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According to the National Comprehensive Cancer Network and the American

Society of Clinical Oncology, the standard treatment for pancreatic cancer (PC)

is gemcitabine and fluorouracil. Other chemotherapeutic agents have been

widely combined. However, drug resistance remains a huge challenge, leading

to the ineffectiveness of cancer therapy. Therefore, we are trying to discover

new treatments for PC by utilizing genomic information to identify PC-

associated genes as well as drug target genes for drug repurposing. Genomic

information from a public database, the cBio Cancer Genomics Portal, was

employed to retrieve the somatic mutation genes of PC. Five functional

annotations were applied to prioritize the PC risk genes: Kyoto Encyclopedia

of Genes and Genomes; biological process; knockout mouse; Gene List

Automatically Derived For You; and Gene Expression Omnibus Dataset.

DrugBank database was utilized to extract PC drug targets. To narrow down

the most promising drugs for PC, CMap Touchstone analysis was applied.

Finally, ClinicalTrials.gov and a literature review were used to screen the

potential drugs under clinical and preclinical investigation. Here, we

extracted 895 PC-associated genes according to the cBioPortal database

and prioritized them by using five functional annotations; 318 genes were

assigned as biological PC risk genes. Further, 216 genes were druggable

according to the DrugBank database. CMap Touchstone analysis indicated 13

candidate drugs for PC. Among those 13 drugs, 8 drugs are in the clinical trials,

2 drugs were supported by the preclinical studies, and 3 drugs are with no

evidence status for PC. Importantly, we found that midostaurin (targeted PRKA)

and fulvestrant (targeted ESR1) are promising candidate drugs for PC treatment

based on the genomic-driven drug repurposing pipelines. In short, integrated
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analysis using a genomic information database demonstrated the viability for

drug repurposing. We proposed two drugs (midostaurin and fulvestrant) as

promising drugs for PC.
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Introduction

Pancreatic cancer (PC) is the 12th most prevalent cancer in men

and the 11th most common cancer in women, with about 450,000

new cases diagnosed worldwide every year (1). The high mortality

and poor prognosis are primarily due to lack of noticeable and

distinctive clinical signs or biomarkers for early detection. Aggressive

metastatic spread of PC contributes to the difficulty of treatment (2).

Generally, PC is classified into two types: the most frequent

pancreatic adenocarcinoma, which arises in the pancreas’ exocrine

glands, and the less common pancreatic neuroendocrine tumor,

which occurs in the pancreas’ endocrine tissue (1). Another forms of

categorization is based on whether the tumors present in the entire

(solid or cystic) or on the prevailing cell differentiation structure

(ductal, acinar, or endocrine). Solid types include pancreatic ductal

adenocarcinoma, neuroendocrine neoplasms, acinar cell carcinomas,

and pancreatoblastomas. Mucinous cystic neoplasms, intraductal

papillary mucinous neoplasms, and strong pseudopapillary

neoplasms are some of the less harmful cystic forms (3).

The options of PC treatment are very restricted and highly

dependent on the stage of the disease. Chemotherapy treatment

remains the primary choice for patients with advanced and
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metastatic tumors. Radiation is another treatment for unresectable,

metastatic cancer when combined with chemotherapy (4). The

National Comprehensive Cancer Network (NCCN) and the

American Society of Clinical Oncology (ASCO) recommend

modified FOLFIRINOX, gemcitabine and capecitabine, and

single-agent gemcitabine or fluorouracil. S-1, an oral 5-fluorouracil

prodrug as a standard treatment for PC. However, those treatments

only marginally prolong life expectancy by approximately 3%

(5). Furthermore, patients with PC are typically diagnosed at

advanced stage with remote metastases. Therapeutic resistance is a

persistent challenge, dumping therapeutic efficacy and prognosis of

PC (6). Therefore, it is urgent to develop more non-surgical

therapeutic approaches to effectively treat PC. One of the strategies

to tackle those issues is by utilizing the available drugs for

new indications.

Drug repurposing is a method to identify new indications of

a drug (7). This approach has several advantages in the drug

discovery for specific indications. First, the risk of failure is lower

because the repurposed drugs are relatively safe if early-stage

studies have been completed in animal models and humans.

Second, this approach is able to reduce the time for

pharmacokinetic and toxicological studies. Third, less capital is

required (8). Genomic information has been widely utilized for

drug repurposing. One of the databases that provide genomic

information is cBioPortal. cBioPortal is an open-access resource

for the interactive exploration of multidimensional cancer

genomics datasets (9). Herein, we employed cBioPortal as a

main resource and integrated different annotations to prioritize

the PC risk genes. The detailed flowchart of genomic-driven

drug repurposing is illustrated in Figure 1.
Methods

Retrieving pancreatic cancer associated
genes

PC genes with somatic mutation (PC-associated gene) were

retrieved from the cBioPortal (https://www.cbioportal.org/)

database (9). PC-associated genes were provided by cBioPortal,

which were extracted from nine studies with 1,023 samples

(Supplementary Table 1).
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Identifying biological pancreatic cancer
risk genes

Subsequently, five functional annotations: (1) Kyoto

encyclopedia of genes and genomes (KEGG); (2) Biological

process (BP); (3) Knock out mouse (KO); (4) Gene list

automatically derived for you (GLAD4U); and (5) Gene

Expression Omnibus Dataset (GEO) were utilized to build a

scoring system to prioritize PC-associated genes. The first

functional annotation was KEGG to determine the molecular

pathway. The second was gene ontology BP to identify genes

involved in the biological protein network. The third was KO

mouse to investigate whether the gene contributes to specific

phenotype disease in the mouse. The fourth was GLAD4U to

analyze which gene is related to a particular disease (10) , and the

fifth applied four datasets from the GEO database to highlight

up-regulated genes in PC samples. Only data from human PC

patients was collected from each dataset for investigation. The

dataset we retrieved from the GEO database were GSE28735,

GSE15471, GSE16515, and GSE19650 and were depicted in

Table 1. We used Within-Array Normalization to normalized

each dataset before extracting the differential expression genes

(DEGs). The DEGs were found by setting an adjusted p-value

cut-off of 0.05 and log fold cut>2 (Supplementary Figure 1). The

annotation applied for this study was from the WebGestalt 2019

database (http://www.webgestalt.org/), a popular tool for the

interpretation of gene lists derived from large-scale-omics

studies (11) and GEO database (12). The significant result for

annotation utilizing WebGestalt was set at a false discovery rate

(FDR) < 0.05. The scoring system was utilized in a previous

study by Okada et al., which identified potential treatments for

rheumatoid arthritis (13). Genes that fulfilled two or more of the

criteria were defined as biologicalPC risk genes.
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Overlapping drug targets for pancreatic
cancer with DrugBank

To uncover therapeutic candidates for repurposing in PC, we

mapped biological PC risk genes to DrugBank databases (https://

go.drugbank.com). The DrugBank database is a bioinformatics

and cheminformatics database that provides detailed

information on drug compounds and gene targets to the drug

discovery and clinical medicine communities (14). Drugs having

pharmacological activity, human effectiveness, approved

annotations, clinical trials (http://www.ClinicalTrials.gov), and

experimental drugs were among the factors utilized to query

the databases.
Prioritizing candidate drugs

The core principle behind Connectivity Map (CMap)

Touchstone analysis is to compare a drug-specific gene

expression profile with a disease-specific gene signature using

a reference database (15). We used the CMap Touchstone

database tool (https://clue.io) to grade drugs as shown in a

connectivity score to prioritize the drugs for PC repurposing

(-100 to 100) (16). Here, gemcitabine was used as a standard

treatment for PC according to the NCCN guideline (5). The

CMap database provides nine cell lines, namely A375, A549,

HA1E, HCC515, HEPG2, HT29, MCF7, PC3, and VCAP.

However, by using gemcitabine as the gold-standard, only

three cell lines (A549, MCF7, and PC3) are available to match

with gemcitabine in the CMap database.

According to the DrugBank database, the target protein of

gemcitabine is the ribonucleoside-diphosphate reductase large

subunit (RRM1). Thus, CMap analysis generated a score that
FIGURE 1

Study design and genes that contribute to pancreatic cancer (PC). The workflow elucidates the PC risk genes and candidate drugs derived from
the public databases.
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indicates the interaction strength between candidate drugs and the

protein. The ranked candidate drug was prioritized based on the

score (≥ 80). Finally, a PubMed literature review and

ClinicalTrials.gov were used to evaluate the reliability of candidate

drugs based on the evidence from preclinical studies and

clinical trials.
Statistical analysis

All analytic workflows were performed using R Studio

version 1.3.1073 (https://www.r-project.org). DEGs were

obtained from the GEO dataset (https://www.ncbi.nlm.nih.gov/

gds) using the R limma package. Overrepresentation analysis

(ORA) was utilized to prioritize the gene in KEGG, BP, KO

mouse, and GLAD4U provided byWebgestalt 2019 (11, 17). The

statistical significance was established using an FDR of 0.05. R

studio were used for graphic visualization.
Results

Prioritizing genes associated with
pancreatic cancer

We retrieved sample data from the cBioPortal database.

Nine studies related to PC were obtained with 1,032

participating patients (Supplementary Table 1). From nine

studies, 895 genes were identified as PC-associated genes

(Supplementary Table 2). Applications of previous approaches,

five functional annotations were used to generate a risk score

representing the most probable candidate genes as biological PC

risk genes (18–20). The result was shown in Figure 2A and the

detailed information was in Supplementary Table 3. 19.32%,

34.41%, 30.17%, 27.93%, and 15.53% of PC-associated genes

were found from KEGG, BP, KO mouse, GLAD4U, and GEO,

respectively. Among 895 genes, 318 genes met the criteria of

score ≥2 and were further defined as biological PC risk genes.

The highest score (score = 5) from the five criteria was achieved

by 12 genes, including CDKN2A, CTNNB1, BRCA2, AR,

CCND2, PML, MYC, CCND3, STAT3, ZBTB16, EGFR, ESR1.

Among the highest score genes, CDKN2A and BRCA2 have been

previously reported as dominated mutation genes in PC (21, 22).

Additionally, we analyzed the correlation among five

functional annotations. Correlation coefficient analysis was
Frontiers in Oncology 04
conducted to assess whether the five functional annotations

have possible linear relationships with each other (to avoid

overlap between these functional annotations). Results showed

that those five functional annotations had values of 0.30–0.50,

which indicated low (weak) correlations between each other, and

the results are depicted in Supplementary Figure 2. Additionally,

the distribution score of each criterion is shown in Figure 2B.

The number of intersection among five annotations was 12

genes. In addition, the gene number without overlapping among

annotations were 25, 74, 68, 51, and 39 for KEGG, BP, KO

mouse, GLAD4U and GEO, respectively.

Furthermore, the results of the four functional annotations,

KEGG, BP, KOmouse, andGLAD4U, showed that these biological-

PC risk genes are highly correspond with cancer development,

especially in cell proliferation. In KEGG, the major pathway was

indicated as EGFR tyrosine inhibitor resistance, prolactin signaling

pathway, and pathway in cancer. In BP, the dominant biological

process is in cell proliferation process. Regarding to KO mouse,

results pointed out the importance of bone marrow cell

proliferation. Finally, GLAD4U results suggested a strong

correlation between candidate genes and neoplasms (Figures 3A–

D). Taken together, these results indicated that 318 biological PC

risk genes highly correspond to cancer growth-related signals.
Repurposing drugs for pancreatic cancer

The next step is to map 318 biological PC risk genes into the

DrugBank database. Among those genes, only 77 genes

overlapped with DrugBank, indicating that not all biological PC

risk genes are druggable. 77 drug target genes correspond with 216

drugs. Among the 77 target genes, over expression of EGFR has

been previously identified in pancreatic tumors (23, 24) and it is

associated with poor prognosis and disease progression (25, 26).

Indeed, erlotinib is an EGFR tyrosine kinase inhibitor and the

combination with gemcitabine demonstrated a moderate

advantage (23). The results demonstrated that this process of

repurposing drugs is a reasonable approach.
Prioritization of candidate drug for
pancreatic cancer

To prioritize the most potential candidate drugs for PC, 216

drugs were tested by using the CMap Touchstone database. We
TABLE 1 Characteristic of Gene Expression Omnibus Dataset Series.

GSE series Platform Total Sample Normal PC PMID

GSE28735
GSE15471
GSE16515
GSE19650

GPL6244
GPL570
GPL570
GPL570

130
78
52
22

61
42
16
7

69
36
36
15

27197190
28881803
19732725
20955708
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used the profiles of gemcitabine in the MCF7 cell line as the

standard for PC treatment. Importantly, 77 drugs exhibited

positive correlations. We ranked the 77 drugs according to the

CMap Touchstone database scores. 13 drugs with a score>80

were defined as PC candidate drugs (Table 2).

Among the 13 drugs extracted from the CMap Touchstone

database, 8 drugs are under clinical trials for PC including

tamoxifen, sunitinib, bosutinib, everolimus, afatinib, palbociclib,

vorinostat, and axitinib. Two drugs are with preclinical studies

clomifene and raloxifene; and three drugs are without evidence

from clinical trials: fulvestrant, midostaurin, and toremifene. The

connection among target proteins, PC candidate drugs, and the

evidence level status is demonstrated in Figure 4. Among the 13

drugs, fulvestrant is a promising drug repurposing for PC because

the target gene, ESR1, is one of the most dominated biological-PC

risk genes in this analysis.
Discussion

This study utilized a genomic database to retrieve somatic

mutation genes of PC. Five functional annotations were applied to

build a scoring system and prioritized PC risk drug target

identifications. We found 318 drug target genes.12 genes of

them had the highest score (score = 5) after prioritization.

Molecular mechanism of the 12 genes were listed in Table 3.

After prioritization of candidate drugs, we found 13 potential

drugs (tamoxifen, sunitinib, bosutinib, everolimus, afatinib,
Frontiers in Oncology 05
palbociclib, vorinostat, axitinib, clomifene, raloxifene fulvestrant,

midostaurin and toremifene) for PC.

Out of 12 genes, some potential gene targets were highlighted

by our pipelines, including BCR and MTOR (55, 56), which were

targeted by bosutinib and everolimus, respectively. Genes including

KRAS, TP53, and SMAD4 had also been reported from previous

studies (57, 58). These results indicated that five functional

annotations are useful tools to priortize the important genes.

CMap Touchstone analysis showed that ESR1 as a dominated

target protein for PC. ESR1 is a ligand-activated transcription factor

that belongs to the steroid/nuclear receptor superfamily (59). The

estrogen-responsive element (ERE) on the promoters of ESR1 target

genes dimerizes and binds to coactivators in response to estrogen

binding (60). ESR1 is known to involve in various cancers, such as

endometrial and ovarian cancers (61). A previous study mentioned

that ESR1 is also expressed in a subset of pancreatic

adenocarcinoma, most notably in mucinous tumors (55, 56).

Tamoxifen is the ESR1-targeted drug with both preclinical trial

and clinical results for PC (62, 63). Furthermore, several clinical

trials have reported using estrogen therapy on PC treatment (53,

63–65). However, the results are still controversial. Another drug

that targeted ESR1 is fulvestrant, originally used for metastatic

breast cancer. Fulvestrant works by inhibiting the dimerization of

the ESR1 receptor and exerts no estrogen agonist effect (66).

Therefore, if compared with tamoxifen, side effects of fulvestrant

seem to be more favorable.

Midostaurin is a candidate drug from our prioritization process.

The target for midostaurin is PRKCA that is a phospholipid-
A B

FIGURE 2

(A) 30 out of 318 genes after prioritization based on five functional annotations. White box indicated that no significant annotation was found
within the database. (B) The Venn diagram shows the distribution of genes in each annotation. From 895 genes, 318 genes were identified as
biological PC risk genes with accumulated scores ≥2.
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TABLE 2 PC drug repurposing candidate prioritization based on CMap comparison to gemcitabine.

PC candidate
drugs

Original indicator CMap
Score

Target Level of
evidence

NCT number/
PubMed ID

Clomifene Ovulation inducer 97.84 ESR1 – PMID:25624908

Tamoxifen Treat estrogen receptor–positive metastatic breast cancer 96.86 ESR1 Phase 2 PMID:12174927,
9641456

Fulvestrant Metastatic breast cancer 96.06 ESR1 – –

Raloxifene Prevention and treatment of osteoporosis in postmenopausal women 96.04 ESR1 – PMID:32940862

Sunitinib Treatment of advanced renal cell carcinoma 89.59 PDGFRB Phase 2 NCT02713763

Midostaurin Treatment in adult patients with high-risk acute myeloid leukemia (AML) 89.03 PRKCA – –

Bosutinib Treatment of chronic, accelerated, or blast-phase Philadelphia chromosome–positive
(Ph+) chronic myelogenous leukemia (CML)

88.17 BCR Phase 1 NCT01025570

Everolimus Treatment of postmenopausal women with advanced hormone receptor-positive 87.7 MTOR Phase 2 NCT00560963

Afatinib Advanced or metastatic non-small-cell lung cancer (NSCLC) 86.93 EGFR Phase 2 NCT01728818

Palbociclib Advanced/metastatic breast cancer 84.85 CDK4 Phase 2 NCT02806648

Vorinostat Treatment of cutaneous manifestations in patients with cutaneous T-cell lymphoma 83.12 HDAC1 Phase 1 NCT00983268

Toremifene Treatment of metastatic breast cancer 80.82 ESR1 – –

Axitinib Kidney cell cancer and investigated for use/treatment in pancreatic and thyroid
cancer

80.4 FLT1 Phase 3 NCT00471146
Frontiers in Onco
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FIGURE 3

Significantly identified top 10 enriched analysis for four functional annotations: (A) Kyoto Encyclopedia of Genes and Genomes; (B) biological
process; (C); knockout mouse; and (D) Gene List Automatically Derived For You by differentially expressed genes.
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dependent, cytoplasmic serine/threonine kinase acting as an

intracellular signal transducer (67). PRKCA activates different

proteins such as cellular proliferation, differentiation, and gene

expression (68). In addition, the expression of PRKCA has been

associated with an elevated expression of the multidrug resistance

phenotype (MDR) (69). Clinically, PRKCA is a target for types of

cancer including acute myeloid leukemia (AML), breast cancer, and

ovarian cancer (70). However, the reference of PRKCA as a

treatment target for PC is still limited. Therefore, we propose

PRKCA as a potential novel target. In this study, midostaurin

targeted PRKCA with a score of 89, indicating the similar profiles

between midostaurin andgemcitabine.
Frontiers in Oncology 07
This study focused on bioinformatic approaches to

prioritize drug candidates for PC. However, we should

emphasize that further experimental and clinical studies are

necessary to confirm the findings. The advantage of these

approaches is narrowing down the drug targets and

improving the success rate of drug development by

prioritizing the best candidates. It is worth noting that this

study has some limitations. First, not all genes retrieved from

our analysis were druggable. Second, we used only one drug,

gemcitabine, as the standard treatment for PC; this approach

omits other potential candidate drugs to be found. Finally,

CMap did not provide specific cell lines for PC.
TABLE 3 The molecular evidence of the 12 highest five functional annotations to PC.

Genes Molecular mechanism Sources

CDKN2A Encodes p16 that recognizes tumor suppressor preventing progression through the G1 cell cycle checkpoint. (27–29)

CTNNB1 Encodes b-catenin that is essential in the maintenance of epithelial cell layers and cell signaling. (30–33)

BRCA2 An important player in the homologous DNA repair (HR) pathway and mutations. (34–37)

AR Androgen receptor (AR) signaling has an important role in the initiation and progression of many hormone-related cancers. (38, 39)

CCND2 Cyclin D2 is a core component of the machinery that drives cell cycle progression. (40)

PML Involved in the regulation of cellular processes that are relevant to tumor suppression, such as DNA repair and the DNA damage response. (41, 42)

MYC C-Myc enhances aerobic glycolysis in cancer cells and regulates glutamate biosynthesis from glutamine. (43, 44)

CCND3 CCND3 is the primary driver of the cell cycle that integrates extracellular mitogenic signaling. (45, 46)

STAT3 STAT3 is a key element in multiple signaling pathways by promoting tumor progression, survival, tumor invasion, angiogenesis, and
immunosuppression.

(47–49)

ZBTB16 ZBTB16 represses transcription and is associated with tumor progression. (50)

EGFR EGFR is a receptor tyrosine kinase of the ERB-B family that is abnormally activated in many epithelial tumors. (24, 51,
52)

ESR1 The human estrogen receptor a (ERa), encoded by ESR1, is a member of the steroid/nuclear receptor superfamily and functions as a ligand-
activated transcription factor.

(53, 54)
front
FIGURE 4

Connections among protein, candidate drugs, and evidence level for PC drug repurposing.
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Conclusions

Using our pipeline, we reported that there are 13 compounds

that are the most potential PC candidate drugs. Two drugs are

with preclinical results, eight are under clinical trials, and three

have no previous reports yet. Two drugs (midostaurin and

fulvestrant) were proposed as novel drugs repurposing for PC

treatment. Here, we highlighted that our research demonstrated

the viability of using public genomic information as a potential

drug discovery method.
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Glossary

PC pancreatic cancer

cBioPortal Cancer genomic bio portal

MCF7 Michigan Cancer Foundation-7

RRM1 ribonucleoside-diphosphate, reductase large subunit 1

PRKA protein kinase A

ESR1 estrogen receptor 1

NCCN National Comprehensive Cancer Network

ASCO American Society of Clinical Oncology

KEGG Kyoto Encyclopedia of Genes and Genomes

BP biological process

KO knockout mouse

GLAD4U Gene List Automatically Derived For You

GSE Gene Omnibus Dataset Series

ORA Overrepresentation analysis

FDR false discovery rate

CDKN2A Cyclindependent kinase inhibitor 2A

BRCA2 BReast CAncer gene 2

EGFR epidermal growth factor receptor

BCR breakpoint cluster region

MTOR mammalian target of rapamycin

KRAS K-Ras

TP53 tumor protein 53

SMAD4 suppressor of mothers against decapentaplegic 4

ERE estrogenresponsive element

PRKCA protein kinase C alpha

MDR multidrug resistance phenotype

CML chronic myelogenous leukemia

NSCLC nonsmall cell lung cancer

PDGFRB platelet-derived growth factor receptor beta

CDK4 cyclin-dependent kinase 4

FLT fms-related receptor tyrosine kinase 1

HDAC1 histone deacetylase 1

CTNNB1 catenin beta 1

AR androgen receptor

CCND2 cyclin D2

MYC C-Myc

CCND3 cyclin D3

GEO Gene Expression Omnibus
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