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Skin cancer is the most common cause of death in humans. Statistics show that

competent dermatologists have a diagnostic accuracy rate of less than 80%,

while inexperienced dermatologists have a diagnostic accuracy rate of less

than 60%. The higher rate of misdiagnosis will cause many patients to miss the

most effective treatment window, risking the patients’ life safety. However, the

majority of the current study of neural network-based skin cancer diagnosis

remains at the image level without patient clinical data. A deep convolutional

network incorporating clinical patient metadata of skin cancer is presented to

realize the classification model of skin cancer in order to further increase the

accuracy of skin cancer diagnosis. There are three basic steps in the approach.

First, the high-level features (edge features, color features, texture features,

form features, etc.). Implied by the image were retrieved using the pre-trained

DenseNet-169 model on the ImageNet dataset. Second, the MetaNet module

is introduced, which uses metadata to control a certain portion of each feature

channel in the DenseNet-169 network in order to produce weighted features.

The MetaBlock module was added at the same time to improve the features

retrieved from photos using metadata, choosing the most pertinent

characteristics in accordance with the metadata data. The features of the

MetaNet and MetaBlock modules were finally combined to create the MD-Net

module, which was then used as input into the classifier to get the classification

results for skin cancers. On the PAD-UFES-20 and ISIC 2019 datasets, the

suggested methodology was assessed. The DenseNet-169 network model

combined with this module, according to experimental data, obtains 81.4% in

the balancing accuracy index, and its diagnostic accuracy is up between 8% and

15.6% compared to earlier efforts. Additionally, it solves the problem of actinic

keratosis and poorly classified skin fibromas.

KEYWORDS

skin tumor classification, DenseNet-169 model, metadata, feature fusion, CNNs
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.989894/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.989894/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.989894/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.989894/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.989894&domain=pdf&date_stamp=2022-12-16
mailto:2395751365@qq.com
mailto:1804409240@qq.com
https://doi.org/10.3389/fonc.2022.989894
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.989894
https://www.frontiersin.org/journals/oncology


Yin et al. 10.3389/fonc.2022.989894
Introduction

One of the top 10 most prevalent malignancies in the world,

skin cancer is most prevalent in Caucasians, where it affects over

800,000 white people annually and causes 1% of all cancer deaths

(1). By 2020, data show that more than 5 million Americans will

have skin cancer screenings (2). In contrast to Western nations,

China has a lower than average incidence of skin cancer, but the

number of hospitalized patients is rising, with an average annual

growth rate of 14.67% from 2015 to 2017 (3). According to years’

worth of statistics, basal cell carcinoma comes in second with a

squamous cell carcinoma to basal cell carcinoma ratio of roughly

5~10 to 1. Squamous cell carcinoma has the greatest incidence

rate in China, accounting for 80.3% of skin cancer.

With increasing skin cancer patients, the diagnosis

technology is also in constant updates, such as Dermoscopy

(4), dermoscopy images provide more details about the chin

surface, the doctor can see deeply into the skin structure, so as to

improve the diagnostic accuracy, however, the technology is

mainly depends on artificial, low efficiency, and diagnosis

accuracy is very dependent on the doctor’s professional level,

the misdiagnosis rate is higher. For skin cancer patients, survival

rates are greatly improved if they are diagnosed at an early stage.

With the increase of people’s demand for medical treatment, the

accumulation of medical related data is continuous. The efficient

use of these data is one of the important means to support the

continuous progress of medical treatment. Metadata is a kind of

data describing data, which is one of the effective ways to realize

the efficient use and management of massive medical data.

Combining it with artificial intelligence can better promote the

development of medical industries. Due to the rapid

development of AI technology, deep learning models have

been widely used in healthcare (5), cancer classification,

disease diagnosis (6) and other fields, realizing the early

detection and treatment of cancer and promoting the progress

of traditional medical diagnostic technology. Therefore, machine

learning and deep learning have been introduced into the clinical

diagnosis of skin tumors.

The authors (7) carried out a methodical comparison of the

classification of skin lesions using deep learning and traditional

machine learning techniques, and came to the conclusion that

deep learning is superior to traditional machine learning. Deep

learning can solve this issue even if the dataset only has a small

number of photos by using various improvement techniques.

The majority of skin tumor diagnosis studies now in existence

rely on CNN (8–10), AlexNet (11), ResNet (12), EfficientNet

(13), DenseNet (14) and other neural networks to classify and

diagnose skin tumors, although there are limitations to these

methods. The aforementioned models always remain at the level

of the image and do not take into account patient demographics,

or patient data. As a result, the correlation is too far and the
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learnt properties have certain limitations. When making a

diagnosis of skin cancer, doctors also search for and take into

account features of the patient, such as age, cancer history, and

anatomical region. Models that incorporated skin lesion pictures

and patient demographics were proposed by Kharazmin et al.

(15), Liu et al. (16), Pacheco and Krohling (17), and others. All of

these efforts mix the two forms of data via feature concatenation,

which might not account for the potential connection between

metadata and visual characteristics retrieved from photos even if

they all indicate promising results. Li et al. (18) Recently

proposed a multiplication-based data fusion approach that use

one-dimensional convolution sequences of information to

extract the coefficients to support the extraction of visual

features from images for classification applications. When used

to classify skin cancer, this method performed better than the

tandem method. The method, nevertheless, was unable to

change how melanoma, the deadliest type of skin cancer, is

classified. The MetaBlock approach, which employs metadata to

support the data classification structure and enhances the most

pertinent features retrieved from images to improve

classification performance, was proposed by Andre G. C.

Pacheco et al. (19). Melanoma is now better classified because

of this technique. Although there is still opportunity for

development in classification accuracy and other indicators,

the above network is still unable to make a good identification

for a few forms of skin cancer, such as basal cell carcinoma and

squamous cell carcinoma, due to their high resemblance.

Due to the drawbacks of the aforementioned neural

networks, this paper suggests a dense convolutional network

based on the MD-Net module fused with the metadata of skin

cancer clinical patients. This network corrects the drawbacks of

the current convolutional neural networks and increases the

precision of skin tumor diagnosis. First, we pre-trained the

DenseNet model on the expansive ImageNet dataset using

the transfer learning approach to get pre-training weights. The

advanced characteristics buried in dermoscopy images are then

extracted during fine-tuning training on the skin cancer image

dataset, which increases training efficiency and saves time and

energy during model training.

Second, additional screening and the extraction of more

pertinent and representative features using the fusion of clinical

patient metadata for skin tumors. By combining the advanced

capabilities of the MetaNet (18) and MetaBlock (19) modules

with those of the DenseNet-169 network, the MD-Net module

was created. Reweighted features are obtained by one-

dimensional convolution of metadata for the MetaNet module.

By combining metadata, the MetaBlock module acquires

features that are closely linked. The feature fusion is then

accomplished by procedures for dimension reduction and

expansion. The attention of various skin tumor-specific

features can be realized through the fusion of clinical patient
frontiersin.org
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metadata for skin tumors. This will help screen out closely

related and representative features, achieve feature

enhancement, improve the model’s ability to recognize specific

minority classes, and increase classification accuracy.

In order to achieve category classification, the MD-Net

module’s features will finally be sent into the classifier. The

network model’s Balance-Accuray (BACC) index is 81.4%,

which is 8%–15. 6% greater than the relevant work accuracy

and superior to the feature improvement module suggested by

the existing study.
Model construction method

DenseNet-169 model

The DenseNet (dense convolutional network) structure,

which mostly borrows from the ResNet network, was

proposed by Gao et al. (20) in 2017 at the CVPR conference.

DenseNet proposes a more aggressive dense connection strategy

than ResNet, in which each layer is connected to the feature

maps of all preceding layers and utilized as the input of the

subsequent layer, which is calculated using Equation (1).

XL = HL X0,  X1,  ……,  XL−1½ �ð Þ (1)

Where [X0, X1,……, XL−1] s the feature map from layer 0 to

layer L-1. The connectedness of DenseNet saves computational

effort, improves feature propagation, stimulates feature reuse,

and solves the gradient disappearance problem.

Following its introduction, DenseNet has found widespread

use in image recognition thanks to its great performance (21).

Following a review of the literature, this study decides to use

DenseNet-169 as its foundation network by combining clinical

patient metadata to create a network for classifying skin tumors.
Metadata pre-processing

Medical picture metadata standardize the information

format for patient information, case information, etc.

Metadata is a type of data that describes data (22). Medical

professionals can quickly comprehend the patient’s physical

condit ion in order to provide more accurate and

individualized treatment plans thanks to the proposal of

medical image metadata. For researchers combining artificial

intelligence with medical imaging, the information beyond

medical images described by metadata helps deep learning

neural networks to perform better.

Additionally, the information will be filtered according to

the real needs of the use and the context of the use based on the

information provided by the metadata and with reference to the
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associated assessment criteria. The information that best

matches the needs will then be chosen.

The clinical parameters of the patient are used in this study

as information to assist categorize skin cancers. Gender, age,

anatomical, geography; by a boolean and other metadata are

primarily included. These metadata must be translated into

scalars since the features they represent are distinct and

disorganized. One-hot Encoding (23) is used to digitize them

as a result.

One-hot encoding, also referred to as one-bit valid encoding,

is the process of encoding N states into N-bit status registers,

where each state is represented by a single register bit, and only

one of these bits is valid at any given moment. For instance, the

unique hot encoding for the gender characteristic [“male,”

“female”] is “male” (1,0): and “female” (0,1):.
MD-Net model building

The skin tumor classification framework is proposed to be

implemented by the MD-Net module DenseNet-169 network

in this research. In Figure 1, the integrated network model is

displayed. To begin with, the DenseNet-169 model, based on

transfer learning, was presented in order to extract high-level

information concealed in mirror pictures of skin cancer.

Second, the hidden high-level features extracted by

DenseNet-169 were separately passed through MetaNet

module and MetaBlock module to obtain the weighted

features and the most pertinent features between them in

order to make the features extracted by the model more

representative and closely related. The feature outputs of the

two modules were then combined after the feature vector

output of each module were shrunk and extended to have the

same feature vector dimension. Finally, the input classifier

produced the classification of a skin tumor.
Transfer learning

If trained directly, the skin tumor picture dataset may not

produce a satisfactory classification impact due to the tiny

sample size.

Transfer learning is a machine learning technique in which

the trained model parameters are used as the training

parameters and the pre-training weights from big data sets are

used to achieve good performance on the method’s own data set

(24). In order to improve the classification accuracy of skin

malignancies and reduce training time, the DenseNet-169

network is pre-trained on the ImageNet (25) dataset, and the

trained weight parameters are then adjusted and trained on the

target dataset.
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MetaNet module

For the categorization of visual features retrieved from

photos, Li et al. (18) introduced a multiplicative data

fusion approach (MetaNet), which successfully enhances

the recall of skin cancer disease, especially with less

training data. The schematic layout of the MetaNet

module is given in Figure 2.

The MetaNet module is a data fusion block based on

multiplication, as seen in Figure 2. In other words, a two-layer

network of fully connected convolutional layers is first fed the

metadata feature vector, with the first layer convolved followed by a

modified linear unit (Relu function) and the second layer convolved

followed by a Sigmoid function. The output size of this sub-network

is then multiplied by the same size as the feature channel of the last

convolutional layer of the feature map to obtain a re-weighted

feature map. With the use of this technique, the network may

concentrate on a particular area of each feature channel, increasing

the precision of the skin tumor classification and allowing the

metadata to interact directly with the visual features and influence

the pertinent aspects of each feature channel.
Frontiers in Oncology 04
MetaBlock module

By improving the extraction of the most pertinent features

from images, i.e., directing image feature mapping based on

metadata characteristics, Andre G. C. Pacheco et al. (19)

Proposed the metadata processing block (MetaBlock), an

attention mechanism-based approach to support skin tumor

classification. The schematic diagram of the MetaBlock module

is shown in Figure 3.

The MetaBlock module implements a batch-like

normalization technique, as illustrated in Figure 3. This

approach involves learning a function to scale and shift image

features based on metadata and choosing the most important

features using LSTM-like gates (26). Using equation (2).

X = s tanh fb Xmetað Þ⊙ ≤ Ximg

� �
+ gb Xmetað Þ� �

(2)

where ⊙ is the element product, s(·) And tanh (·) re the S-type

(sigmoid) function, and the double tangent (hyperbolic tangent)

function, respectively, Using equation (3), (4).

fb Xmetað Þ = WT
f Xmeta + w0f (3)
FIGURE 1

Design diagram of the improved Denset-169 network structure. The features extracted from MetaNet and MetaBlock modules are fused to
construct the MD-Net module.
FIGURE 2

The proposed multiplication-based data fusion can make the metadata directly control the importance of each feature channel, helping the
network focus on more discriminative channels.
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gb Xmetað Þ = WT
g Xmeta + w0g (4)

Where {Wf , Wg}∈Rdme t a×kimg is the matrix weight ,

{w0f, w0g}∈Rkimg s the number of feature maps from the

graph region in the image, called modifiers, by kimg or

modifying the feature map properties and helping the

model to focus on learning more important and relevant

features and thus enhance the weights. After modifying the

feature mapping using kimg the most relevant features are

then fi l t e red by hyperbo l i c tangent funct ion and

Sigmoid function.

According to (2), the first screening function passed,

hyperbolic tangent gate, Using equation (5).

Tgate = tanh fb Xmetað Þ⊙Ximg

� �
(5)

To raise or decrease its relevance and fulfill the screening

objective, this function modifies each feature value to fall within

the range (–1,1).

Then by a second screening function, the S-curve (Sigmoid

gate), Using equation (6).

Sgate = s Tgate + gb Xmetað Þ� �
(6)

This function’s goal is to output the most important feature

by moving the value through the preceding gate to a range

between (0,1).

Briefly stated, the MetaBlock module was designed

with the intention of transmitting information to the gb d

fb functions to produce modification coefficients. After

that, the Tanh gate is used to modify the eigenvalues. The

output features from the previous phase are then chosen,

and the most pertinent features are output, using the

Sigmoid gate.
Frontiers in Oncology 05
Experiments and results

Dataset introduction

In this study, the proposed approach is assessed using data

from two datasets of skin lesions:

PAD-UFES-20 (27): The dataset contains 2298 dermoscopic

samples from six different types of skin lesions. The patient’s age,

lesion location, lesion diameter, lesion location, bleeding at lesion

location, and other clinical metadata were among the 22 clinical

parameters that were included in each sample along with a clinical

image. Basal cell cancer (BCC), squamous cell carcinoma (SCC),

actinic keratosis (ACK), seborrheic keratosis (SEK), melanoma

(MEL), and nevus are the six skin lesions included in the dataset

(NEV). The photos in the PAD-UFES-20 collection are all high-

resolution dermoscopic images of skin lesions that can show lesion

details (color, texture, etc.). That is unseen to the human eye and

can be used to analyze the subcutaneous structure of the skin. The

data in this work is upgraded using typical image processing

techniques such noise removal and picture scaling, as well as

horizontal or vertical flipping, brightness, contrast, and saturation

adjustments due to the dataset’s low sample size (26, 28).

Figure 4 depicts an example presentation of the dataset categories.

Table 1 displays the samples from the PAD-UFES-20 dataset

for each category.

ISIC 2019 (29): This dataset includes 8238 private photos in

addition to 25331 public photographs that represent eight

different types of skin lesions. Age, sex, and anatomical area

are the three clinical metadata that are included in each sample.

The dataset includes eight skin lesions: cutaneous fibroma (DF),

actinic keratosis (ACK), benign keratosis (BKL), melanin nevus

(MEL), melanocytic nevus (NEV), basal cell carcinoma (BCC),

and squamous cell carcinoma (SCC).

Figure 5 displays an illustration of the ISIC 2019 dataset categories.
FIGURE 3

The internal structure of the MetaBlock. In summary, the block learns how to enhance the image features based on the metadata features. The
output features array has the same shape as the image features.
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Table 2 displays the samples from the ISIC 2019 dataset for

each category.
Experimental evaluation index

Accuracy, Sensitivity, Specificity, and Balance Accuracy

(BACC) calculations were made to assess the model’s

performance in this study. BACC served as the primary

evaluation index because the two datasets were unbalanced.

Equation 7-10 illustrates the process used to calculate the

aforementioned evaluation index.
Frontiers in Oncology 06
Accuracy =
TP + TN

TP + FP + FN + TN
(7)

Sensitivity = Recall =
TP

TP + FN
(8)

Specificity =
TN

FP + TN
(9)

Balance   accuracy =
Sensitivity + Specificity

2
(10)

Table 3 displays the pertinent configuration of the

experimental setting.
Performance evaluation of
several models

The MD-Net module compared the outputs of multiple classic

CNNs networks that retrieved features, and all models employed

the weight parameters learned during pre-training on the ImageNet

dataset. Tables 4, 5 present related comparison findings.

According to Tables 4, 5, the MD-Net model suggested in this

research shows good diagnostic performance for skin malignancies

and is the best in three assessment indices on two separate datasets.
FIGURE 4

Example of the PAD-UFES-20 dataset categories.
TABLE 1 Distribution of skin disease samples was analyzed by PAD-
UFES-20.

Clinical Diagnosis Number of samples

ACK 543

BCC 442

MEL 67

NEV 196

SCC 149

SEK 215
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As can be observed, DenseNet-169 connects each layer in a pre-

feedback manner to improve the transfer of features between layers.

This is made possible by the unique network topology of the

DenseNet-169 network, which gives the MD-Net model

outstanding feature extraction ability. b) The addition of metadata

gives the model the ability to learn information outside of images,

extract the most important features, and disregard irrelevant

information, increasing the model’s diagnostic precision.
Comparison with experimental findings
from earlier research

The sample size for model training (Batch Size) is set to 30 to

avoid the overfitting issue, and the stable decreasing learning rate,

Dropout, and Early Stopping are utilized to avoid data overfitting

(30, 31). The parameter for “patience” is set to 10. (When the

validation performance does not improve after 10 training sessions,

the learning rate is reduced by half). The early stop method’s

“patience” parameter was set to 15. Each model training cycle’s

(Epoch’s) upper bound was set to 150. To determine how closely
Frontiers in Oncology 07
the actual outputmatches the expected output, the loss function was

set to a multiclassification cross-entropy loss function and retrained

on the ImageNet dataset. The two training sets chosen for

evaluation in this study are as follows: The test set is 3:1 in ratio.

Tables 6–11 displays the classification outcomes produced by the

dense convolutional network in conjunction with the MD-Net

model, while Figures 6, 7 display the confusion matrix.

This section compares and analyzes the proposed

MetaBlock, MetaNet, and features-concatenation modules with

the MD-Net module from the study. Tables 6–8 list the

comparison findings for PAD datasets, while Tables 9–11 list

the comparison results for ISIC 2019 datasets.

The MD-Net module suggested in this research has improved in

all measures, as seen by the table above. The DenseNet-169 network

among them had the best experimental outcomes. The MD-Net

module corrects the shortcoming that SCC and BCC are difficult to

differentiate from one another due to comparable imaging features

and extremely similar clinical features, hence minimizing the

misclassification between them, as shown by the confusion matrix

in Figure 5. The confusion matrix in Figure 6 illustrates how the

amount of metadata will impact classification performance, with less
FIGURE 5

An example of the ISIC 2019 dataset categories is shown.
TABLE 2 Distribution of skin disease samples in ISIC 2019 data.

Clinical Diagnosis Number of samples

AK 869

BKL 2624

BCC 3323

DF 239

NV 12875

MEL 4522

SCC 628

NASC 253
TABLE 3 Environment Configuration.

Projects Configuration

Operating System Windows

Python version 3.6.13

Pytorch 1.10.1

Compiler Environment Pycharm

GPU P100

Memory 16GB
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TABLE 4 Comparing the performance of different CNNs models incorporating MD-Net modules on the PAD-UFES-20 dataset.

Backbones ACC BACC AUC

ResNet-50 0.788 0.731 0.926

Vgg-13 0.627 0.666 0.920

DenseNet-121 0.757 0.737 0.946

DenseNet-169 0.796 0.814 0.956

DenseNet-201 0.768 0.798 0.953
Frontiers in Oncology
 08
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TABLE 5 Comparing the performance of different CNNs models incorporating MD-Net modules on the ISIC 2019 dataset.

Backbones ACC BACC AUC

ResNet-50 0.818 0.814 0.976

Vgg-13 0.821 0.818 0.973

DenseNet-121 0.835 0.831 0.979

DenseNet-169 0.841 0.856 0.980

DenseNet-201 0.838 0.834 0.978
TABLE 6 Compare the performance of DenseNet-121 network fusing different modules on the PAD-UFes-20 dataset. HIGHEST AVERAGE BACC
FOR EACH MODEL.

DenseNet-121

Block ACC BACC AUC

MetaNet 0.734 0.716 0.931

MetaBlock 0.713 0.702 0.930

MD-Net 0.757 0.737 0.946

Concatenation 0.663 0.675 0.936

None 0.715 0.678 0.916
i

TABLE 7 Compare the performance of DenseNet-169 network fusing different modules on the PAD-UFes-20 dataset. HIGHEST AVERAGE BACC
FOR EACH MODEL.

DenseNet-169

Block ACC BACC AUC

MetaNet 0.749 0.734 0.939

MetaBlock 0.692 0.698 0.937

MD-Net 0.796 0.814 0.956

Concatenation 0.681 0.711 0.932

None 0.658 0.658 0.911
TABLE 8 Compare the performance of DenseNet-201 network fusing different modules on the PAD-UFes-20 dataset. HIGHEST AVERAGE BACC
FOR EACH MODEL.

DenseNet-201

Block ACC BACC AUC

MetaNet 0.695 0.757 0.938

MetaBlock 0.624 0.635 0.922

MD-Net 0.768 0.798 0.953

Concatenation 0.721 0.726 0.932

None 0.697 0.669 0.923
n.org
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metadata being provided resulting in a less pronounced improvement

in classification accuracy. The main distinction between this module

and the previous modules is that this module adds metadata and

combines features from the MetaBlock and MetaNet modules

simultaneously, maximizing the utilization of features from many

categories and enhancing the diagnostic precision.
Frontiers in Oncology 09
According to the experimental results, the BACC index of

the MD-Net module is enhanced by 8% to 15.6% in comparison

to the previous study, making it more appropriate for clinical

judgment. This technique is more suited for the clinical

diagnosis of skin malignancies in China because it can lower

the rate of SCC and BCC misdiagnosis.
FIGURE 6

On the PAD-UFES-20 dataset, DenseNet169 combines confusion matrices of different modules.
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Conclusion

In order to increase the precision of skin cancer detection

and streamline the process of skin tumor diagnosis, the method

of skin tumor classification based on a dense convoluted
Frontiers in Oncology 10
network of fused information is proposed in this research.

Additionally, the proposed network model’s classification

outcomes on the PAD-UEFS-20 and ISIC 2019 datasets

outperform those of other current networks, with strong

robustness and stability. The MD-Net module suggested in
FIGURE 7

On the ISIC 2019 dataset, DenseNet169 combines the confusion matrix of different Blocks.
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this paper effectively integrates the features extracted from

MetaNet module and MetaBlock module, allowing the

network to pay more attention to the parts of interest, extract

features with higher correlation, improve the classification

accuracy of dense convolutional neural network, and

subsequently assist clinicians in pre-diagnosing skin

cancer tumors.

This approach also demonstrates the necessity for more

clinical patient metadata, and the more clinical patient

metadata provided, the greater the classification accuracy will be.

To accomplish early identification and treatment of cancer,

lower the mortality rate, and also free up professionals from

having to help diagnose patients, we will focus more on cancer

recognition and diagnosis based on deep learning in future work.

Patients should receive less unneeded care, and their discomfort

should also decrease.
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TABLE 9 Compare the performance of DenseNet-121 network fusing different modules on the ISIC 2019 dataset. HIGHEST AVERAGE BACC FOR
EACH MODEL.

DenseNet-121

Block ACC BACC AUC

MetaNet 0.725 0.723 0.949

MetaBlock 0.810 0.769 0.965

MD-Net 0.835 0.831 0.979

Concatenation 0.792 0.797 0.971

None 0.774 0.755 0.961
TABLE 10 Compare the performance of DenseNet-169 network fusing different modules on the ISIC 2019 dataset. HIGHEST AVERAGE BACC FOR
EACH MODEL.

DenseNet-169

Block ACC BACC AUC

MetaNet 0.737 0.735 0.951

MetaBlock 0.832 0.831 0.978

MD-Net 0.841 0.856 0.980

Concatenation 0.795 0.812 0.973

None 0.784 0.776 0.968
TABLE 11 Compare the performance of DenseNet-201 network fusing different modules on the ISIC 2019 dataset. HIGHEST AVERAGE BACC FOR
EACH MODEL.

DenseNet-201

Block ACC BACC AUC

MetaNet 0.831 0.828 0.975

MetaBlock 0.835 0.832 0.977

MD-Net 0.838 0.834 0.978

Concatenation 0.817 0.829 0.974

None 0.779 0.765 0.960
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