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Overcoming the therapeutic
resistance of hepatomas by
targeting the tumor
microenvironment

Jiaxin Zhang †, Huiqiong Han †, Lei Wang, Wenjia Wang,
Mei Yang and Yanru Qin*

Department of Oncology, The First Affiliated Hospfigital of Zhengzhou University, Zhengzhou, China
Hepatocellular carcinoma (HCC) accounts for the majority of primary liver

cancers and is the third leading cause of cancer-related mortality worldwide.

Multifactorial drug resistance is regarded as the major cause of treatment

failure in HCC. Accumulating evidence shows that the constituents of the

tumor microenvironment (TME), including cancer-associated fibroblasts,

tumor vasculature, immune cells, physical factors, cytokines, and exosomes

may explain the therapeutic resistance mechanisms in HCC. In recent years,

anti-angiogenic drugs and immune checkpoint inhibitors have shown

satisfactory results in HCC patients. However, due to enhanced

communication between the tumor and TME, the effect of heterogeneity of

the microenvironment on therapeutic resistance is particularly complicated,

which suggests a more challenging research direction. In addition, it has been

reported that the three-dimensional (3D) organoid model derived from patient

biopsies is more intuitive to fully understand the role of the TME in acquired

resistance. Therefore, in this review, we have focused not only on the

mechanisms and targets of therapeutic resistance related to the contents of

the TME in HCC but also provide a comprehensive description of 3D models

and how they contribute to the exploration of HCC therapies.
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Introduction

Primary liver cancer is one of the most aggressive and lethal

cancers worldwide, with an increasing number of patients

suffering from chronic liver fibrosis and inflammation (1).

According to the Global Cancer Statistics 2020, hepatocellular

carcinoma (HCC) ranks sixth in terms of cancer incidence and

has a high mortality rate worldwide (2). A substantial proportion

of primary liver cancers comprise HCC, intrahepatic

cholangiocarcinoma, and other mixed tumors (3). HCC is the

most common primary malignancy, is associated with a poor

prognosis and recurrence within 5 years, and is often diagnosed

at the end stage of the disease (4). Currently, liver resection and

transplantation are the most promising curative options for

patients with HCC. However, most patients diagnosed with

HCC miss the optimal time window for surgery. Some

palliative measures include locoregional therapies such as

radiotherapy, trans-arterial chemoembolization (TACE), trans-

arterial radioembolization (TARE), and ablation (microwave,

cryoablation, and ethanol). In the past few years, there have been

significant advances in chemotherapy, immunotherapy, and

targeted therapies. However, drug resistance largely limits

efficacy and has a negative impact on patient prognosis (5, 6).

It is widely known that cancer therapeutic resistance

mechanisms are complicated and are composed of two groups:

intrinsic drug resistance (resistance factors that existed before

drug treatment) and acquired drug resistance (caused by

enhanced efflux of drugs, growth factors, increased metabolism

of xenobiotics, enhanced DNA repair ability, and epigenetic

factors among other factors during the treatment process) (7).

Several studies have demonstrated that therapeutic resistance

has a strong relationship with the tumor microenvironment

(TME), mainly referred to as acquired resistance (8–10).

A prototype of the TME was initially proposed in 1889 as

“seed and soil,” which vividly illustrated the relationship

between tumor cells and the TME (11). This complex and

dynamic TME mainly contains cellular components (cancer-

associated fibroblasts [CAFs], immune cells, regulatory T cells

[Tregs], myeloid-derived suppressor cells [MDSCs], tumor-

associated macrophages [TAMs], and natural killer [NK] cells)

and non-cellular components (tumor vasculature system,

exosomes or extracellular vesicles (EVs), cytokines, and growth

factors) (12, 13). Liver cancer is a rapidly growing solid tumor.

The hypoxic microenvironment of liver cancer tissue is

widespread, which not only stimulates the proliferation of liver

cancer cells, causes angiogenesis, and accelerates invasion, but

also has an important impact on drug tolerance (14). Moreover,

dynamic changes in the TME mean that cells and extracellular

secretions are constantly remodeled, which makes the

microenvironment more conducive to the development of

tumor drug resistance (15). Therefore, regulating the HCC

microenvironment is an important treatment approach.
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Immune checkpoint inhibitors (ICIs) and anti-angiogenesis

therapies are the two main TME-targeted therapies; in

particular, the IMbrave150 study demonstrated that the

combination of the PD-L1 inhibitor atezolizumab with the

anti-angiogenic agent bevacizumab had a survival benefit

superior to the standard treatment of sorafenib in the order of

many years (16). This regimen has also been approved by the

FDA for the first-line treatment of HCC in many countries and

regions. However, during treatment, new immune checkpoints,

new angiogenesis patterns, and other factors in the

microenvironment trigger acquired drug resistance and limit

clinical efficacy. Therefore, targeting the TME as a battlefield to

overcome many existing therapeutic limitations is a promising

research direction. Simultaneously, it is necessary to accurately

mimic the full appearance of the TME to explore tumor

recalcitrant mechanisms and discover efficient therapies for

HCC patients. For example, cultivation of three-dimensional

(3D) organoid models in vitro provides a broader platform for

preclinical studies. In this review, we mainly focus on the

mechanisms and markers of drug resistance related to the

HCC microenvironment (Figure 1) and elaborate on potential

drugs for TME-targeted therapies. Furthermore, we discuss what

the 3D organoid model is and how it contributes to HCC

therapy exploration.
Mechanisms of therapeutic
resistance in the HCC
microenvironment

Vascular system

The emergence of vessel co-option and
vasculogenic mimicry

Available data suggest that anti-angiogenesis can inhibit

tumor growth, but compensatory angiogenesis is involved in

anti-angiogenic therapeutic resistance. Important vascular

stimulators have been studied in HCC, including vascular

endothelial growth factor (VEGF)/vascular endothelial growth

factor receptor (VEGFR), fibroblast growth factor (FGF)/

fibroblast growth factor receptor (FGFR), platelet-derived

growth factor (PDGF)/platelet-derived growth factor receptor

(PDGFR), endoglin (CD105), and angioportin/tie (17). Among

these factors, VEGF is the most important cytokine that

facilitates angiogenesis and is composed of five different

isoforms: VEGF-A, -B, -C, -D, and -E. The VEGF receptors

VEGFR-1, -2, and -3 bind VEGF with different affinities (18).

The combination of VEGF and VEGFR can not only trigger the

proliferation of vascular endothelial cells but also activate

lymphatic metastasis by forming new lymphatics. In 1971,

Folkman suggested potential strategies against tumor

progression by blocking tumor angiogenesis (19). Angiogenesis
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inhibitors are administered to patients with HCC, including

bevacizumab, cabozantinib, lenvatinib, ramucirumab,

regorafenib, and sorafenib, based on the National

Comprehensive Cancer Network guidelines (20). Placental

growth factor (PLGF) is a pro-angiogenic factor belonging to

the VEGF family, which is usually secreted under pathological

conditions. The overexpression of PLGF has been noted in

several tumors resistant to anti-angiogenesis therapy,

suggesting that PLGF is a prospective target in HCC treatment

(21–24).

Although current anti-angiogenic drugs, together with

immunotherapy, have prolonged the survival of patients to a

certain extent, acquired resistance limits the therapeutic efficacy

of HCC. To some extent, antiangiogenic drugs prevent the

transport of chemotherapy drugs and limit the therapeutic

efficacy. Furthermore, vasculogenic mimicry (VM) and vessel

co-option (VC) are two emerging theories that explain resistance

to anti-angiogenic drugs.

VM is a novel tumor microcirculation model independent of

endothelial cells and was first developed by Maniotis et al. in

1999 (25). This model indicates that pluripotent stem cell-like

tumor cells (PSCLTCs) acquire endothelium-like properties and

form stable tubular structures without endothelial cells by
Frontiers in Oncology 03
secreting heparin sulfate, proteoglycans, collagen IV and VI,

and laminin to transport nutrients for tumor growth (26). The

VM process is unsurprisingly complex and is usually induced by

a hypoxic TME and favored by many molecular mechanisms,

mainly involving epithelial–mesenchymal transition (EMT),

cancer stemness, response to hypoxia, and extracellular matrix

remodeling (27, 28). VEGF/VEGFR inhibitors disrupt the

formation of tumor blood vessels, leading to an acidic

environment that compensates for the production of VM

structures. Therefore, VM is an important cause of drug

resistance after the application of anti-VEGF drugs to solid

tumors. Sorafenib is a small-molecule tyrosine kinase inhibitor

with anti-angiogenic activity. Clinical trials in breast cancer have

been limited and have stopped at phase III. Mao et al. found that

compared to the less invasive MCF7 cell line, only breast cancer

stem-like cells (BCSLCs) and ALDH1+ MDA-MB-231 cells

showed angiogenic ability and were directly involved in the

development of VM. Sorafenib only inhibits endothelial

angiogenesis and has no effect on VM. Mechanistically, they

found that HIF-1a contributes to the proportion of BCSLCs

(29). Furthermore, VM usually occurs in tumors with higher

grades, shorter survival, and more aggressive disease (30, 31).

Sorafenib resistance has been studied most frequently in HCC.
FIGURE 1

An overview of drug resistance mechanisms between tumor microenvironment and HCC cells. The microenvironment of HCC mainly includes
cellular components (CAFs, NKs, Tregs, MDSCs, TAMs) and non-cellular components (tumor vasculature system, exosomes and cytokines).
Under the combined effect of tumor and microenvironmental components, patients with liver cancer are resistant to immunotherapy, anti-
angiogenesis or radiotherapy. ! represents the pointing and promoting effect. ⊥ represents the inhibiting effect. The ↔ representative serves to
enhance each other. The blue fonts represent the treatment for HCC patients. The red fonts represent microenvironmental molecules and their
mechanisms of action. Black fonts represent cells name. CAFs, cancer associated fibroblasts; NKs, natural killer cells; Tregs, regulatory T cells;
MDSCs, myeloid-derived suppressor cells; TAMs, tumor-associated macrophages; M1, tumor suppressor macrophages; M2, tumor-promoting
macrophages. PSCLTCs, pluripotent stem cell-like tumor cells. HCC cells, hepatocellular carcinoma cells.
frontiersin.org

https://doi.org/10.3389/fonc.2022.988956
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.988956
Shi et al. found that the high expression of ITGA5 and ITGB1 in

sorafenib-resistant liver cancer tissues promoted the degree of

hypoxia and the generation of VM structures (32). The most

important molecular mechanisms favoring VM in HCC include

the following: (a) HIF1-a promotes VM production by

regulating LOXL2 and is positively correlated with poor

prognosis of HCC patients (33); (b) m6A methyltransferase

METTL3 promotes VM generation and HCC metastasis by

enhancing the translation efficiency of YAP1 mRNA and is

related to Hippo pathway (34); (c) exosomes derived from

hepatocytes, circRNA-100338, can affect the angiogenesis of

liver cancer, including VM, thereby promoting the metastasis

of liver cancer (35); (d) high expression of CD276 protein can

activate the PI3K/AKT/MMPs pathway to promote VM

formation, which is related with poor prognosis in HCC (36);

(e) BMP4, migration-inducing gene 7 (MIG7), long noncoding

RNA n339260, RhoC/ROCK2, Slug, and osteopontin were also

found to be factors inducing VM formation in HCC (37–42); (f)

EMT pathway can be induced by Hsp90B, Notch 1, ZEB2 and

Twist1 to promote VM formation (43–46). These molecules are

thought to be potential therapeutic targets for tumors resistant to

anti-angiogenic therapy in patients with HCC.

Vessel co-option is a non-angiogenic mechanism in which

tumor cells adhere to the existing normal vessels of host organs

and grow infiltratively by migrating along them without

angiogenesis (26). Kuczynski et al. performed an experiment

to illustrate the co-option process in sorafenib-resistant HCC

using Hep3B-hCG orthotopic HCC xenografts. Under sorafenib

treatment, angiogenic vessels of the tumor are depleted but co-

opted pre-existing vessels are preserved. Meanwhile, EMT-like

molecules are increased, leading to both tumor invasion and

incorporation into the liver parenchyma, co-opting the normal

liver vascular system. These changes can be reversed by

discontinuing sorafenib treatment (47, 48). Interestingly,

following the onset of sorafenib resistance, tumor cells begin

to surround the hepatic sinuses and major blood vessels and

invade rapidly. The tumor invasion signal weakens and becomes

angiogenesis-dependent only when sorafenib treatment is

discontinued (49). In cases of colorectal cancer with liver

metastases, vascular co-option is associated with resistance to

anti-angiogenic therapy. Cancer cells replace hepatocytes by

inducing apoptosis proteins, motility, and EMT, and enter

sinusoidal vessels to establish vascular co-option (50).

However, these findings lack specific markers of co-opted

vessels and need to be verified in patients with HCC in future

studies. If possible, anti-angiogenic drugs together with anti-co-

opted vessels will be an optimal choice for patients with

metastatic HCC.

Potential drugs and mechanisms to overcome
antiangiogenic resistance in HCC

Recently, some VM-targeted drugs have been developed to

inhibit VM in HCC and have shown satisfactory results in
Frontiers in Oncology 04
reversing drug resistance. The promising drugs and functional

mechanisms that inhibit VM formation and overcome anti-

angiogenic therapy resistance are summarized in Table 1.
Immune system

The immunosuppressive environment
contributes to therapeutic resistance

The imbalance between the recruitment of immunosuppressive

cells (MDSCs, TAMs, and Tregs) and the reduction of anti-tumor

effector cells (cytotoxic T lymphocytes [CTLs], NKs, and dendritic

cells [DCs]) results in an immunosuppressive microenvironment

for HCC, leading to immunotherapy resistance (61). A high-level

overview of these mechanisms is shown in Figure 1. The

mechanisms and potential targets of drug resistance in these cells

are described.

Tregs are a subset of CD4+CD25+ immunosuppressive T

cells, characterized by Forkhead box protein P3 (Foxp3)

expression, which determines the development and

differentiation of Tregs. In HCC tissues, a high concentration

of Tregs combined with a low concentration of CD8+T cells is an

independent factor that affects the survival and recurrence of

patients (62). However, the mechanisms by which Tregs induce

resistance to ICIs and sorafenib in HCC have not been fully

elucidated. However, a number of molecules and signaling

pathways have been implicated in Treg-induced immune

tolerance: (a) the emergence of other immune checkpoints

from Tregs, such as TIM-3, TIGIT, LAG3, and VISTA, blocks

effector T cell activation, and their high expression is often

associated with poor prognosis in HCC patients after anti-PD-

1/PD-L1 treatment (63, 64); (b) TGF-B secreted by Tregs

induces EMT and promotes the invasion and migration of

HEPA1-6 cells. The combination of TGF-B inhibitors

significantly enhances the sensitivity of HCC cells to

regorafenib and sorafenib (65, 66); (c) CD25 expressed by

Tregs competitively consumes IL-2, reduces effector T cell

activation, and induces metabolic disorders (67); (d) CD73,

CD39, and cyclic AMP-regulated adenosine A2 receptor

(A2AR) can reduce T-ce l l tox ic i ty and shi f t the

microenvironment into a tolerant state (68); (e) Tregs secrete

granzyme B/perforin that directly lyses NK and CD8+ T cells

(69). Moreover, CCR4+ Tregs have been found to be an

important type of Tregs in HBV+ HCC, correlated with

sorafenib resistance and increased IL-10 and IL-35 levels, and

treatment with a CCR4+ antagonist has been shown to

successfully reverse sorafenib resistance and sensitize liver

cancers to PD-L1 checkpoint blockade (70).

MDSCs are heterogeneous and immature cells derived from

the bone marrow, which can be induced in almost all types of

tumors and in pathological conditions such as infection,

autoimmune disease, and trauma. The mechanism of drug

resistance in MDSCs is mainly through damaging T cell
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function: (a) MDSCs overconsume essential amino acids such as

arginine-1 and cysteine in the body, leading to T cell

proliferation and activation dysfunction, as well as tryptophan

by overexpression of indoleamine-pyrrole 2,3-dioxygenase

(IDO) (71–73); (b) Cystine deprivation downregulates the T-

cell receptor (TCR) z chain of hepatic CD8(+) T cells and helps

tumor cells to escape; and (c) MDSCs also express cytotoxic

reactive oxygen species (ROS), inducible nitric oxide synthase

(iNOS), and nitric oxide (NO) to influence T cell viability (74).

Furthermore, many tumor-derived cytokines such as FGF1,

HIF-1, VEGF, IL-6, and G-CSF have been shown to promote

the accumulation of MDSCs and are related to therapy resistance

(75–80). For example, Xu et al. argued that chemotherapy-

resistant HCC cell-released IL-6 boosts the silencing and

activity of MDSCs and, when anti-IL6 neutralizing antibody is

combined with 5-FU chemotherapy, tumor growth is

significantly decreased (80). TGF-B secreted by MDSCs

participates in a variety of drug resistance mechanisms, such

as EMT induction, CSC promotion, and immunosuppression

(81). Downregulation of TGF-B expression can overcome

sorafenib resistance in liver cancer (82). Furthermore,

hepatoma-intrinsic CCRK inhibition reduces MDSCs
Frontiers in Oncology 05
immunosuppression and enhances the blocking effect of the

immune checkpoint (PD-L1) (83). SB265610, a CXCR2

antagonist, may reverse immunosuppression by inhibiting the

chemotaxis of MDSC to the tumor, thereby promoting the anti-

tumor immunity of CD8+ T cells and inhibiting tumor immune

escape (84). MDSC-targeted therapy has achieved great progress

in solid cancers, such as melanoma, breast cancer, NSCLC, and

glioblastoma, and has even entered the stage of clinical trials, but

research on liver cancer is still lacking.

TAMs are another type of marrow-derived cells that are

divided into M1 (tumor suppressor macrophages) and M2

(tumor-promoting macrophages) subtypes, with type M2

predominating in liver cancer (85). In multiple cancers, the

infiltration of M2 TAMs is highly related to poor prognosis and

treatment resistance (86, 87). The main mechanism by which

TAMs exert immune tolerance in HCC is through the secretion

of molecules. For example, hepatocyte growth factor (HGF),

derived from polarized M2 TAMs, confers HCC resistance to

sorafenib in a feed-forward manner. Accumulated HGF can

activate the HGF/c-Met, ERK1/2/MAPK, and PI3K/AKT

pathways in tumor cells, recruit more M2 TAMs, and promote

tumor growth. Therefore, the combination of the HGF inhibitor
TABLE 1 The novel targets and promising drugs to reverse resistance by inhibiting VM formation.

Molecule Target Target’s
expression

Molecule function Cell
lines

Ref

Myricetin PAR1 UP Myricetin reversed PAR1-mediated EMT and inhibits HCC cell invasion, metastasis, VM
formation and angiogenesis

PLC-PRF-
5

(51)

Daurisoline RhoA/ROCK2/AKT,
ERK-p38 MAPK

UP Daurisoline dramatically sensitized
HCC cell lines to sorafenib

MHCC-
97H

(52)

IU1 (S7134) USP14 UP IU1 treatment decreased cell proliferation, invasion, migration, and VM formation under
hypoxia conditions

HCCLM3
Huh-7

(53)

Regorafenib ID1,
Snail
VE-cadherin,

UP Regorafenib distinctly inhibited EMT in HCC cells via targeting ID1, leading to the
suppression of cell migration, invasion and VM formation.

Huh7,
PLC/PRF/5

(54)

Androgen
receptor (AR)

Notch4,
VE-cadherin,

UP AR suppressed the VM formation by down-regulating circRNA7/miRNA7-5p/VE-Cadherin/
Notch4 signal

SKhep1,
HA22T

(55)

Y27632 ROCK UP Y27632 inhibited VM formation via TGF-B1/ROCK induced EMT pathway HepG2,
MHCC-
97H

(56)

Melittin HIF-1a,
p-AKT,
MMP2/9

UP Melittin suppressed VM formation by inhibiting HIF-1a/AKT pathway SMMC-
7721
Huh7,
HepG2

(57)

NVP-BEP800 Hsp90B
Twist1

UP NVP-BEP800 suppressed VM formation by releasing Hsp90B and Twist1 interaction. SMMC-
7721

(43)

Biejiajian
Pills

VE-cadherin,
PI3K,
RhoA
ROCK

UP Biejiajian Pills can inhibit the formation of VM in HCC cells in vitro possibly by inhibiting
the RhoA/ROCK pathways and the expressions of VE-cadherin and PI3K.

HepG2 (58)

Polyphyllin I
(PPI)

Twist1
VE-cadherin

UP PPI impaired VM formation by decreasing Twist1 and VE-cadherin, and blocking PI3k/Akt
pathway

SMMC-
7721
PLC/PRF/5

(59)

Arsenic
trioxide
(As2O3)

VE-cadherin,
MMP2,
MMP9

UP As2O3 inhibited VM formation through downregulating the expression of VE‐ cadherin,
MMP2, and MMP9

HepG2 (60)
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cabozantinib and sorafenib is reasonable for improving the

efficacy of first-line systemic therapies (88). TAMs can also

induce oxaliplatin resistance through autophagy in HCC cells

(89). Therefore, blocking the recruitment of TAMs or

reprogramming the polarization of TAMs is a promising

measure to enhance the sensitivity of HCC treatment.

Antagonists targeting the chemokine C-C motif ligand 2

receptor (CCR2) and stromal cell-derived factor 1 a (SDF-1a/
CXCL12) have shown good efficacy in blocking TAM

recruitment (90–92). Targeted colony stimulating factor (CSF-

1), autophagy, NF-KB, Mir-214, IL-6, and toll-like receptors

(TLRs) can transform TAMs from a pro-tumor phenotype into

an antitumor phenotype (M1) (93–99).

NK cells are abundant in liver tissue, exerting their ‘killing’

function by regulating the activation receptors (NKG2C,

NKG2D, CD244, CD266, and NCR) and inhibitory receptors

(CD94/NKG2A and KIR) expressed on the surface of NK cells

(100). The balance between the signals elicited by these receptors

determines whether NK cells are activated and perform their

effector functions. NK cell abnormalities induced by the TME

are the main reason why tumor cells escape the immune

response. For example: (a) immunosuppressive factors such as

TGF-B, IL-10, IL-6, and IL-23 secreted by Tregs, MDSCs, or

TAMs suppress NK cell function and induce tumor evasion and

progression (101); (b) NK cells are excessively activated by

mononuclear macrophages through CD48/2B4 interactions,

thus inducing NK cell exhaustion and death (102); and (c)

increased lactic acid content in tumor cells leads to metabolic

reprogramming, resulting in NK cell dysfunction (103). In

add i t i on , th e influence o f HCC ce l l s and the i r

microenvironment can limit the sensitivity to NK cell

cytotoxicity. NK cells targeting CSCs are known to inhibit

tumor progression; however, the resulting overexpression of

CEACAM1 renders EpCAM+ HCC cells resistant to NK

toxicity. Anti-CEACAM1 antibody has been shown to restore

the cytotoxicity of NK cells against EpCAM+ Huh-7 cells (104).

Similarly, the inhibition of CNOT7 and the enhancement of

zeste homolog 2 (EZH2), miR-889, granulin-epithelin precursor

(GEP), and MICA/B can successfully reverse NK cell resistance,

suggesting that these molecules are promising targets for

immunotherapy in HCC patients (105–109).

Targeting immune environment to overcome
drug resistance in HCC

As mentioned above, the immune system greatly influences

tumor response to various treatments in the microenvironment.

Therefore, based on the above immune tolerance mechanisms,

significant efforts have been made to attempt to reverse tumor

drug resistance, including: (a) combining immune checkpoint

inhibitors; (b) inhibiting the recruitment of Tregs, MDSCs, and

M2 TAMs in tumor tissue; (c) reprogramming the polarization

of TAMs; and (d) reinforcing the anti-tumor capabilities of the

immune system.
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Multiple studies have shown that PD-1/PD-L1 inhibitors in

combination with multi-tyrosine kinase inhibitors, VEGF

inhibitors, or CTLA-4 inhibitors are superior to monotherapy

(110). Two CTLA-4 inhibitors, ipilimumab and tremelimumab,

have recently gained increasing attention, with FDA approval in

2011 for patients diagnosed with advanced or unresectable

melanoma and in 2015 for patients with malignant mesothelioma

(111, 112). In contrast to the immunonormalizing effect of PD-1/

PD-L1 inhibitors, CTLA-4 suppression tends to largely enhance the

toxic function of T cells, thus increasing the sensitivity to other

treatments. Currently, the combination of ipilimumab and

nivolumab/pembrolizumab has been associated with encouraging

survival outcomes in patients with advanced HCC with primary

resistance to prior immune checkpoint inhibitors (113). Moreover,

this combination as a first-line therapy for patients with advanced

HCC is currently undergoing evaluation (NCT04039607).

Tremelimumab, another CTLA-4 inhibitor, in combination with

durvalumab for patients with unresectable hepatocellular

carcinoma, has been associated with a reasonable outcome

(median overall survival of 18.7 months) and a satisfactory

benefit-risk profile (114). With the emergence of more immune

checkpoints and anti-PD-1/L1 resistance, the combination of

immune checkpoint inhibitors to overcome drug resistance has

become a popular trend. For example, the inhibition of TIGIT

together with anti-PD-1 has been shown to significantly decrease

tumor growth and increase the proportion of cytotoxic T cells in

tumors (64). Fibrinogen-like protein 1 (FGL1) was recently

identified as a major immune inhibitory ligand of LAG-3 and its

overexpression was positively associated with poor prognosis, anti-

PD-1 therapy resistance, and sorafenib resistance (115, 116).

Although the exact mechanism by which FGL1/LAG3 regulates

the immune environment remains unclear, synergistic inhibitory

effects of anti-FGL1 and anti-PD-1 have been identified in animal

studies. Similarly, a combined inhibitory effect of anti-LAG-3 and

anti-PD-1 has been identified in several cancers such as melanoma,

NSCLC, and breast cancer (117–119). Therefore, FGL1 and LAG3

can be used as next-generation immunotherapy targets

independent of PD-1/PD-L1.

Anti-tumor efficacy can be enhanced by inhibiting Tregs,

MDSCs, and TAMs, or by targeting important molecules to

enhance NK cell activity. Related targets and potential reversal of

drug resistance are described in Section 2.2.1. Adoptive cell

transfer is an emerging therapeutic strategy with wide potential

value in the treatment of HCC, and is deemed to be a highly

individualized cancer therapy because of the adhibition of the

patients’ own effect factors (120). What’s more, antiviral

treatment for HBV-HCC was proved effective in increasing the

postoperative survival (121). In the clinical study of PD-1

antibody, when ICIs repair immune function, HBV infection

can be significantly reduced. In mouse models, it can also be seen

that the virus infection rate of mice treated with PD-1 antibody

is significantly reduced. Thus, the immune escape mechanisms

of viruses and tumors actually work in the same pathway (122).
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Therefore, it is worth exploring whether there is a relationship

between viral load and treatment resistance and whether the

combination of antiviral drugs and immunotherapy or anti-

angiogenesis is more effective. At present, adoptive cell therapy

has been developed into a phase III clinical treatment, including

chimeric antigen receptor (CAR) T cell therapy, tumor-

infiltrating lymphocyte (TIL) therapy, engineered TCR

therapy, cytokine-induced killer (CIK) cell therapy, and NK

cell therapy. However, more effort is needed to achieve the

desired clinical effect. Thus, due to the high heterogeneity of

HCC tissues, targeting the immune system requires a

combination of other molecular targeting inhibitors or

multiple types of therapies.
Cancer-associated fibroblasts and
therapeutic resistance

It has been well documented that CAFs are the paramount

population of stromal cells responsible for modulating neighboring

cancer cells by way of autocrine, paracrine, and exosome functions

(123). CAFs and their secreted soluble factors including cytokines

(TGF-B, IL-4, IL-6), chemokines (CCLX and CXCL family

members), pro-angiogenesis factors (VEGF, PDGF, and HIF),

enzymes (MMPs), and ECM proteins (ectodysplasin-A and

collagen type-I) contribute to tumor progression (124, 125). CAFs

are highly heterogeneous and lack clear markers to distinguish

functional subsets, which usually induces worse outcomes in

anticancer therapy. With the participation of TME, CAFs are

found contributory to increase the chemoresistance of HCC from

multiple mechanisms (126–128).

First, paracrine signaling plays an important role in crosstalk

between CAFs and tumor cells. For example, CAF-derived HGF

increases the resistance of CD73+ cancer cells to sorafenib or

cisplatin through the HGF-c-Met-ERK1/2 pathway in HCC

(129). CAF-derived TGF-B, as the most crucial characteristic

in the HCC inflammatory process, is becoming an inducer of

resistance in various tumors, including HCC (126, 130–132).

Recently, Liu suggested that valproic acid (VPA) could reverse

TGF-B-induced sorafenib resistance in HCC cells by reducing

the Jagged2-mediated Notch1 signaling pathway and altering the

EMT phenotype (133). CAF-derived IL-6 can impair the activity

of tumor-infiltrating T cells and neutralization of IL-6 reverses

anti-PD-L1 resistance in an HCC mouse model (134).

On the contrary, cancer cells affect the activation and

expression of CAFs to protect themselves from toxic drug

attacks. Gao et al. noted that when co-cultured with sorafenib-

resistant Huh7 cells, the BAFF/NF-KB axis could be activated in

CAFs and simultaneously induce the upregulation of Nrf2, IL6,

and IL8, which contributed to the development of drug

resistance in non-resistant Huh7 cells (135). The positive

feedback of the CAF-HCC cell loop makes the tumor

more resistant.
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Furthermore, in view of the critical role of CSCs in therapy

resistance, CAFs can promote stem cell action to increase cancer

cell resistance. The C-MET/ERK/FRA1/HEY1 axis is mediated

by CAF-derived HGF to promote the stemness of tumor-

initiating cells (136). In line with HGF, IL-6 can regulate

STAT3/NOTCH1/NICD/HES1 signaling to enhance the stem

cell-like properties of HCC, either (137). The neutralizing

antibody HGF or IL-6 has been used to successfully reverse

the stem cell viability of CD24+ HCC cells in vitro and in vivo

through the HGF/C-MET/STAT3 or IL6/IL6R/STAT3 signaling

pathways (138). COMP, derived from CAFs, can induce EMT

and stemness in HCC cells. RvD1 has been shown to damage

COMP by targeting FPR2/ROS/FOXM1 signaling to eliminate

the recruitment of COMP promoters by FOXM1 (139). The

cellular crosstalk between CAFs and HCC cells does not stop.

CAF-derived CLCF1 increases the self-renewal ability of HCC

cells by binding to CNTFR expressed in an autocrine manner.

Cancer cells then secrete CXCL6 and TGF-B, which partially

account for the CLCF1-regulated stemness of HCC cells (140).

Moreover, cessation of autophagy is also an effective way to

attenuate CAF-promoted stemness in HCC (141).

Finally, some small molecules carried by CAF-derived

exosomes help markedly. CAF-derived exosomes containing

circZFR enhance chemoresistance to cisplatin by inhibiting the

STAT3/NF-KB pathway in HCC (142). CAF-secreted exosomal

miR-1247-3p is associated with the production of IL-6 and IL-8

in CAFs through B1-integrin–NF-KB signaling, which increases

the stemness and EMT of HCC (143). Evidence suggests that

DNA methyltransferase 3 beta (DNMT3b) is upregulated in

HCC tissues and is associated with poor progression. DNMT3b-

targeted therapy with annamycin A has been shown to

significantly reverse sorafenib resistance in cells (144).

Moreover, CAF-derived exosomal miR-29b can inhibit HCC

progression by targeting DNMT3b, serving as a potential

drug (145).

In conclusion, the above literature findings illustrate the

mechanisms of drug resistance between CAFs and HCC cells,

suggesting that CAF-targeted therapy is a promising method for

reversing drug resistance in HCC (Table 2). Apart from the

inhibitors mentioned above, some traditional Chinese medicines

that exert antifibrotic properties have been reviewed recently

(146). Several anti-HGF/c-MET antibodies, such as

onartuzumab, tepotinib, capmatinib, and tivantinib are already

in the clinical stage of HCC treatment evaluation (NCT01897038,

NCT02115373, NCT01737827, NCT02029157).
Hypoxia

Hypoxia and acidic environment
Abnormal vascular morphology in HCC tumors results in a

preliminary anoxic and acidic microenvironment after the

treatment of anti-angiogenic therapy (147). The lack of oxygen
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and nutrients often causes cancer cells to undergo glycolysis

rather than metabolism, producing large amounts of lactic acid.

The degree of hypoxia in the HCC microenvironment is

heterogeneous. As the degree of hypoxia increases along with

depth from the blood vessels into the tumor, HCC cells are

exposed to a smaller concentration of oxygen and the pH

decreases (148, 149). Tyrosine kinase inhibitors, anti-

angiogenic drugs, or other treatments that restrict the blood

supply within the tumor can exacerbate the development of an

anoxic and acidic environment, leading to tumor progression

and drug resistance (150). Hypoxia-regulated transcription

factor HIF-1 is an extensively authoritative marker to modify

cancer sensitivity to therapeutic agents, and comprises a

heterodimeric DNA-binding complex composed of a and B

subunits (151–154). Hypoxia-induced HIF-1a elevation and

multiple mechanisms contributing to chemotherapy resistance

are related to: (a) alterations in metabolic pathways. Glucose

uptake and glycolysis are strongly activated in hypoxic

environments to meet the demands of tumor cell growth. HIF-

1a induces many glycolytic genes including glucose transporter

type 1 (GLUT1) and hexokinase 2 (HK2) (155, 156). Genistein,

as a natural isoflavone, can directly downregulate HIF-1a, thus
inactivating GLUT1 and HK2 to inhibit aerobic glycolysis, and

therefore induce apoptosis of aerobic glycolysis HCC cells. At

the same time, Genistein enhanced the sensitivity of sorafenib

resistant HCC cells in vivo and in vitro (157); (b) crosstalk

between autophagy and mitophagy. In the context of increased

metabolic demands, mitophagy and autophagy may play key

roles in inducing chemoresistance by regulating the adaptation

of tumor cells to hypoxia, increasing oxidative stress and DNA

damage, and providing nutrition and energy to tumor cells

(158). B-cell lymphoma-2/adenovirus E1B 19 kDa-interacting

protein 3 (BNIP3) and BNIP3-like protein X (NIX) are hypoxia-

induced HIF-1a target genes that can bind LC3 and trigger the

mitophagy response (159). Upregulation of BNIP3 by HIF-1a
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can promote autophagy and oxidative resistance in HCC cells

(160). However, treatment with sorafenib did not inhibit its

cytoprotective action (161); (c) drug efflux. ATP-binding

cassette (ABC) transporters, such as MDR1, can pump

chemotherapeutic drugs from the intracellular to extracellular

regions of HCC cells to produce drug resistance. The reporter

gene assay and electrophoretic mobility shift assay proved that

HIF-1a is a critical factor for MDR1 gene overexpression (162);

and (d) apoptosis inhibition. HIF-1a is the promoter activator of

CBR1, and CBR1 overexpression induces apoptosis resistance by

reducing oxidative stress associated with hypoxia, cisplatin, and

doxorubicin treatment (163). Furthermore, several important

signaling pathways and other gene responsible for chemotherapy

resistance under hypoxia are summarized in Table 3; however,

whether they are regulated by HIFs has not been verified.

Hypoxia is a typical factor that leads to radiotherapy

resistance in solid tumors. Radiation can directly damage the

DNA strands or damage the DNA strands through the

production of radicals, resulting in the death of tumor cells

(182). In an aerobic environment, oxygen reacts with free

radicals on broken DNA strands, forming a more stable

pattern of DNA damage. It’s also a stable hydrogen peroxide

structure, which can promote more DNA breaks. In anoxic

environments, tumor cells repair DNA damage by removing

hydrogen from free sulfhydryl groups, thereby developing

resistance to radiotherapy (183). Similarly, HIF-1a
overexpression during hypoxia is an important factor in

radioresistance. Bai Bing et al. found that inhibition of the

EZH2/Mir-138-5p/HIF-1a pathway could enhance the

sensitivity of radiotherapy (184). In addition, the activation of

PI3K/AKT signaling is known to induce radioresistance in

various tumors by increasing HIF-1a translation efficiency,

and elevated PDK1 is a driver of PI3K/AKT/mTOR signaling

in HCC, suggesting that this pathway is a potential therapeutic

target to reverse radiotherapy resistance (185, 186).
TABLE 2 CAFs-derived molecules promote chemotherapy resistance in HCC.

CAFs-derived molecules
in HCC

Effect on HCC Mechanism Referance

HGF Resistance to sorafenib or
cisplatin

HGF enhances the resistance of CD73+ cancer cells to sorafenib or cisplatin through HGF-
c-Met-ERK1/2 pathway

(129)

Induce stemness C-MET/ERK/FRA1/HEY1 axis is mediated by HGF to promote the stemness of tumor-
initiating cells

(136)

TGF-B Resistance to sorafenib TGF-B induces stemness, EMT and metabolic reprogramming in CAFs (126)

IL-6 Resistance to anti-PD-L1
therapy

Activated IL-6/STAT3 signaling can resist anti-PD-L1 therapy in HCC (99)

COMP Induce EMT and
stemness

COMP is derived from CAFs in a paracrine manner and initiate EMT and resistance in
HCC.

(139)

CLCF1 Induce stemness – (140)

CircZFR Resistance to cisplatin Exosomal circZFR enhanced chemoresistance to cisplatin by inhibiting the STAT3/NF-KB
pathway of HCC cells

(142)

MiR-1247-3p Induce EMT and
stemness

Exosomal miR-1247-3p was associated with the production of IL-6 and IL-8 in CAFs
through B1-integrin–NF-KB signaling

(143)
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Furthermore, HIF-1a can also be upregulated by mTORC1 to

confer radiotherapy resistance to HCC through the anabolic

integration of glucose and cardiolipin (187).

Targeting anoxic and acidic environment to
reverse drug resistance

Hypoxia is a characteristic of HCC and contributes to

chemotherapy and radiotherapy resistance. Therefore,

r ep rog r amming th e hypox i c env i ronmen t u s ing

immunosuppressants, nanoparticles, natural products, and
Frontiers in Oncology 09
HIF-1a inhibitors is an attractive direction for future research.

Rapamycin, an mTOR inhibitor, reverses resistance to

adriamycin during hypoxia by decreasing hypoxia-induced

HIF-1a accumulation (188). Moreover, rapamycin can

increase the sensitivity of HCC cells to cabozantinib (a c-Met

inhibitor), which has a synergistic inhibitory effect on HCC cells

(189). Nanoparticles are an emerging tool to improve the

hypoxic environment of HCC. Nanoparticle delivery of

oxygen-generating MnO2 and anti-angiogenic drugs can

normalize the TME by inhibiting hypoxia-induced invasion,
TABLE 3 hypoxia related gene targets and mechanisms induced chemotherapy resistance in HCC.

Mechanism
Type

Targets HIF-
1arelated

Mechanism Reference

Mitophagy ATAD3A Unknown MiR-210-5P/ATAD3A/PINK1/PARKIN axis regulates hyperactivated mitophagy to induce sorafenib
resistance in HCC under hypoxia.

(164)

NIX and
BNIP3

Yes NIX and BNIP3 are HIF-1a mitotic targets related to mitophagy activity to induce sorafenib resistance. (161)

Autophagy FOXO3 Unknown RNA m6A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy
in hypoxic TME.

(165)

FOXO3a Unknown FOXO3a-dependent transcriptive activation of beclin-1 is responsible for hypoxia-induced autophagy in
sorafenib-resistant HCC

(166)

BAG5 Unknown Deletion of PRMT6 induces autophagy and promotes drug resistance of HCC by regulating the stability
of BAG5-related HSC70 through post-translational methylation of BAG5

(167)

14-3-3z/
beclin1

Unknown 14-3-3z binds to and stabilizes phospho-beclin-1(S295) and induces autophagy in HCC cells to resist cis-
diammined dichloridoplatium in hypoxic TME.

(168)

ADRB2 Yes ADRB2 signaling negatively regulated autophagy, leading to hypoxia-inducible factor-1a stabilization,
reprogramming of hepatocellular carcinoma cells glucose metabolism, and the acquisition of resistance to
sorafenib.

(169)

Egr-1 Unknown Hypoxia-induced Egr-1 expression enhanced drug resistance of HCC cells likely through autophagy. (170)

BNIP3 Yes Upregulation of BNIP3 contributes to autophagy and anoikis resistance of HCC cells (160)

Apoptosis
inhibition

carbonyl
reductase1
(CBR1)

Yes Hif-1a can activate the promoter of CBR1, and CBR1 overexpression can inhibit apoptosis by reducing
oxidative stress under hypoxia, cisplatin and doxorubicin treatment.

(163)

COX-2 Yes COX 2 induces apoptosis resistance via HIF 1a/PKM2 pathway in HCC cells. (171)

YAP and
TAZ

Unknown YAP and its paralog TAZ induce apoptosis resistance of HCC cells under hypoxia. (172)

Drug efflux ABCB1 Unknown NRF2/ABCB1-mediated efflux and PARP1-mediated DNA repair contribute to doxorubicin resistance in
chronic hypoxic HepG2 cells.

(173)

ABCG2 Yes ABCG2-mediated drug efflux induces cancer stemness of HCC cells (174)

Metabolic
pathways

GLUT1/3 Yes GLUT1 and GLUT3 are upregulated to enhance the resistance to 5-caffeylquinic acid (175)

USP29 Yes USP29 promotes sorafenib resistance by upregulating glycolysis (176)

MCT-4 Yes Glycolysis conversion of HIF-1 and McT-4 reduces hepatocellular carcinoma cell apoptosis (177)

HK2 Yes Hypoxia prevents hepatocellular carcinoma cell apoptosis through HIF-1a-dependent induction of
hexokinase II expression

(155)

Important
signaling
pathways

NF-KB axis Yes NF-KB activation induce HMGB1 mediated cisplatin resistance or sorafenib resistance. (178, 179)

ERK/MAPK
axis

Yes ERK/MAPK pathway promotes the formation of MDR through P-gp, MRP1, LRP genes (180)

NPM1/
PTPN14/
YAP axis

Unknown NPM1/PTPN14/YAP axis mediates the hypoxia-induced chemoresistance to sorafenib (181)

mTORC1/
p70S6K/RP-
S6 axis

Yes mTORC1/p70S6K/RP-S6 axis is a target to reverse the resistance to sorafenib by preventing HIF-1a
synthesis to block the cytoprotective mitophagy induced by the hypoxic microenvironment.

(161)

Other FBI-1 Yes FBI-1 regulates the miR-30c/HIF-1a to promote the Warburg effect and enhance the resistance to
molecular targeted agents

(154)
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EMT, and metastasis, and increasing the expression of M1-type

macrophage genes (Nos2, IL-6, CCL5, CXCL9, and CXCL11)

(190). Bruceine D and silymarin are two newly discovered

natural products that reverse drug resistance by decreasing

HIF-1a expression and can directly block the inhibitor of B-

catenin and T-cell factor/B-catenin interaction to regulate HCC

cell metabolism, and silymarin reduces the expression of MDR1

and P-glycoprotein (191, 192). Furthermore, sorafenib inhibits

HIF-1a synthesis and shifts the hypoxia response from the HIF-

1a- to HIF-2a-dependent pathway. HIF-2a overexpression

activates the TGF-a/EGFR pathway, thereby inducing

sorafenib drug resistance. This means that to inhibit cancer

growth, it may be necessary to target both HIF-1a and HIF-2a.
The HIF-1a mRNA antagonist RO7070179 has shown primary

success in a phase Ib study (NCT02564614).
Exosomes

TME-derived exosomes and therapeutic
resistance

Exosomes function as vectors to transport a large number of

molecules between cells in the TME, including messenger RNA

(mRNA), long noncoding RNA (lncRNAs), microRNAs

(miRNAs), circular RNA (circRNAs), lipids, proteins, and

nucleic acids. These molecules are secreted by cancer or

stromal cells in the TME and are involved in TME

remodeling, tumor progression, invasion, angiogenesis,

metastasis, and drug resistance (193). On one hand, exosome-

associated therapeutic resistance is achieved through transport

from drug-resistant cancer cells to drug-sensitive cells. For

example, Fu et al. found that exosome miR-32-5p from a

multidrug-resistant cell line (Bel/5-FU) activated the PI3K/Akt

signaling pathway by inhibiting PTEN and induced drug

resistance in sensitive cells by facilitating EMT and

angiogenesis (194). MiR-221/222 from chemotherapy-resistant

MCF-7 cells can also render sensitive MCF-7 cells resistant, but

this has not been verified in HCC (195). In contrast, exosomes

may swallow drug molecules and pump them out with the help

of the ATP-binding cassette (ABC) transporter family (such as

ABCB1) (196, 197). Recently, several researchers have made

progress in the study of exosome drug resistance in HCC. Li et al.

found that miR-27a-3p derived from M2 macrophage exosomes

is responsible for HCC stemness and directly negatively

regulates TXNIP, which has been reported as a tumor

repressor gene. Upregulation of TXNIP can reverse drug

resistance induced by elevated miR-27a-3p levels (198). Zhang

et al. found that overexpressed plasma exosome circUHRF1

could increase TIM-3 expression caused by miR-449c-5p decline

to inhibit NK cell function and induce anti-PD-1 therapy

resistance in patients with HCC (199).
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Targeting TME-derived exosomes in HCC has
advantages and disadvantages

Communication between cells is a double-edged sword that

can not only transmit information to each other to promote the

occurrence and development of tumors and drug resistance but

also provide treatment targets. In fact, some exosome-mediated

RNAs have shown satisfactory potential in relieving therapy-

resistant stress. MiR-199a-3p, miR-744, and miR-122 are

downregulated in HCC tissues, and chemotherapy resistance

in HCC has been successfully reversed through exosome

transport (200–202). Furthermore, exosomes as drug carriers

have great advantages and a good precedent for the treatment of

HCC patients. First, compared to artificial liposomes, exosomes

have higher packaging efficiency and stability. Second, exosomes

can reduce immune responses in vivo. Third, because of the

specific molecules on the exosome surface, interaction with

antibodies or coagulation factors is limited, thereby reducing

the occurrence of immune responses in vivo (203). Notably,

several major applications in exosome packaging include small-

molecule chemical drugs, proteins, peptides, and nucleic acid

drugs. Zhang et al. designed a neutrophil-derived exosome-like

vesicle loaded with doxorubicin and decorated it with

superparamagnetic iron oxide nanoparticles, which showed

precise targeting in gastric cancer, hepatoma, and colon cancer

cell lines (204). Another exosomal miR-155 inhibitor markedly

improved cisplatin susceptibility in a cisplatin-resistant oral

squamous cell carcinoma 3D model by decreasing MET and

drug efflux transporter proteins (205). Although great progress

has been made over the last few decades and multiple preclinical

trials show promising results, there are still obstacles to be

overcome (206). For example, there is a lack of standardized

exosome isolation and purification techniques. Traditional

separation techniques are often contaminated by other types of

exosomes, which can significantly affect therapeutic efficiency.

Second, thorough and accurate research on exosome

characterization is required because exosomes from different

cell sources may have opposite therapeutic effects. These

technical barriers must be addressed so that exosomes can be

used for the diagnosis or prognostic monitoring of cancer and

innovative, personalized exosome-based therapies.
Organoid models for better
understanding therapeutic
resistance in HCC

An organoid is a type of three-dimensional micro-organ

cultivated in vitro, which has a complex structure similar to real

organs and can partially simulate the physiological function of

the source tissue or organ. In early 2009, Clevers et al.
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constructed the first mouse gut organoids with single sorted Lgr5

(+) stem cells, which maintain the ability of self-renewal and

maintain the villous structure of the intestinal gland fossa (207).

Over the past five years, research on human-derived organoids

in preclinical platforms has developed rapidly. Compared with

two-dimensional (2D) cell line cultures, organoids can mimic

tumor heterogeneity, cell-cell interactions, and cell-extracellular

matrix communication, although not completely (208).

Compared to the disease mouse model, organoids have

physiological and pathological characteristics that are unique

to humans (209). Based on these advantages, organoids can

provide more possibilities for personalized therapy, not only to

verify the mechanism of the microenvironment in tumors in

vitro, but also to facilitate the progress of new drug screening. In

addition, the fact that many drugs show positive results in vitro

or in mouse models followed by negative effects in clinical trials

underscores the importance of exploring realistic hepatocellular

organoid models to simulate efficacy.
Maturation of human hepatocyte
organoids

Since the first attempt to construct a 3D cell culture system in

the 1990s, the development of human hepatocellular organoids has

gradually matured (210). Organoid material sources range from

mice to humans, and the maintenance of organoid function

increases from a few days to eight months. The research scope of

organoids in patients with liver cancer has gradually expanded,
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including exploration of the mechanism of microenvironmental

drug resistance, drug screening, and personalized treatment. Table 4

shows several typical examples of the maturation process of

hepatocellular organoid development.
Contributions to therapeutic resistance
in HCC microenvironment

The most common method for organoid culture of liver

cancer is to transport liver cancer patient tissues back to the

laboratory for 3D culture (218). Organoid structures contain a

variety of specific cell types and their spatial structures are

similar to those of their corresponding tumor tissues. With

improvements in physiological modeling methods, organoid

culture techniques can be combined with in vitro TME

techniques to maintain diverse cell populations. The

cultivation system of organoids simulating the tumor

microenvironment, screening for sensitive clinical drugs, and

achieving precise individualized medicine are three aspects of

great significance in exploring clinical drug resistance in patients

with HCC (Figure 2).

Co-culture of HCC organoids with matrix cells or

extracellular cytokines helps explain the effects of the TME on

HCC growth. In 2017, Wang et al. constructed HCC organoids

and organoids with fibroblasts and endothelial cells.

Immunofluorescence results showed that the addition of non-

parenchymal cells greatly enhanced the expression of EMT-

related molecules (MMP9, vimentin, and TGF-B), tumor-related
TABLE 4 The maturation process of hepatocellular organoid development.

Cellular
source

Characteristics Meaning Reference

Single mouse
Lgr5+ liver
stem cells

Such clonal organoids can be induced to differentiate in
vitro and to generate functional hepatocytes upon
transplantation into Fah(-/-) mice.

Mark the first organoid from murine (211)

Adult hepatic
duct cells

Clonal organoids are genetically stable Mark the first organoid from human (212)

Commercially
purchased HCC
cells

Initiating the co-culture with non-parenchymal cells
such as fibroblast and endothelial cells

Demonstrate the importance of microenvironment on the composition of
HCC organoids

(213)

Healthy liver
resections
derived
organoids

The organoid can identify different tumor tissue and
subtypes and preserves the histological architecture,
gene expression and genomic landscape of the original
tumor

Identify the ERK inhibitor SCH772984 as a potential drug for HCC (214)

Needle biopsies
from HCC
patients

HCC organoids maintain the genomic features of their
originating tumors during long-term culturing for up to
32 weeks.

Illustrate the function of testing sensitivity to sorafenib and providing a tool
for developing tailored therapies.

(215)

Reprogrammed
human
hepatocytes
(hiHeps)

We employed hiHeps to establish an improved organoid
model possessing liver architecture and function

Prove c-Myc-induced human HCC initiation was associated with the
alteration of MAMs* and RAS-induced lineage conversion from hepatocytes
to ICC* cells can be prevented by the combined inhibition of Notch and
JAK–STAT

(216)

Distinct regions
of liver tumor

A total of 27 liver cancer lines were established and 129
cancer drugs were tested

Demonstrate the usage of cancer organoid drug testing as part of a drug
discovery pipeline

(217)
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inflammatory factors (TNF-a, CXCL12, and CXCR4), and neo-

angiogenesis-related markers (VEGF, VEGFR2, and HIF-a),
which are important factors in the tumor microenvironment

for tumor growth and drug resistance (213). This was a very

successful integration of microenvironment and organoid

models. Furthermore, to demonstrate the effect of FSTL1

secreted by fibroblasts in the HCC microenvironment on drug

resistance in HCC, Loh’s team constructed the patient-derived

HCC organoid model and used FSTL1 overexpressing

conditioned medium to culture the organoids. The results

showed that FSTL1 enhanced the ability of hepatocytes to

resist sorafenib through the AKT/mTOR/4EBP1/c-MYC

signaling axis. In the mouse model, the administration of

FSTL1 antibody enhanced the sensitivity of sorafenib,

demonstrating the accuracy of in vitro organoid assays (219).

Although research on the organoid-TME model in liver cancer

has not been popularized, there is no doubt that this model

provides novel ideas and important potential for the study of the

mechanisms of drug resistance in the HCC microenvironment.
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The organoid model has a short culture cycle and high

success rate, which is conducive to high-throughput drug

screening (220). Broutier et al. found that cultured HCC

organoids were insensitive to BRAF and/or MEK inhibitors.

However, in a patient-derived organoid, SCH772984 selectively

inhibited ERK phosphorylation and significantly inhibited

tumorigenesis (214). Numerous studies have demonstrated

that the TME is greatly involved in the development of drug

resistance in patients with HCC. Therefore, when drug

resistance occurs in clinical patients, organoids can be cultured

in vitro by biopsy puncture or surgical resection and then the

drug-sensitive patients can be screened in batches.

Personalized treatment can be achieved through organoid

drug screening. Recently, some patient-derived organoids from

different individuals cultured with hydrogel capsules, which can

simulate the TME of liver cancer, were tested for sensitivity to

cabazitaxel, oxaliplatin, and sorafenib. As a result, sensitivity was

found to differ among individuals. Magnetic resonance imaging

and biochemical examinations were used at later follow-up to
A B C

FIGURE 2

A summary of the main applications of HCC organoid. The tissue used in organoid culture of hepatocellular carcinoma is mostly obtained by
pathological biopsy and surgical resection. Tissues were cultured for 3D using special media. At present, the application of organoids mainly
includes three aspects: (A) Co-culture of HCC organoids with matrix cells or extracellular cytokines helps explore the effects of the TME on
HCC progression or therapeutic resistance powerfully. (B) Efficient culture organoids are suitable for high-throughput drug screening (C)
Organoid drug screening helps to develop individualized treatment regimen for different patients.
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test the cost-effectiveness of organoid screening drugs for

patients (221). Therefore, it is a promising platform for

realizing economical personalized treatment. Currently, several

preclinical studies on HCC organoids are underway

(NCT05384184, NCT02436564, and NCT02718235).
Conclusion and future directions

In this review, we have mainly discussed the relationship

between the microenvironment and drug resistance associated

with liver cancer treatment from various aspects and summarized

the targets and directions of future treatment of liver cancer.

Currently, the standard treatments for hepatocellular carcinoma

remain surgical resection, radiofrequency ablation, TACE, and

systemic therapy. Due to drug resistance and high recurrence

rates, most patients cannot benefit from existing therapies.

Especially in cases of HCC with high heterogeneity, it is even

more difficult to precisely target biomarkers. Accumulating

evidence has shown that the interaction between tumor cells and

the tumor microenvironment is crucial for tumor cell survival,

proliferation, acquisition of stem cell characteristics, invasion,

metastasis, and drug resistance. Therapies targeting the TME

represent a breakthrough in addressing therapeutic resistance.

Accordingly, most researchers have suggested that combination

therapy may be the mainstay treatment for HCC in the future,

including ICI, lenvatinib, sorafenib, and targeted therapy.

However, due to the heterogeneous subpopulations that

develop during the process of tumor progression, some

significant markers such as TERT, TP53, ARID2, ARID1A,

and the WNT signaling regulator CTNNB1 cannot be targeted

efficiently, which reduces the utility of the predictor from a

treatment perspective. Moreover, some drugs perform efficiently

in vivo and in vitro but do not work in clinical settings. These

facts highlight the importance of accurate preclinical model

prediction. In recent years, human-derived organoids have

made great progress in many cancers, which supplements the

lack of microenvironmental influence and anthropogenic

models compared to traditional 2D and mouse xenograft

models. Currently, we have identified heterogeneous stem cell

populations and tested hundreds of drugs developed using HCC

organoids. Although more time and resources are required to

culture organoids in vitro than cancer cell lines, the development
Frontiers in Oncology 13
potential of organoids is substantial. The use of more accurate

3D models to explore microenvironment-targeted therapy is a

promising prospect for hepatocellular carcinoma.
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