

contribute to around 30% of the genome. The analysis of

DNA hypomethylation has been largely remained unexploited

although it has been known for decades that global

hypomethylation is prevalent in tumors compared to normal

cells (4, 5). Generally, cancer cells show a net hypomethylation,

containing 20–60% less genomic 5mC than their normal

counterparts. Global DNA hypomethylation occurs in many of

the major cancer types, including the tumors of the breast, colon,

head and neck, bladder, esophagus, liver, prostate, stomach, and

lung (6, 7). Thus, the global methylation status is a unique

feature of cells and tissues and global hypomethylation is a

common epigenetic process in cancer, which may progressively

evolve during multistage carcinogenesis.

Because of its high frequency in the genome, methylation in

LINE-1 has shown to be a good indicator of the global DNA

methylation level within a cell (7–9). LINE-1 is heavily

methylated in normal human tissues. Hypomethylation of

LINE-1 repetitive elements has been described as one of the

key hallmarks of tumorigenesis. This shift was also shown in

lung tumor cells (7, 10–12) and in blood cells of lung cancer

patients (13, 14). Moreover, the degree of LINE-1

hypomethylation is associated with clinical data and survival

prognosis (8, 15). The selection of literature amongst numerous

other publications are a proof of evidence that global

hypomethylation largely exists in both subtypes of non-small

cell lung cancer (NSCLC), squamous cell carcinoma (SCC) as

well as in adenocarcinoma. Chalitchagorn et al. (7) evaluated the
02
differential level of LINE-1 methylation between normal tissues

and cancers in a broad panel of malignancies including NSCLC

(7). The investigators detected significantly greater

hypomethylation in most cancers including carcinomas of the

lung. Daskalos et al. (2009) reported that LINE-1 and Alu

methylation indices in primary tumors strongly correlated

with each other (12). However, clinicopathological parameters

such as age, gender, T status (size and extension of the tumor),

differentiation and nodal metastasis did not correlate with LINE-

1 and Alu methylation. Notably LINE-1 hypomethylation was

found more frequent in SSC than in adenocarcinoma, however

only at borderline significance (p = 0.052). Suzuki et al. (2013)

disclosed that through accurate measurement of methylation

levels using pyrosequencing, hypomethylation of LINE-1 was

frequently detected in NSCLC and associated with various

clinical features (11). Tumor tissues showed significantly lower

levels of LINE-1 methylation when compared with matched

nonmalignant lung tissues. A Study by Ikeda et al. (2013), also

using pyrosequencing, revealed that methylation levels of

resected lung cancer tissue were significantly lower than that

of matched normal lung tissues (8). The association between

clinical characteristics and methylation levels of lung

adenocarcinoma tissues has revealed that higher histologic

grade and positive findings for vascular invasion were

significantly associated with stronger hypomethylation.

Furthermore, previous studies brought to light that

hypomethylation is related to worse prognosis of NSCLC, that

is significantly shorter disease-free intervals after curative

resection. Along the same lines, the methylation rate by LINE-

1 contribution was significantly lower in squamous cell

carcinoma than in adenocarcinoma (11, 15).

To date, differential DNA methylation analysis has been

quantitatively assessed mostly by molecular approaches

including electrophoretic, chromatographic, polymerase chain

reaction (PCR) based, array based, and sequencing technologies

(16, 17). Despite tremendous improvement in specificity,
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sensitivity, and the inherent single-base resolution of these

methods, they remain technically and economically

challenging in the high-throughput analysis of single cells (18).

These include the limitation of PCR-based approaches in

multiplexing and the challenging sensitivity and cost issues of

whole-genome sequencing, especially for the interrogation

of repetitive elements. Considering the prevalence and load of

DNA methylation imbalances —especially hypomethylation of

repeat sequences— imaging-based assessment of changes in

global nuclear 5mC patterns provides a powerful alternative

for the massively parallel analysis of cells. The reason being that

DNA hypomethylation at such scales involves large-scale

chromatin reorganization that can be made visible by light

microscopy (19–21). Beyond in situ methods, the dynamics of

global DNAmethylation has been successfully visualized by live-

cell imaging using constructed reporters (22–24).

We had previously introduced an image-cytometric

approach termed three-dimensional quantitative DNA

methylation imaging (3D-qDMI), a nondestructive in situ

method that entails the parallel quantitative measurement of

5mC load and spatial nuclear distribution to be used for the

characterization of cells and tissues (25, 26). 3D-qDMI combines

immunofluorescence, high-resolution confocal microscopy and

3D image analysis, and allows for the rapid, parallel, single-cell

phenotyping of thousands of cells within heterogeneous

samples. 3D-qDMI has been successfully applied in the

characterization of mouse and human cells and tissues of

various origin (27–33). Utilizing this high-content tool, in this

study we explored the comparative 5mC topology in normal

epithelial and cancer cell models of the lung, as well as in cells of

resected human tissues and exfoliated upper respiratory

epithelial cells derived from matching sputum samples from

cancer patients and healthy donors.
Materials and methods

Cultured cells

A549 and H157 cells (ATCC) were routinely cultured in RPMI

supplemented with antibiotics and 10% heat-inactivated fetal

bovine serum (FBS) (Omega Scientific). BEAS-2B cells (ATCC)

were cultured in bronchial epithelial cell basal medium (BEBM)

supplemented with all 1x BEGM (bronchial epithelial growth

medium) SingleQuots kit additives (all from Lonza): 2ml of

bovine pituitary extract (BPE), 0.5 ml of hydrocortisone, 0.5 ml of

human epidermal growth factor (hEGF), 0.5 ml of epinephrine,

0.5 ml of transferrin, 0.5 ml of insulin, 0.5 ml of retinoic acid,

triiodothyronine, and 0.5 ml gentamicin/gentamicin-B. According

to the manufacturer’s protocol to formulate 500 ml of BEGM, the

entire volume of each additive in the kit was added to 500 ml of

BEBM. All cells were grown to 70% confluency in 5% CO2 at 37°C.
Frontiers in Oncology 03
Patient materials

The study utilized pre-surgical sputum samples and post-

surgical tissue from three patients with stage I-II NSCLC.

Sputum samples were collected following obtaining the

patients’ written consents. Surgically resected specimens were

provided in a deidentified manner and were exempt from

patients’ consents. Since this study was categorized as basic

research, information that could lead to patient identity and

patient characteristics such as age, gender, and clinical

information were masked, and each sample received a

research code.
Sputum collection and processing

Patients were given a cup of water to gurgle, immediately

before sputum induction, to minimize the contribution of oral

cavity saliva in the sample. The actual sputum induction was

performed by inhalation of hypertonic saline (NaCl 4.5%).

Aerosols were generated by an ultrasonic nebulizer, with an

output at 1.5 mL/min. The subjects inhaled the saline solution

aerosols for a fixed period of 15 min. Then subjects were

encouraged to expectorate sputum. Samples were collected in a

plastic container and kept at 2–8°C until processing for cell

extraction. For purification of cellular components from mucus

and other contaminants, samples were processed twice as

follows. Samples were diluted with phosphate-buffered saline

solution (PBS) containing 10 mM dithiothreitol (DTT), then

centrifuged at 400g for 10 min at 4°C to separate cellular and

fluid phases. The ultimate cell pellet was resuspended in

phosphate-buffered saline (PBS) containing 20 mM

ethylenediamine tetra-acetic acid (EDTA) and 2% human

serum albumin. Cell counts were performed on centrifuged

samples and a sample of about 5x105 cells was spread on a

microscope slide. Subsequently, cells were fixed in 4%

paraformaldehyde for 15 minutes. Then the slide was kept in

PBS at 2–8°C until further processing for immunofluorescence.
Immunofluorescence assay

Immunofluorescence staining was performed in four-

chamber microplates (ThermoFisher Scientific) according to

previously established protocols (25, 28, 33). The primary and

secondary antibody set included unconjugated mouse anti-5-

methylcytosine monoclonal antibody (AMM99021, Aviva

Systems Biology) at 1 mg/ml and Alexa488-linked donkey

anti-mouse IgG (A-21202, ThermoFisher Scientific) at 5 mg/

ml final concentrations. The cells were subsequently delineated

with the cytoplasmic marker Cell Mask Red (ThermoFischer

Scientific) and cell nuclei counterstained with DAPI. The
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specificity/dynamic range of the anti-5mC antibody was tested

as previously reported in (29) (data not shown in here).

Formalin-fixed tissue sections at 5 µm thickness were kept

floating in 10% formalin at 2−8°C until immunofluorescence

staining. Prior to staining, tissues were transferred to microwell

plates, washed in PBS at room temperature, then stained as

floating tissues using the same protocol that was applied to

fixed cells.
Confocal imaging and 3D image analysis

Confocal imaging of labeled slides was performed using a

TCS SP5 X Supercontinuum microscope (Leica Microsystems,

Mannheim Germany). The system provides full freedom and

flexibility in excitation and emission within the continuous

range of 470 to 670 nm within 1 nm increment. The TCS SP5

X system was coupled with a 405nm diode laser line for

excitation of DAPI fluorescence. Serial optical sections were

collected at increments of 250–500 nm with a Plan-Apo 63×1.3

glycerol immersion lens. The pinhole size was consistently 1.0

airy unit. The output file format was a series of TIFF images that

were utilized for 3D-image analysis. The typical image size was

1576×1576 with a respective voxel size of 189 nm ×189 nm × 500

nm (x, y, and z axes), and a dynamic intensity range of 12 bits

per pixel in all four channels. All biomarker signals from optical

sections were recorded into separate channels. All images were

acquired under nearly identical conditions and modality

settings. The drift of the settings during acquisition was

considered minimal and therefore neglected. 3D image

analysis was performed using a dedicated algorithm for multi-

parametric high-content analysis, as previously described in (25,

26, 28). This image analysis tool operates in three steps. First

cells (within imaged populations) were processed for 3D

segmentation. Then fluorescence 5mC and DAPI signals were

recorded for each cell nucleus, and subsequently two parameters

were generated per cell: (a) the global 5mC intensity of the entire

nucleus, and (b) the codistribution (2D scatter plots) of 5mC

signals and gDNA (DAPI) signals. The angle under the

regression line of the 5mC/DAPI codistribition plot is

automatically calculated as the second parameter. The two

parameters were output as DAT files. The results can be traced

back for each imaged epithelial cell through a numerical

identifier that was generated by the software. In addition, the

software also calculated the similarity of 5mC/DAPI

codistribution patterns between cells based on Kullback-

Leibler (K-L) divergence and generated similarity maps of cells

as previously described (25, 26). The pseudo-colors within a

similarity map represent the four K-L characteristics known as

soft-qualifiers: green (similar), blue (likely similar), yellow

(unlikely similar), and red (dissimilar). The soft-qualifiers for

each cell were generated through comparison of the 5mC/DAPI
Frontiers in Oncology 04
distribution pattern of the individual cell with the composite

5mC/DAPI pattern of the entire imaged cell population.
Results

Nuclear DNA methylation patterns
distinguish between normal and
transformed cells

The notion of our study was to explore differential three-

dimensional (3D) nuclear 5mC patterns in normal versus

cancerous human upper respiratory cells. To establish these

differences, we started with three cultured human cell lines

comprising the immortalized normal human epithelial cell line

BEAS-2B, and the two NSCLC cell lines A549 (alveolar basal

epithelial cells) and H157 (highly invasive lung carcinoma cells).

BEAS-2B are epithelial cells that were established through

isolation from normal human bronchial epithelium, obtained

from autopsy of a noncancerous individual (34). These cells have

been widely used as an in vitro cell model representing normal

lung epithelial cells in a large variety of studies associated with

respiratory diseases including lung carcinogenesis. A549 cells are

adenocarcinoma human alveolar basal epithelial cells established

through an explant culture of adenocarcinoma lung tissue of a

58-year-old Caucasian male (35). This cell line is categorized as

NSCLC. On that note, NSCLC accounts for 85-88% of all cases

of lung cancer. The A549 cell line is widely used as a model of

lung adenocarcinoma, as well as an in vitro model for type II

pulmonary epithelial cells (35). The more aggressive H157 cell

line was established by A.F. Gazdar, H.K. Oie, J.D. Minna and

associates in 1979 from a SCC of the buccal mucosa, from cells

recovered from pleural effusion obtained from a patient prior

to therapy.

Using K-L divergence, cell-similarity maps of 5mC/DAPI

codistribution were generated as described in (25). Basically,

each cell nucleus receives a numerical score which is converted

into the four classifiers “similar”, “likely similar”, “unlikely

similar” and “dissimilar”, with respective color-codes as

explained in the Methods section. For clarity, the cell-

similarity maps only contain cell nuclei extracted from

fluorescence images (by our image analysis software). The

more a cell population contains similar and likely similar cells

the more homogenous it is regarding the cells’ 5mC/DAPI

codistribution. We observed a high degree of homogeneity in

5mC patterns among cells for all three cell lines. This

observation agrees with the fact that cultured cells typically

align with the more dominant cell features, as represented by

similar and likely similar cells in Figure 1. Thus, we conclude

that the observed patterns are in fact dominant patterns for each

cell line. Figure 1 depicts 5mC/DAPI codistribution patterns for

each of the three cell lines as scatter plots on the cell-population
frontiersin.org
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level and for individual representative cell nuclei (N1 and N2).

Because of the high degree in feature homogeneity within a cell

line, N1 and N2 are very similar in 5mC topology across all cell

lines. We observed common global DNA methylation patterns

amongst healthy cells that significantly differ from the 5mC/

DAPI patterns of cancerous cells. We introduced the angle d
under the regression line of the plot as a measurable descriptor

of 5mC/DAPI codistribution for each cell type, calling it the

5mC/DAPI codistribution index or simply the 5mC/DAPI

index. This index is differential between the cell lines and

corresponds to the aggressiveness of the cells. NSCLC cell line

A549 displays slightly reduced (~20% on average) and H157

significantly reduced (> than 60% on average) 5mC loads

compared to BEAS-2B cells. The same proportional reduction

could be experienced for 5mC/DAPI colocalization indices.

H157 cells, which are reported to have more metastatic

potential than A549 cells, are even more hypomethylated
Frontiers in Oncology 05
displaying a flatter curve and in conjunction a smaller 5mC/

DAPI index. These features indicate that a large portion of the

highly condensed repeat sequences in the nuclei (as represented

by DAPI-staining) is hypomethylated. From these initial results

we glean that the method was able to successfully distinguish

between the different cell types, specifically between the more

normal and transformed phenotypes and in correlation with

aggressiveness, based on differential 5mC/DAPI codistribution

patterns (scatter plots).
Normal and malignant tissue cells display
differential 5mC phenotypes found in
cultured cells

Next, we tried to verify the observed 5mC patterns in

surgically removed tissues from lung cancer patients and
FIGURE 1

Global DNA methylation phenotyping of cultured cells with 3D-qDMI. The method was able to distinguish between the different cell types
based on differential 5mC/DAPI distribution patterns calculated and displayed as individual heat map scatter plots (DAPI = x-axis, 5mC = y-axis).
Plots were generated for the entire cell population (composite 5mC/DAPI codistribution of all measured cell nuclei) as the reference plot, and
for each cell nucleus. Cell-similarity maps based on K-L divergence indicate a high degree of homogeneity in 5mC/DAPI topology for all three
cell lines. This is due to most cells being similar (green nuclei) and likely similar (blue nuclei). Selected cell nuclei N1 and N2 for each cell line
selected from the cell-similarity maps represent the most dominant 5mC topology for each cell line. The angle d under the regression line
(false-colored red) equals the 5mC/DAPI colocalization index for each nucleus. White bars are 5 µm.
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adjacent normal lung tissue, as well as in cells from matching

sputum of the lung cancer patients versus sputum cells of the

healthy donors (with no history of cancer). Figure 2 shows a

similar differential 5mC load in the fluorescently labeled section

of normal parenchyma and from surgically resected lung tumor:

a substantial degree of hypomethylation was seen by eye under

the microscope in the nuclei of epithelial cells residing within the

tumor area compared to their normal counterparts. A

confirmation of the differential 5mC phenotypes was obtained

using 3D image analysis. The same comparative relation as for

the cell lines could be found in tumor tissue from lung cancer

patients and in adjacent normal lung tissue: the normal lung

section was populated by an absolute majority of epithelial cells

with normal methylation patterns (5mC loads) and high 5mC/

DAPI colocalization indices (Figure 3). In stark contrast, the

cancerous tissue showed most cells having drastically reduced

5mC signal and significantly lower 5mC/DAPI indices. Again, in

Figure 3, for the displayed tissue sections we selected only nuclei

(N1 and N2) of cells that represented the most prevalent 5mC

features within the epithelial compartment: that is either similar

(blue) or likely similar (green) nuclei.
Frontiers in Oncology 06
Sputum of cancer patients contain cells
resembling malignant 5mC features

Notably, using 3D-qDMI the same differential 5mC

phenotypes were also present in cells from matching sputum

of the lung cancer patients versus sputum cells of the healthy

donors (with no history of cancer) (Figure 3). In the sputum

from normal (healthy) donors we only found nuclei of epithelial

cells with high resemblance to the most dominant cytometric

5mC/DAPI indices found in BEAS-2B cells and cells in the

phenotypically normal area of the lung tissue section. Thus, the

selected representing nuclei N1 and N2 are very similar in their

5mC features. In comparison, the sputum from cancer patients

contained severely hypomethylated cells amongst normally

methylated cells. For this case Figure 3 is showing the selected

cell nuclei that differ in 5mC/DAPI indices: N1 represents the

normally methylated cell and N2 constitutes an aberrantly

hypomethylated cell. Please note that the displayed high-

resolution images only exhibit a portion of the whole slide.

The aberrant cells in the cancer sputum share a high likeliness in

5mC/DAPI indices with hypomethylated tumor cells in biopsied
FIGURE 2

Confocal images of immunofluorescence-labeled lung cancer and adjacent normal tissue section. Surgically resected normal parenchyma and
tumoral regions from patients that were diagnosed with lung cancer were in situ labeled for differential patterns of global DNA methylation. Cell
nuclei containing global DNA marked by DAPI (false-colored blue) in normal lobules (A) and a magnified subarea on the same section (B) show
higher degree of DNA methylation (5mC, false-colored green) compared with severely hypomethylated nuclei in ductal regions of the tumor (D)
and a respectively magnified subarea (E); cytokeratin 8 (CK 8) (red) was used as a marker to delineate the epithelial compartments. Cell-
similarity maps (C, F) illustrate higher heterogeneity in cell composition for the tumor area compared to normal tissue, illustrated by the higher
number of unlikely similar (yellow) and dissimilar (red) cells. In comparison normal tissue is populated by a majority of similar (green) and likely
similar (blue) cells, thus presenting a high degree of cellular homogeneity.
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cancer tissues and the more aggressive H157 cell line (with

higher metastatic potential). These sputum cells are

characterized by an extremely flat regression line (d < 15°).
Discussion

Measuring alterations in DNA methylation is a valuable

method for detecting cancer cells. This phenomenon correlates

with early events in carcinogenesis and tumor progression and

can serve as a signature in early cancer detection and for

therapeutic monitoring.
Frontiers in Oncology 07
Cytometric analysis of global DNA in conjunction with cell

imaging was introduced for tissue characterization towards the

end of the 1990ies but did not gain much popularity in

comparison to contemporaneously developed molecular

methods. These methods are based on different platforms such

as high-pressure liquid chromatography (HPLC), liquid

chromatography coupled with tandem mass spectrometry (LC-

MS/MS), the more recent capillary electrophoresis (CE), and

more simplified assays: such as the luminometric methylation

assay (LUMA), enzyme-linked immunosorbent assay (ELISA)

based assays, as well as pyrosequencing and the real-time PCR

based MethyLight (9, 36–43). The latter two methods
FIGURE 3

Comparative DNA methylation phenotyping of patient tissues and matching sputum. The normal lung epithelium as well as the normal sputum
contain a majority of epithelial cells that display nuclear 5mC features with a high degree of similarity to the patterns seen in BEAS-2B cells. The
two cell sources appear quite homogeneous in terms of 5mC topology. In contrast, the tumoral region appears more heterogeneous and
contains a majority of severely hypomethylated cells. The selected nuclei N1 and N2 in the first three respective panels represent the most
prevalent 5mC topology for the normal tissue and sputum as well as for the tumor area. The sputum from cancer patients contained severely
hypomethylated cells amongst normally methylated cells. For this case the selected nuclei differ in 5mC indices: cell nucleus N1 represents the
normally methylated cell whereas N2 constitutes an aberrantly hypomethylated cell. White bars are 5 µm.
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approximate global DNA methylation by quantifying LINE-1

and Alu DNA.

Nevertheless, cytometric analyses such as image cytometry

and flow cytometry have the advantage of being nondestructive

and requiring no error-prone DNA extraction steps, while

providing information at single-cell resolution in a highly

paralleled and throughput fashion. However, image cytometry

was applied in combination with radio-labeled or enzymatic

reporters for detection, which either lack sensitivity,

multiplexing capability or affect repeatability (consistency) of

the assay, and failed to provide enough significance in

differential results due to low image resolution. Furthermore,

flow-cytometry provides either average 5mC measurements

across a large population of cells or only quantifies mean 5mC

intensity values in cell nuclei. In the meantime, molecular

methods have advanced to also measure analyte contents at

single-cell resolution. Yet, both technologies still lack to produce

the quality of information that in situ methods yield regarding

subcellular target localization and distribution.

In contrast to these methods including previous cell imaging-

based attempts, 3D-qDMI leverages the extraction of differential

5mC topology by considering secondary effects of DNA

methylation imbalances that occur throughout cellular

transformation, especially hypomethylation of global DNA. In

particular, the latter mechanism elicits reorganization of the

genome within cell nuclei, affecting nuclear architecture (20). This

phenomenon is well described in basic cell biological research but

has not yet been exploited towards more clinical application. The

approach we developed covers this gap and displays the relevant

changes as intensity distribution of the two types of signals that

reflect said phenomena: (a) 5mC signals created through

immunofluorescence targeting using a sandwich assay and (b)

gDNA represented by DAPI-signals that are generated by

subsequent counterstaining of the same cells, as DAPI intercalates

into AT-rich DNA, the main component of highly repetitive and

compact heterochromatic sequences. The process results in images

that represent maps of interrogated cells with a spectrum of

differential DNA methylation phenotypes represented by 5mC/

DAPI texture features. One such texture feature that we used to

characterize cells is the 5mC/DAPI colocalization index.

Using the 5mC/DAPI index we were able to distinguish

between the different cell types based on their differential 5mC/

DAPI distribution patterns (scatter plots). In all comparisons

between normal and cancerous cells, from cultured cell models

over human tissues and epithelial cells derived from patient

sputum, we basically saw the same differential 5mC/DAPI

distributions and resulting 5mC/DAPI indices. The significant

reduction of global 5mC in cancerous cells versus normal

epithelial cells, specifically in areas of higher DNA density —

delineating more compact genomic regions that predominantly

harbor repeat sequences— leads to a shift in the nuclear
Frontiers in Oncology 08
colocalization of 5mC and gDNA constituted by a lower 5mC/

DAPI index. Especially the resemblance between the cell

signatures of the more aggressive H157 cells and the

hypomethylated N2-type cells found in the sputum of cancer

patients and typical tumor tissue cells indicates that the sputum

of a cancer patient contains exfoliated epithelial cells of the

tumor that can be detected based on aberrant global 5mC

content and nuclear distribution.

The results of our analyses are very intriguing and can play a

central role in detecting abnormal cells in sputum samples.

Nuclear DNA methylation topology may serve as a novel

biomarker for the noninvasive detection of malignant cells of

the respiratory tract. The fact that epigenetic markers such as

5mC change early in tumor development makes 3D-qDMI in

conjunction with noninvasive sputum cytology an attractive

approach to be assessed for early lung cancer detection.
Final conclusions

This study provides proof-of-concept that normal and

cancerous cells can be distinguished by their 5mC/DAPI

topology as represented by the 5mC/DAPI colocalization

index. This method could also differentiate between normal

and tumor tissue of the lung and identify exfoliated aberrant

cells in the sputum of cancer patients. These results encourage

further feasibility and testing of 5mC/DAPI codistribution as a

biomarker in noninvasive early lung cancer detection.
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