We tested whether a model identifying prostate cancer (PCa) patients at risk of pT3-4/pN1 can be developed for use during COVID19 pandemic, in order to guarantee appropriate treatment to patients harboring advanced disease patients without compromising sustainability of care delivery.
Within the Surveillance, Epidemiology and End Results database 2010-2016, we identified 27,529 patients with localized PCa and treated with radical prostatectomy. A multivariable logistic regression model predicting presence of pT3-4/pN1 disease was fitted within a development cohort (n=13,977, 50.8%). Subsequently, external validation (n=13,552, 49.2%) and head-to-head comparison with NCCN risk group stratification was performed.
In model development, age, PSA, biopsy Gleason Grade Group (GGG) and percentage of positive biopsy cores were independent predictors of pT3-4/pN1 stage. In external validation, prediction of pT3-4/pN1 with novel nomogram was 74% accurate versus 68% for NCCN risk group stratification. Nomogram achieved better calibration and showed net-benefit over NCCN risk group stratification in decision curve analyses. The use of nomogram cut-off of 49% resulted in pT3-4/pN1 rate of 65%, instead of the average 35%.
The newly developed, externally validated nomogram predicts presence of pT3-4/pN1 better than NCCN risk group stratification and allows to focus radical prostatectomy treatment on individuals at highest risk of pT3-4/pN1.