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Systemic benefit of radiation
therapy via abscopal effect

Daniel J. Craig1, Stephanie Ambrose2, Laura Stanbery2,
Adam Walter2,3 and John Nemunaitis2*

1University of Toledo, Department of Internal Medicine, Toledo, OH, United States, 2Medical Affairs,
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Evidence of a systemic response related to localized radiation therapy (RT) in

cancer management is rare. However, enhancing the immune response via

immunotherapy followed by localized RT has shown evidence of tumor

shrinkage to non-irradiated metastatic disease thereby inducing an “abscopal

effect.”Combined induction of the cGAS-STING pathway and activation of IFN-

gamma signaling cascade related to RT within an activated immune

environment promotes neoantigen presentation and expansion of cytotoxic

effector cells enabling enhancement of systemic immune response. A

proposed mechanism, case examples, and clinical trial evidence of “abscopal

effect” benefit are reviewed. Results support strategic therapeutic testing to

enhance “abscopal effect.”
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Abbreviations: AFP, alpha-fetoprotein; ATM, ATM serine/threonine kinase; CCL2, C-C Motif

Chemokine Ligand 2; CCL22, C-C Motif Chemokine Ligand 22; cGAMP, cyclic guanosine

monophosphate-adenosine monophosphate synthase; cGAS, cGAMP synthase; CIRT, carbon-ion

radiation therapy; CR, complete response; EBRT, external beam radiation therapy; Flt3-L, Fms Related

Receptor Tyrosine Kinase 3 Ligand; Gy, grey; HCC, hepatocellular carcinoma; ICI, immune checkpoint

inhibitor; IFI16, interferon gamma inducible protein 16; IMRT, intensity modulated radiotherapy; MDM2,

MDM2 proto-oncogene; MHC, major histocompatibility complex; OS, overall survival; PARP-1, poly

ADP-ribose polymerase 1; PFS, progression-free survival; PIVKA-II, protein induced by vitamin K absence

or antagonists II; RFS, recurrence-free survival; SBRT, stereotactic body radiation therapy; STING,

stimulator of interferon genes; TGFß, transforming growth factor beta; TNF, tumor necrosis factor;

TRAF6, TNF receptor associated factor 6; TP53, tumor protein P53; WBRT, whole-brain radiotherapy;

XRT, radiation therapy.

frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.987142/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.987142/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.987142&domain=pdf&date_stamp=2022-10-25
mailto:johnnemunaitis@gmail.com
https://doi.org/10.3389/fonc.2022.987142
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.987142
https://www.frontiersin.org/journals/oncology


Craig et al. 10.3389/fonc.2022.987142
Introduction

The abscopal effect is a phenomenon seen when irradiation

at a distinct anatomic site induces a systemic antitumor response

throughout the body. It was first described using cell lines and

was known as the “bystander effect.” Researchers found that in

addition to direct cellular damage via reactive oxygen and

nitrogen species induced by radiation therapy (RT), irradiated

cells could also induce changes in distant non-irradiated cells

through cell signaling molecules (1). Initial studies demonstrated

that cell culture media taken from irradiated cultures could be

transferred to non-irradiated cultures and induce DNA damage

(1). Similarly, tumor cells can elicit cellular and DNA changes

within normal cells when media used to grow tumor cells is

transferred to normal cultures. This conditioned media

demonstrates increased levels of many cytokines including

transforming growth factor beta (TGFß) and C-C Motif

Chemokine Ligand 2 (CCL2) (2, 3). In addition, in vivo

experiments using both C57BL/6 wild-type and CCL2-

knockout mice subjected to ionizing radiation identified six

differentially expressed genes implicated in the abscopal effect

in tissue outside the field of radiation. These include TGFß (4)

and CCL2 (5), as well as tumor protein P53 (TP53) (6), tumor

necrosis factor (TNF) (7), C-C Motif Chemokine Ligand 22

(CCL22) (8), and the proto-oncogene, MDM2 (9).

CCL2 is particularly important, as it is involved in the

propagation of the immune effects associated with abscopal

activity. Specifically, CCL2 is a member of the monocyte

chemoattractant protein family and not only serves an

important role in the recruitment of monocytes, but also has

been shown to recruit T cells, B cells, NK cells, macrophages, and

dendritic cells (10–14). It is induced by multiple pro-

inflammatory molecules (15–18) and by reactive oxygen and

nitrogen species generated by RT supporting the idea that it

contributes significantly to the immune response associated with

the abscopal effect (19).

While the precise mechanism for the abscopal effect is

complex and continues to be elucidated, current evidence

supports that it is primarily a T cell-mediated process.

Ultimately, irreparable DNA damage in tumor cells induced

by RT increases tumor immunogenicity by providing dendritic

cells with tumor-specific antigens to present to, and activate,

CD8+ T cells viamajor histocompatibility complex (MHC) class

1. Clinical case examples, which we summarize, have stimulated

ongoing preclinical and clinical trials focusing on strategies to

stimulate dendritic cell proliferation and T cell activation to

more consistently induce an abscopal effect concurrent with RT.

In an effort to understand abscopal activity, we can look at

the molecular mechanism behind RT-induced DNA damage and

the immune response. Specifically, RT of tumor cells induces

double-stranded DNA breaks and unique nucleotide adducts
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that leak into the cytosol and bind to the DNA sensor cyclic

guanosine monophosphate-adenosine monophosphate

(cGAMP) synthase (cGAS) protein resulting in an increase in

intracellular cGAMP (20, 21). Increasing levels of cGAMP then

bind to the stimulator of interferon genes (STING) protein

leading to the production of type 1 interferons (IFN-1). (IFN-

1 binds to IFNAR1/2 receptors that result in a signaling cascade

that activates immune-stimulating genes that promote activation

of dendritic cell populations (22).

However, in addition to the anti-tumor and immunogenic

effects of the cGAS-STING pathway, this pathway has also been

shown to induce pro-tumorigenic factors, such as IL-6 through

activation of the NFkB pathway and PD-L1 through activation

of the JAK-STAT pathway (23, 24). This is important in the

context of induction of abscopal effect because IL-6 has been

implicated in resistance to RT by suppressing oxidative stress,

and efforts to pharmacologically block the production of IL-6, in

addition to PD-L1, may help increase the abscopal effect (25). In

addition to the canonical cGAS-STING pathway, an alternative

STING pathway is also capable of sensing DNA damage

independent of the cytosolic DNA receptor cGAS. Instead, this

non-canonical STING pathway utilizes a protein complex

consisting of a DNA binding protein called Interferon Gamma

Inducible Protein 16 (IFI16), DNA damage response factors

(ATM serine/threonine kinase [ATM] and Poly ADP-Ribose

Polymerase 1 [PARP-1]), tumor suppressor protein p53 (TP53),

and a E3 ubiquitin ligase called TNF Receptor Associated Factor

6 (TRAF6). This protein complex ultimately leads to the

activation of the NFkB pathway resulting in expression of

IFN-ß and thus its downstream targets (26). Each of these

unique pathways demonstrates the complexity of RT-induced

DNA damage and the diverse molecular mechanisms that play a

role in both anti-cancer and pro-cancer response.

Importantly, as the dose of radiation increases, larger

amounts of damaged DNA products precipitate in the cytosol

activating TREX1, a cytosolic DNA exonuclease that functions

to degrade and eliminate cytosolic DNA, precluding the

activation of the cGAS-STING signaling cascade that is

thought to trigger the abscopal effect. In an effort to fine-tune

induction of abscopal effect, Vanpouille-Box et al. sought to

determine an optimal radiation dose that maximized production

of IFN-1 while minimizing TREX1 expression using a mammary

carcinoma mouse model treated with RT and an antibody

against anti-cytotoxic T-lymphocyte-associated protein 4

(CTLA-4). CTLA-4 is a cell-surface protein expressed by

regulatory T cells to inhibit T cell functions by increasing the

activation energy necessary for T cell activation (27). This is

especially important in the context of cancer due to the weakly

immunogenic self- and tumor-antigens. Ipilimumab is an anti-

CTLA-4 antibody and was the first immune checkpoint inhibitor

approved for treating cancer (28, 29). Their results showed that
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an irradiation scheme of 8 grey (Gy) x 3 coupled with an anti-

CTLA-4 antibody did not result in TREX1 gene expression,

while a single large dose (20 and 30 Gy) coupled with an anti-

CTLA-4 antibody did (30). Activation of IFN-1 was preserved in

both examples.

In addition to optimizing expression of both immune-

stimulating and immune-suppressing genes, several studies

have demonstrated the importance of an intact T cell response

and a sufficient dendritic cell population to induce an abscopal

response. For example, Stone et al. published one of the first

preclinical experiments seeking to understand the abscopal effect

using a syngeneic fibrosarcoma mouse model. They showed that

the radiation dose necessary to reduce tumor size by 50% was

significantly smaller in T cell-competent mice compared to T

cell-depleted mice. In addition, they noticed that the likelihood

of metastasis was lower in T cell-competent mice compared to

their T cell-depleted counterparts (31). More recently, Demaria

et al. utilized a murine model with both wild-type and nu/nu T

cell-deficient BALB/C mice to compare (a) the effect of

irradiation alone or irradiation supplemented with the

dendritic cell stimulator, Fms Related Receptor Tyrosine

Kinase 3 Ligand (Flt3-L), and (b) the effect of tumor

immunogenicity using two cell lines (32). The two groups of

mice were injected at two distinct anatomic sites with either the

highly immunogenic 67NR BALB/C mouse-derived mammary

carcinoma cell line or the low immunogenicity A20 BALB/C

mouse-derived B-cell leukemia/lymphoma cell line creating a

pseudo-primary site that would receive direct RT (2 Gy, single

dose) and a secondary site that would not. Their results showed

that not only were T cells necessary to induce a response at the

secondary, non-irradiated site, the addition of Flt3-L

significantly increased the tumor response at the non-

irradiated site in the wild-type mice. In addition, the low

immunogenicity A20 B cell leukemia/lymphoma cell line did

not show a significant increase in response at the secondary site

in both the irradiation alone and irradiation + Flt3-L groups

demonstrating the importance of an immunogenic tumor in

activating a T cell response.

The combination of RT with immune checkpoint inhibition

(ICI)—pharmacologic agents has also resulted in a more potent

tumor response than either treatment alone in preclinical studies

examining head and neck cancer, metastatic melanoma,

metastatic pancreatic cancer, and lung cancer (33–35). This

has resulted in investigators examining ideal radiation dosing

and fractionation schemes when coupled with ICI to induce

abscopal responses. For example, Dewan et al. utilized a mouse

model of bilateral mammary adenocarcinoma to identify an

ideal radiation dose. In their study, they treated mice with either

3 fractions (8 Gy each) coupled with an anti-CTLA-4

monoclonal antibody (mAb), or a single dose (30 Gy) coupled

with the anti-CTLA-4 mAb. Their results showed an abscopal

response in the group treated with 8 Gy x 3 + anti-CTLA-4 mAb

but did not see the same response in the group treated with a
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mAb (36).
Clinical case reports of abscopal
effect following irradiation without
systemic treatment

Early evidence of abscopal activity has initially been

portrayed in published case reports which are described below.

Each demonstrate systemic clinical response following local site

RT as consistent with abscopal activity.

A 57-year-old male was diagnosed with multiple lung

nodules, vertebra metastases, and brain metastases (37). The

results of pathological examination suggested adenocarcinoma

of the lung. RT of 39 Gy in 13 fractions was administered to the

ninth thoracic vertebra for destructive extension. However, all

the lesions including the brain metastases spontaneously shrunk,

thereby supporting abscopal activity as no systemic therapy had

been administered. Two months after RT, complete regression to

the lung and other non-irradiated thoracic vertebra was

achieved. Whole-brain radiotherapy for a total dose of 36 Gy

in 12 fractions was performed. Unfortunately,15 months after

initial RT, the brain metastasis recurred.

A 61-year-old male with renal cell carcinoma and metastatic

lesions to the brain, bone, spine, lung, and lymph nodes

underwent stereotactic body radiation therapy (SBRT) to the

brain metastases and external beam radiation therapy (EBRT) to

the metastatic lesions in his bone and spine (38). 1 month later,

lesions that were not subjected to radiotherapy showed

regression as evidenced by CT scan. In addition, follow-up CT

scans taken 2 months later and 3 months later demonstrated

continued response of these untreated lung lesions suggesting

a possible abscopal response. Unfortunately, this patient went

on to develop new brain metastases requiring additional

stereotactic radiosurgery.

A 66-year-old female with clear cell renal cell carcinoma

was treated with a nephrectomy (39). Ten years later, the patient

had a metastatic lesion of the renal cell cancer in the neck,

and was treatment with pazopanib, but then terminated

due to intolerability. CT scans of the thorax and the neck

showed progression in the neck, portacaval lymph node,

hypochondrium subcutaneous node, and new and progressive

lung metastases. Palliative RT was given to the neck, but the

patient did not resume systemic therapy. Eleven months after

(radiation therapy) XRT, the patient had complete regression of

the lung metastases, the subcutaneous abdominal node

remained, but growth of the portacaval lymph node persisted.

17 months after XRT, the patient’s stable disease remained,

demonstrating abscopal activity.

A 93-year-old female with melanoma on the fifth metatarsal

(Breslow depth: 2.8 millimeters) underwent therapeutic
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amputation. Despite amputation, the patient demonstrated

disease progression 13 months later. He presented with a 4-

centimeter painful inguinal lymph node mass along with 5

cutaneous nodules located on the anterolateral leg below the

knee. These cutaneous nodules were hard to palpation and

macroscopically consistent with metastasis. The patient

underwent palliative RT to the inguinal lymph node for pain

management. Interestingly, the patient also demonstrated near

complete resolution of the non-irradiated cutaneous lesions one

month after RT. The patient was lost to follow-up 14 months

later due to relocation to a new city, but demonstrated stable

disease throughout that period (40).

A 75-year-old male with a history of stage IV colorectal

cancer with liver metastasis (November 2007) status post

anterior resection with partial hepatectomy and rectal cancer

(January 2010) status post anterior resection presented with

abdominal pain in November 2010. Abdominal imaging showed

two masses: a 35-millimeter mass located on the left side of the

abdomen and a 15-millimeter mass invading the right common

iliac artery. The left-sided mass was irradiated using carbon-ion

radiation therapy (CIRT) with a regimen of 73.6 Gy x 16

fractions over a 28-day period in January 2011. The mass

invading the right common iliac artery was not irradiated due

to its proximity to the small intestine. Interestingly, a PET-CT

scan performed 1 month after therapy showed significant

reduction in tumor size in both the irradiated and non-

irradiated tumors as evidenced by decreased fludeoxyglucose

accumulation. Unfortunately, the patient died 46 months after

CIRT due to myelodysplastic syndrome with no evidence of

progression of the two tumors as evidenced by annual PET-CT

scans. Taken together, it is likely that this patient had a durable

abscopal response to CIRT (41).

An 85-year-old male with a history of recurrent colon cancer

in the ascending colon presented with back pain in February

2009 after a 10-month stable period post hemicolectomy (April

2008). CT imaging revealed a 45-millimeter para-aortic tumor

along with two 10-millimeter tumors in the mediastinum and

right clavicle. The patient was not eligible for chemotherapy due

to comorbidities, so the decision was made to perform CIRT (Gy

x 12 fractions over 21 days) on the para-aortic mass as part of an

ongoing clinical trial. Following completion of therapy, there

was a significant reduction in size of the irradiated para-aortic

tumor as well as the non-irradiated mediastinal and subclavian

tumors as evidenced by both CT and PET-CT imaging. The

patient received no additional therapy, which suggests the

patient had an abscopal response to CIRT. The patient’s

condition has remained stable for 92 months at the time of

publication with no change in tumor size (41).

A 63-year-old male presented with a 10.5 cm x 9 cm x 11 cm

hepatocellular carcinoma (HCC) with 3 daughter nodules <1

centimeter each. He underwent an extended right lobectomy and

was stable for 18 months until metastatic nodules were found in

the right lower lobe of the lung and left mediastinal lymph node
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as evidenced by CT scan. This was confirmed to be HCC

metastatic disease due to an alpha-fetoprotein (AFP) of 4,869

ng/mL and a protein induced by vitamin K absence or

antagonists II (PIVKA-II) >20,000 mAU/mL. Trans-catheter

arterial embolization of the mediastinal tumor was attempted

but ultimately aborted due to risk of spinal artery embolism. The

decision was made to perform palliative external beam radiation

therapy (2.25 Gy x 27 fractions) on the mediastinal node.

Following RT, both the mediastinal lymph node and the right

lower lobe lung tumor demonstrated significant response as

evidenced by CT scan along with a decrease in AFP from 4,869

ng/mL to 23 ng/mL and a decrease in PIVKA-II from >20,000

mAU/mL to 13 mAU/mL. His disease remained stable for 4

years until a 3.5 cm lymph node was found near the left gastric

artery. He was treated with stereotactic body radiotherapy and

showed no additional disease after 6 months (42).

A 76-year-old female was diagnosed with pulmonary

adenocarcinoma (cT1bN0M0) in November 2015, and

subsequently underwent a right upper lobectomy with

confirmation of pathological pT1bN2M0, stage IIIA disease.

The patient did not receive adjuvant chemotherapy. In

February 2018, multiple new mediastinal and right hilar

lymph node metastases were identified. A total dose of 60.0 Gy

of RT was given over 6 weeks to selected lesions. The target area

included multiple mediastinal, and several (but not all) right

hilar lymph nodes. Twelve weeks after completion of RT, a chest

CT scan showed complete disappearance of the treated and

untreated pulmonary metastases. Another follow up CT scan

was completed (6 months after completion of RT) showing no

reappearance of multiple metastatic pulmonary nodules both

non irradiated and irradiated pulmonary nodules supportive of

abscopal effect (43).

An 81-year-old female was diagnosed with a pT2a, pN0 (0/

5), cM0, UICC stage IB squamous cell carcinoma of the left

upper lung lobe (44). She underwent a lobectomy with

lymphadenectomy, and subsequently had no relapse for 5

years during follow up. Thirteen years later, recurrence was

confirmed via biopsy, chest CT showed a mass in the left lung,

negative for brain metastasis on MRI, and PET showing left

sided pleural carcinomatosis, left sided periclavicular lymph

node metastases, and bone metastases in the 12th thoracic and

4th lumbar vertebra. The patient declined systemic treatment.

She thus underwent palliative radiotherapy to the symptomatic

pulmonary tumor. Four weeks after RT completion, restaging

was performed showing a partial remission of the tumor, the

nodal metastases and the previously untreated vertebral lesions.

During follow-up, further decrease in tumor size and complete

metabolic remission of the bone, pleural and lymph node

metastases was seen. 25 months after radiotherapy, the patient

still had evidence of stable disease, but remained free of

disease symptoms.

In June 2018, a 69-year-old male was diagnosed with

squamous cell carcinoma of the right lower lobe with
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involvement of mediastinal nodes (45). The patient was initially

treated with vinorelbine and cisplatin however, after four cycles,

his symptoms worsened, and chest CT scan confirmed

progressive disease. Hence, the chemotherapy regimen was

shifted to paclitaxel, but the primary lung lesion was still not

controlled, and he showed disease progression in the chest, and

as well as a bone scan that showed a new lesion in the right tibia,

indicating the occurrence of bone metastases. After initial

response, this patient showed progression on the PD-1

inhibitor, camrelizumab, and the tyrosine kinase inhibitor that

selectively inhibits VEGFR2, apatinib, and went on to receive

palliative CT-guided microwave ablation to the primary lung

tumor. One month later, chest CT scan showed the right lower

lobe mass and mediastinal lymph nodes were also reduced,

indicating an abscopal effect following local ablation.

These cases highlight systemic abscopal effect related to

localized RT. The effect involved a broad range of cancer

patients that include a robust age range up to 93 years old.
Case reports of abscopal effect
with irradiation and enhancing
immune modulation

Evidence of abscopal activity related to systemic immune

induction of RT may be enhanced with combination immune

modulatory therapy. The following case reports support

evidence of abscopal activity with combined RT in a setting of

failed systemic response prior to ongoing immunotherapy

followed by immune response with same immune therapy

(abscopal effect) after local RT.

A 54-year-old male patient presented with a stageT4N0M1b

disease. He had a pulmonary large cell neuroendocrine

carcinoma of the right upper lobe, associated with bilateral

adrenal metastases and a PD-L1 tumor proportion score of

20% (46). After four cycles of chemotherapy (pemetrexed,

cisplatin) and the VEGF inhibitor, bevacizumab, CT scans

revealed disease progression in the right upper lobe as well as

in both adrenal glands. Second-line therapy with nivolumab,

a PD-1 inhibitor, was started, but increasingly symptomatic

spinal cord compression, due to tumor invasion occurred.

Hemilaminectomy of the third thoracic vertebra combined

with resection of the epidural tumor mass was thus performed.

Postoperative radiotherapy (30 Gy) was applied targeting the

involved thoracic vertebrae. Nivolumab continued, CT scans 4

months after the first radiotherapy showed partial regression of

the lung tumor and adrenal metastases. The patient showed

disease progression 10 months after radiotherapy but is still
Frontiers in Oncology 05
alive, supportive of abscopal effect, 25 months after the

initial diagnosis.

A 64-year-old male patient presented with T2N3M1c disease

which included an adenocarcinoma of the left upper lobe,

mediastinal contralateral lymph nodes and distant metastases

(brain and ocular). The patient’s PD-L1 results are currently

blinded due to the requirements of a clinical trial (Impower130

trial: ClinicalTrials.gov identifier NCT02367781). The

radiological images after 5 months of treatment (four cycles of

nab-paclitaxel/carboplatin with atezolizumab, a PD-L1

inhibitor, followed by four cycles of atezolizumab alone)

showed an excellent response of the ocular metastasis, but

progression of the brain metastasis. The thoracic tumor

manifestations showed partial remission after four cycles of

combined chemotherapy and immunotherapy with no further

shrinkage after the four additional cycles of atezolizumab

monotherapy. Whole-brain radiotherapy (WBRT) was

performed and atezolizumab was continued. Radiological

follow-up 4 months after WBRT showed a partial response in

the brain (complete response [CR] of ocular disease and

remission of brain disease) as well as complete remission of

lung and mediastinal tumor masses, supportive of potential

abscopal effect. The patient is still alive with radiologically

nearly complete remission 28 months after the initial diagnosis

of metastatic lung cancer (46).

A 70-year-old male patient presented with a T3N2M1a

disease involving central adenocarcinoma of the middle lung

lobe, associated with positive mediastinal lymph nodes and a

malignant ipsilateral pleural effusion. There were no EGFR or

ALKmutations and the PD-L1 tumor proportion score was 70%.

First-line therapy with pembrolizumab, a PD-1 inhibitor, was

started, leading to a partial response. After a year of treatment,

pulmonary and pleural disease progression occurred, and a

clinically symptomatic brain metastasis associated with

perimetastatic cerebral edema appeared. Pembrolizumab was

continued and WBRT added (30 Gy in ten fractions).

Radiography of the thorax after radiotherapy showed partial

regression of the lung tumor and pleural effusion, supportive of

abscopal activity. The patient is still alive 19 months after the

initial diagnosis (46).

A 65-year-old female presented with mucosal melanoma in

June 2015 with no evidence of metastatic disease as evidenced by

CT scan of the neck and MRI with gadolinium. The decision was

made to perform a right partial maxillectomy to remove the

lesion followed by targeted intensity modulated radiotherapy

(IMRT). Unfortunately, the patient relapsed 9 months later, and

evidence of disease progression was found in the neck and lungs.

The patient was then enrolled in a trial comparing epacadostat +

pembrolizumab or placebo + pembrolizumab, which initially
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showed tumor response, but ultimately resulted in disease

progression. The treatment was stopped, and the patient

started a palliative course of IMRT to the neck due to

increased symptoms. Interestingly, both the neck lesion and

the pulmonary lesions responded to IMRT based on CT scans

before and after IMRT suggesting an abscopal response (47).

A 67-year-old female presented with metastatic pancreatic

uncinate carcinoma to the right liver lobe in August 2015 with a

CA 19-9 of 1,814 U/mL. The patient was initially treated with

single-agent gemcitabine, but this was discontinued due to poor

response and worsening abdominal pain. The patient was then

switched to albumin-bound paclitaxel, which demonstrated

partial response based on Response Evaluation Criteria in

Solid Tumors (RECIST 1.0), but ultimately demonstrated

disease progression with additional metastasis to the right

pleura and worsening side effects. The patient was then

switched to Apatinib, but this was quickly discontinued due to

severe gastrointestinal distress. The decision was made to initiate

palliative radiotherapy (45 Gy x 15 over 3 weeks) coupled with

GM-CSF to the primary pancreatic tumor due to abdominal

pain and jaundice requiring percutaneous transhepatic-

cholangial drainage. 1 month later, the patient demonstrated

significant response to the primary tumor as evidenced by CT

scan, but also demonstrated significant abscopal response to the

metastatic sites in the liver and pleura that were outside the cone

of radiation (48).

A 33-year-old female presented with a mole on her upper

back concerning for melanoma in April 2004. Biopsy of the

lesion revealed melanoma with a Breslow thickness of 1.53

millimeters. The decision was made to perform a wide local
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excision of the malignant lesion along with sentinel lymph node

biopsy. The patient remained disease free until 2008 when a

PET-CT revealed a 2-centimeter pulmonary nodule suggestive

of metastatic disease that was confirmed via CT percutaneous

biopsy. She was treated with cisplatin, vinblastine, and

temozolomide (CVT) chemotherapy due to lack of a targetable

mutation (e.g., BRAF) followed by surgical resection. The patient

demonstrated stable disease until surveillance CT scan showed a

metastatic paraspinal mass along with hilar lymphadenopathy in

August 2009. The decision was made to initiate 4 doses of

ipilimumab, a CTLA-4 inhibitor, (10 mg/kg) every 3 weeks

which resulted in an initial slight enlargement of the

paraspinal mass but effectively stabilized her disease for 14

months. Unfortunately, the patient demonstrated continued

enlargement of the paraspinal mass with additional evidence

of metastatic splenic lesions. The patient was experiencing

significant back pain due to mass effect from the paraspinal

mass, so the decision was made to initiate palliative RT to the

paraspinal mass (950 Gy x 3 fractions over 7 days). Ten months

after therapy, there was evidence of abscopal effect as evidenced

by CT-scan demonstrating significant reduction in size of both

the treated paraspinal mass and the splenic lesions that were

outside the cone of radiation (49).

A 71-year-old male was diagnosed with stage IV lung

adenocarcinoma, and began treatment with atezolizumab (50).

After 19 months of atezolizumab, there was a complete response

to the primary lung tumor. A brain metastasis then developed two

years later, which was treated with gamma knife radiotherapy.

However, after radiation, the patient’s lung disease recurred. Two

months later, the lesions in the lung had shrunk, indicating that the
TABLE 1 Abscopal case reports following irradiation without systemic treatment.

Patient Disease Sites of involvement Treatment Response Reference

57-year-old
male

Unknown
primary

Lung nodules, vertebra, and brain
metastases

Radiation (XRT) to 9th vertebra All lesions (37)

61-year-old
male

Renal Cell
carcinoma

Bone, spine, brain, lung
lymphadenopathy mets

XRT to brain, spine, and bone Regression of untreated lung metastases and
lymphadenopathy

(38)

66-year-old
female

Renal Cell
carcinoma

Neck, lung and portacaval node XRT to the neck Regression of irradiated neck mass and non-
irradiated lung metastases

(39)

93-year-old
female

Melanoma (toe) Thigh and inguinal node Surgery, RT to inguinal region Regression of thigh lesions (40)

75-year-old
male

Colorectal
cancer

Liver mets Resection and RT Reduction in both the treated and untreated
liver masses

(41)

85-year-old
male

Colorectal
Cancer

Nodes (near abdominal aorta,
mediastinal, and subclavian)

Resection and XRT to aortic
lymph node

Untreated subclavian node shrank, and
mediastinal node remained stable.

(41)

63-year-old
male

Hepatocellular
Carcinoma

Lung and mediastinal nodes XRT to mediastinal lymph
node

Mediastinal lymph node and untreated
lung mass

(42)

76-year-old
female

NSCLC Mediastinal and hilar lymph nodes,
lung disease

XRT only, to mediastinal and
hilar lymph nodes.

Complete response to multiple untreated
lung lesions

(43)

81-year-old
female

NSCLC Lung, pleura, periclavicular node,
and vertebra

XRT only Complete remission of untreated vertebral
lesions and periclavicular node

(44)
fro
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prior changes in the lung may have been pseudo-progression as

abscopal effect was later demonstrated.

Combination irradiation with immunotherapy may be

associated with more frequent abscopal effect as suggested by

preclinical testing and preliminary clinical results (31–36, 51). In

summary (see Tables 1, 2), these 17 case reports provide

evidence of abscopal effect and support combination with

immunotherapy is well tolerated and may enhance abscopal

activity related to RT.
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Current studies evaluating
abscopal effect

The clinical trial landscape for abscopal effect and

development of clinical trials is increasing. There are several

prospective clinical trials investigating the abscopal effect

(Table 3). However, consistent results regarding occurrence of

abscopal effect and level of benefit are highly variable. Moreover,
TABLE 2 Abscopal case reports of irradiation and systemic treatment following systemic treatment failure.

Patient Disease Sites of involvement Treatment Response Reference

69-year-
old male

NSCLC Lung, mediastinal and other
nodes

Vinorelbine/cisplatin, paclitaxel, camrelizumab/
apatinib, CT-guided microwave ablation of lung
lesion, following systemic treatment failure

After progression on systemic treatment
and then XTR, right lower lobe mass and
mediastinal lymph nodes reduced

(45)

54-year-
old male

Neuroendocrine Lung, adrenal glands, para-
spinal cord

After progression with systemic therapy,
Pemetrexed/cisplatin/bevacizumab, nivolumab,
XRT to para spinal vertebrae

Lung tumor and adrenal metastases
underwent regression

(46)

64-year-
old male

NSCLC Mediastinal contralateral
lymph nodes and distant
metastases (brain and
ocular)

Nab-paclitaxel/carboplatin/atezolizumab,
atezolizumab alone, after progression of all
lesions, WBRT (whole brain radiation therapy)

PR to brain, CR to lung and mediastinal
masses was seen after WBRT

(46)

70-year-
old male

NSCLC Mediastinal lymph nodes
and malignant pleural
effusion, PD-L1 70%

Failed Pembrolizumab, then WBRT added Partial regression of the lung tumor and
pleural effusion after WBRT

(46)

65-year-
old
female

Melanoma
(mucosal)

Neck and pulmonary mets Failed Pembrolizumab, then given XRT to neck Tumor regression of the pulmonary
metastases after XRT to the neck

(47)

67-year-
old
female

Pancreas
Cancer

Liver and right pleura Failed Gemcitabine, paclitaxel, apatinib, then
given palliative XRT (to pancreas)/GM-CSF

XRT to pancreatic tumor, non-irradiated
systemic metastases significantly
decreased

(48)

33-year-
old
female

Melanoma
(cutaneous)

Pulmonary nodule,
paraspinal mass, hilar node,
splenic lesion

Failed Cisplatin/vinblastine/temozolomide (CVT),
ipilimumab, XRT to paraspinal mass

Regression to non-irradiated hilar
lymphadenopathy and splenic lesions

(49)

71-year-
old male

NSCLC Brain mets, mediastinal
lymph nodes lung disease

Failed nedaplatin/paclitaxel, and Atezolizumab,
then given Atezolizumab/brain XRT

Primary lung lesion and hydrothorax
decrease after systemic treatment failure
and brain XRT

(50)
fro
TABLE 3 Select ongoing clinical trials involving radiotherapy and checkpoint inhibitors to achieve abscopal effect.

Cancer type Irradiation scheme/combination Clinical trial number

NSCLC 30-50 Grays in 5 fractions
Bevacizumab
toripalimab

NCT04238169

NSCLC 20 Gray
nivolumab

NCT03480334

NSCLC 20 x 2 Gray (daily for 4 weeks)
5 x 5 Gray (daily over 1 week)
3 x 8 Gray (every other day over 1 week)
Durvalumab

NCT04245514

Metastatic Cancer 1 dose of SBRT
Durvalumab and trememlimumab

NCT03212469

Hepatocellular 4 fractions over 8-15 days
Pemrolizumab

NCT03316872
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trials exploring expansion of abscopal effect looking at various

irradiation doses, schedules and immune modulating

combination therapy still only provide relatively low

occurrence rate of abscopal activity. In general, though, when

abscopal effect is observed compared to those receiving the same

regimen without abscopal effect clinical benefits with respect to

response, progression-free survival (PFS) and overall survival

(OS) is observed (52–54). In one early retrospective study

involving melanoma patients treated with ipilimumab followed

by RT, 52% showed evidence of abscopal activity and those who

did had significantly improved OS (54). Another retrospective

study involving melanoma showed similar results (55).

Moreover, in a third small trial of 10 prostate cancer patients

improved durable disease control was observed with combined

ipilimumab and irradiation (56). Although in a larger later Phase

3 trial of advanced prostate cancer undergoing irradiation and

ipilimumab vs. irradiation alone OS was not different (57).

Similarly, several combination PD-1/PD-L1 checkpoint

inhibitor treatments with RT have also demonstrated evidence

of abscopal activity. KEYNOTE-001 trial demonstrated

improved PFS and OS in NSCLC patients who received prior

RT and pembrolizumab compared to pembrolizumab alone

although actual abscopal events were not well defined (58).

Another retrospective study looking at PD-1 inhibitors

involving melanoma patients, some receiving RT, showed

significant improvement in response rate but no improvement

in PFS and OS with combination checkpoint inhibitors/RT.

However, only one patient of 59 demonstrated abscopal

activity (59). Not all clinical results have reproduced the same

result. For example, a Phase I clinical trial examining the ideal

radiation dose in patients with metastatic NSCLC or melanoma

on pembrolizumab showed abscopal responses in patients

treated with either 24 Gy x 3 fractionation scheme or a single

17 Gy fraction (NCT02303990) (60). This suggests that the

abscopal response to irradiation is multi-factorial and

radiation fractionation regimens may not be universal.

Interestingly, GM-CSF combination RT involving a general

group of 41 solid tumor patients showed a high fraction (over

25%) of patients with abscopal activity (breast cancer, NSCLC,

thymic cancer) when combined with localized irradiation (61).

In addition, Formenti et al. performed a proof-of-principle trial

where they supplemented RT with subcutaneous GM-CSF, a

cytokine that promotes dendritic cell differentiation and

expansion, in patients with metastatic tumors including breast

cancer, bladder cancer, and eccrine cancer (51, 62). Their results

showed that 30% of patients who received RT supplemented

with GM-CSF over the course of 2 weeks had an abscopal

response as evidenced by PET/CT. Also, breast cancer patients

receiving high dose vs. low dose TGFb blockade (fresolimumab)

along with RT had significantly prolonged OS (63).
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Consideration GM-CSF expression/
TGFb knockdown to induce
abscopal effect

There continues to be strong evidence that radiation is able

to activate the immune system although the mechanism for this

has not been fully elucidated (62). RT has also been shown to

promote the development of an immunosuppressive tumor

microenvironment, specifically by upregulation of PD-L1 (64,

65). Therefore, it has been hypothesized that radiation coupled

with immunotherapy would elicit an abscopal effect. However,

results have been limited with studies evaluating the dose of

radiation and sequencing of combination immunotherapy (66).

The abscopal effect has largely been observed in highly

immunogenic tumors including melanoma, renal cell, and

hepatocellular carcinoma. The tumor microenvironment in

these “hot” tumor types are characterized by T cell infiltration

and expression of proinflammatory cytokines (67).

In addition to combination with checkpoint inhibitor

therapy, autologous tumor cellular immunotherapy may also

be considered as a clinical testing direction. Vigil is a triple

function immune therapy constructed from patient tumor cells.

Vigil mechanism involves the introduction of bifunctional short-

hairpin RNA to knockdown furin in the autologous tumor cells.

Furin knockdown results in decreased cleavage of TGFb into

TGFb1 and TGFb2 (68). TGFb is an immune suppressive

cytokine associated with poor prognosis and therapeutic

resistance in many solid tumors (69–71). Vigil plasmid also

encodes for human GM-CSF which is also an immune

stimulatory cytokine that increases tumor antigen presentation

by dendritic cells (72). Moreover, Vigil provides personalized,

clonal cancer specific neoantigens to enable the immune system

to recognize tumor cells and mount an effective, targeted T-cell

mediated response. Vigil has demonstrated improved clinical

outcomes which correlated with IFNg-ELISPOT positivity (73,

74). IFNg is known to activate a multitude of immune cells,

including effector T cells. Vigil has shown clinical benefit in

advanced solid tumor patients with overall survival correlation

with TISHIGH vs. TISLOW (one year OS 75% vs. 25%, p=0.03795)

and elevated MHC-II expression (p=0.038). In recurrent ovarian

cancer patients, the OS rate was observed to be 58% compared to

historical rate of <20% with standard of care. In a Phase IIb

double-blind, randomized, placebo-controlled trial in frontline

ovarian cancer maintenance, Vigil patients demonstrated a trend

towards benefit (11.5 months vs. 8.4 months for placebo,

p=0.078). The result for the secondary endpoint of recurrence-

free survival (RFS) for the BRCA-wt subpopulation however,

was statistically significant, demonstrating benefit in RFS from

procurement (time of initial debulking surgery) and
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randomization (time of initial Vigil administration; 18.3 months

vs. 14.8 months, HR=0.478, p=0.02; 11.5 months vs. 8.0 months,

HR=0.514, p=0.02 respectively) and OS from procurement and

randomization (not reached vs. 48.3 months, HR=0.490,

p=0.047; not reached vs. 41.4 months, HR=0.493, p=0.049

respectively). Based on a post hoc exploratory analysis in the

BRCA-wt, HRP subpopulation, RFS and OS were increased in a

statistically significant fashion relative to the control arm,

demonstrating a benefit with Vigil in RFS from procurement

and randomization (18 months vs. 12 months, HR=0.363,

p=0.005; 10.6 months vs. 5.7 months, HR=0.386, p=0.007

respectively) and OS from procurement and randomization

(not reached vs. 37.3 months, HR=0.340, p=0.018; not reached

vs. 26.9 months, HR=0.342, p=0.019 respectively). Long term

follow up analysis also revealed that 83% of Vigil treated patients

were still alive three years after their initial debulking surgery

versus 40% who received placebo (p=0.0006). Clinical testing of

Vigil with RT to induce and augment the abscopal effect is

under consideration.

Conclusion

Clearly sufficient preclinical and clinical evidence exists

which support benefit to patients who incur abscopal effect

while undergoing RT. There does not appear to be any

concerning toxic effect related to abscopal activity. Benefit

associated with response, PFS, duration of PFS and OS has

been observed. However, results are inconsistent and hard to

predict. Biomarkers indicative of abscopal development are not

known. Combination of RT with immune modulatory therapy

appear to suggest enhancement in abscopal activity but results

are variable. Further research towards enhancement in abscopal

activity is warranted. Consideration in modulation of GM-CSF

expression and TGFb knockdown is justified.
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