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and Lianhua Ye1*

1Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University
(Yunnan Cancer Hospital), Kunming, China, 2Department of Thoracic Surgery, Taihe Hospital (Hubei
University of Medicine), Shiyan, China
Background: Lung adenocarcinoma (LUAD) is the most predominant

histological subtype of lung cancer. Abnormal lipid metabolism is closely

related to the development of LUAD. LncRNAs are involved in the regulation

of various lipid metabolism-related genes in various cancer cells including

LUAD. Here, we aimed to identify lipid metabolism-related lncRNAs associated

with LUAD prognosis and to propose a new prognostic signature.

Methods: First, differentially expressed lncRNAs (DE-lncRNAs) from the TCGA-

LUAD and the GSE31210 dataset were identified. Then the correlation analysis

between DE-lncRNAs and lipid metabolism genes was performed to screen

lipid metabolism-related lncRNAs. Cox regression analyses were performed in

the training set to establish a prognostic model and the model was validated in

the testing set and the validation set. Moreover, The role of this model in the

underlying molecular mechanisms, immunotherapy, and chemotherapeutic

drug sensitivity analysis was predicted by methods such as Gene Set

Enrichment Analysis, immune infiltration, tumor mutational burden (TMB),

neoantigen, Tumor Immune Dysfunction and Exclusion, chemosensitivity

analysis between the high- and low-risk groups. The diagnostic ability of

prognostic lncRNAs has also been validated. Finally, we validated the

expression levels of selected prognostic lncRNAs by quantitative real-time

polymerase chain reaction (qRT-PCR).

Results: The prognostic model was constructed based on four prognostic

lncRNAs (LINC00857, EP300-AS1, TBX5-AS1, SNHG3) related to lipid

metabolism. The receiver operating characteristic curve (ROC) and Kaplan

Meier (KM) curves of the risk model showed their validity. The results of Gene

Set Enrichment Analysis suggested that differentially expressed genes in high-

and low-risk groups were mainly enriched in immune response and cell cycle.

There statistical differences in TMB and neoantigen between high- and low-risk

groups. Drug sensitivity analysis suggested that patients with low risk scores

may have better chemotherapy outcomes. The results of qRT-PCR were
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suggesting that compared with the normal group, the expressions of EP300-

AS1 and TBX5-AS1 were down-regulated in the tumor group, while the

expressions of LINC00857 and SNHG3 were up-regulated. The four

prognostic lncRNAs had good diagnostic capabilities, and the overall

diagnostic model of the four prognostic lncRNAs was more effective.

Conclusion: A total of 4 prognostic lncRNAs related to lipid metabolism were

obtained and an effective risk model was constructed.
KEYWORDS
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Introduction

Lung cancer is the malignant tumor with the highest morbidity

and mortality in the world. There are about 22 million new cases

and 17.9 million deaths per year (1, 2). Among them, 85% are non-

small cell lung cancer (NSCLC). Lung adenocarcinoma (LUAD) is

the most common subtype of NSCLC, accounting for about 40% of

all lung cancer subtypes, with characteristics of rapid progression,

poor prognosis, and easy recurrence. In recent years, with the

continuous application of molecular targeted therapy and

immunotherapy, the overall survival rate (OS) has been improved

to a certain extent (3). There is an urgent need to find new

biomarkers that can effectively predict LUAD.

Long non-coding RNAs (lncRNAs) regulate gene expression

through a variety of mechanisms, including transcriptional

regulation, translation, protein modification, and activity

regulation (4–8). As an important component of cellular

biofilms and components, lipids are also involved in energy

storage, metabolism, and cell activity signaling molecule

transmission. The regulation of cellular processes such as cell

growth, differentiation, inflammation, apoptosis, and drug

resistance is inseparable from the extensive participation of lipid

metabolism (9–11). Therefore, lipid metabolism regulation is

crucial for maintaining cellular homeostasis. LncRNAs play a

role in lipid metabolism through their effects on SREBP

transcription factors, apolipoproteins, triglyceride metabolism,

and macrophage cholesterol uptake and efflux (10, 12–15). It

has been found that the lncRNA NEAT1 disrupted hepatocellular

carcinoma lipolysis by regulating adipose triglyceride lipase,

thereby driving hepatocellular carcinoma proliferation (16).In

conclusion, LncRNAs are involved in the regulation of various

lipid metabolism-related genes in cancer cells (17–21).

Studies have revealed that lncRNA MUC5B-AS1 is up-

regulated in lung adenocarcinoma tissues, promotes cell

migration and invasion by forming RNA-RNA duplexes with

MUC5B (22). The plasma lncRNA H19 level was upregulated in

LUAD patients which was correlated with clinicopathological
02
characteristics and had a certain value in lung cancer diagnosis

and could assist traditional tumor markers in lung cancer diagnosis

and disease evaluation. Wang G et al. performed scRNA-seq

detection on early-stage NSCLC and found that there were

overall abnormalities in lipid metabolism in different cell types, of

which glycerophospholipid metabolism was the most severely

altered in lipid metabolism-related pathways (23). The

relationship between abnormal lipid metabolism and LUAD has

been confirmed by numerous studies. Phosphatidylcholine (PC)

and phosphatidylethanolamine (PE) levels were significantly higher

in LUAD patients than in healthy individuals (24). High density

lipoprotein cholesterol (HDL-C), low density lipoprotein (LDL) and

low density lipoprotein receptor (LDLR), sphinolipin, phos

phatidylinositol, phosphatidylserine, phosphatidylethanolamine,

phospholipid, and phosphatidylcholine are all abnormally

expressed in LUAD (25–27).

At present, it is worthwhile to further study whether lipid-

metabolism-related lncRNAs may be biomarkers for LUAD. To

explore more effective biomarkers in LUAD and explore the

potential molecular mechanism of novel lncRNAs in LUAD. In

this study, based on The Cancer Genome Atlas (TCGA)

database and Gene Expression Omnibus (GEO) datasets, lipid

metabolism-related lncRNAs associated with LUAD prognosis

were searched. A risk model was established and validated to

explore the impact of the risk model on immunotherapy and

chemotherapy in patients with LUAD.
Materials and methods

Data source

LUAD-related datasets were downloaded from the Cancer

Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/)

and the Gene Expression Omnibus (GEO) database (https://www.

ncbi.nlm.nih.gov/gds). The TCGA-LUAD dataset contains 59

normal samples and 514 cancer samples. Among these 514
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cancer samples, 500 cancer samples have complete survival data

and they were divided into a training set (350 samples) and a testing

set (150 samples) randomly according to a ratio of 7:3. Moreover,

two LUAD-related datasets (GSE31210, GSE50081) were

downloaded from the GEO database. Among them, the

GSE31210 dataset (containing 20 normal samples and 226 cancer

samples) was used for differential analysis. The GSE50081 dataset

(containing 181 cancer samples with complete survival data) was

used as the validation set. The clinicopathology Characteristics of

the TCGA-LUAD cohort, GSE50081 dataset and GSE31210 dataset

were shown in Table 1 Lipid-specific keywords (fatty acyl,

glycerolipid, glycerophospholipid, sphingolipid, sterol lipid,

prenol) were searched on the Kyoto Encyclopedia of Genes and

Genomes (KEGG)website(http://www.kegg.jp/blastkoala/) and the

Molecular Signatures Database (MisDB) website (https://www.gsea-

msigdb.org/gsea/msigdb/index.jsp) (28).
Differential expression analysis and
correlation analysis

Differential expression analysis was performed with the limma

package (29). The DE-lncRNAs between LUAD samples and
Frontiers in Oncology 03
normal samples in the TCGA-LUAD dataset and the DE-

lncRNAs between LUAD samples and normal samples in the

GSE312110 dataset were analyzed. FDR< 0.05 and | logFC2 | > 0.5

were considered as a significant difference. The DE-lncRNAs of

the two datasets were intersected to screen for common DE-

lncRNAs. The correlation between lipid metabolism-related genes

and common DE-lncRNAs in the TCGA dataset was calculated.

Similarly, the correlation of lipid metabolism-related genes and

common DE-lncRNAs in the GSE31210 dataset was also

analyzed. |cor| > 0.4 and P< 0.05 was considered to have relevance.
Construction and validation of the
prognostic signature

The independent prognostic Lipid metabolism-related DE-

lncRNAs were screened by Cox regression analysis (univariate

and multivariate) to construct the prognostic features (30).

Based on the median risk score (calculated by the expression

level of prognostic genes), All patients were divided into two

groups(high- and low-risk). The Kaplan-Meier (KM) survival

curve was plotted, and the area under curve (AUC) of the

receiver operating characteristic (ROC) curve was applied to
TABLE 1 The clinicopathology Characteristics of the TCGA-LUAD cohort, GSE50081 dataset, and 110 GSE31210 dataset.

Characteristics TCGA-LUAD cohort
(N=328)

GSE50081 dataset
(N=181)

GSE31210 dataset
(N=226)

gender

female 169 (51.52%) 83 (45.9%) 50 (44.2%)

male 159 (48.48%) 98 (54.1%) 105 (46.5%)

age (years)

>=60 235 (71.65%) 154 (85.1%) 130 (57.5%)

<60 93 (28.35%) 27 (14.9%) 96 (42.5%)

M

M0 307 (93.60%) 181 (100%) –

M1 21 (6.40%) 0 (0.0%) –

N-

N0 205 (62.50%) 129 (71.3%) –

N1 71 (21.65%) 52 (28.7%) –

N2 51 (15.55%) 0 (0.0%) –

N3 1 (0.30%) 0 (0.0%) –

T

T1 100 (30.49%) 57 (31.5%) –

T2 184 (56.10%) 122 (67.4%) –

T3 27 (8.23%) 2 (1.1%) –

T4 17 (5.18%) 0 (0.0%) –

STAGE

Stage I 166 (50.61%) 127 (70.2%) 69 (61.1%)

Stage II 81 (24.70%) 54 (29.8%) 58 (25.7%)

Stage III 60 (18.29%) 0 (0.0%) 0 (0.0%)

Stage IV 21 (6.40%) 0 (0.0%) 0 (0.0%)
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verify the predictive accuracy. Moreover, the clinical value of the

signature was analyzed and the assessment and validation of the

risk model were performed in the testing set and validation set.
Development and assessment of a
nomogram

Cox regression analyses(univariate and multivariate) were

implemented on the signature and clinical data involving age,

gender, and stage (29). We constructed a prediction nomogram

based on all independent predictors. And the predictivity of the

nomogram was validated using ROC and calibration curves.
Analysis of potential regulatory
mechanisms of prognostic lncRNAs

We calculated the correlation between prognostic lncRNA

and mRNA in the TCGA dataset to explore the relevant

molecular mechanisms (29). mRNAs with |cor| > 0.7 and P<

0.05 were considered as prognostic lncRNA-related mRNAs.

Moreover, the Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analyses were done to

reveal the potential functions of the prognostic genes.

Furthermore, a protein-protein interaction network (PPI)

(Confidence=0.4) was constructed using the Search Tool for

Recurring instances of Neighbouring Genes (STRING) website

(https://string-db.org). The survival analysis of the hub gene was

carried out. Finally, the DEGs between the two groups were

further functionally annotated using Gene Set Enrichment

Analysis (GSEA) by Cluster Profiles package in R language.
Immune infiltration analysis
and differences in response
to immunotherapy

The linear support vector regression method in CIBERSORT

was used to deconvolve the tumor tissue expression matrix to

analyze the content of various types of immune cells in the

tissue. The rank-sum test was used to analyze the differences in

various immune cell contents between the two groups, and the

Tumor Immune Dysfunction and Exclusion (TIDE) score, PD-

L1, PD-1 distribution, T cell dysfunction score, and T cell

exclusion score distribution of each sample (31).
Differences in TMB levels, neoantigen
levels, and chemotherapy drug sensitivity

TMB-the total number of somatic mutations per DNA

megabase (Mb) of tumor tissue. TMB per MB was calculated
Frontiers in Oncology 04
by dividing the total number of mutations by the size of the

target coding region. The TMB values in the high- and low-risk

groups were calculated separately and then the rank-sum test

was carried out. The neoantigen indicators of the samples in the

high- and low-groups were extracted from the TCGA database

(https://gdc.cancer.gov/about-data/publications/panimmune)

and performed tank-sum test. We used the pRRopheticPredict

package to analyze the sensitivity of Commonly used drugs for

the treatment of LUAD in the Genomics of Drug Sensitivity in

Cancer (GDSC) database. Drug sensitivity is represented by the

IC50 value.
Clinical tissue collection

We recruited ten LUAD patients at the Third Affiliated

Hospital of Kunming Medical University and collected lung

cancer tissue and paracancerous tissue samples from the

patients. All participants were exempted from signing

informed consent, and this study was reviewed by the Third

Affi l iated Hospital of Kunming Medical University

ethics committee.
Diagnostic value analysis and expression
validation of prognostic lncRNAs

Expression level validation of prognostic lncRNAs was

performed in TCGA and GSE31210 datasets, respectively.

Para-cancerous tissue and cancerous tissue samples from 10

different LUAD patients were collected, and qRT-PCR was used

to verify the expression levels of prognostic genes (32). All tissue

was lysed with TRIzol® reagent (Ambion by life technologies,

USA, cat:356281), and total RNA was extracted following the

manufacturer’s instructions. The extracted RNA was reverse-

transcribed to cDNA using the Script RT I First strand cDNA

SynthesisAll-in-OneTM First-Strand cDNA Synthesis Kit (cat:

G33330-50) before qRT-PCR. The qRT-PCR reaction consisted

of 3 µl of reverse transcription product, 5 µl of 2xUniversal Blue

SYBR Green qPCR Master Mix (cat: G3326-05), and 1 µl each of

forward and reverse primer. PCR was performed in a BIO-RAD

CFX96 Touch TM PCR detection system (Bio-Rad Laboratories,

Inc., USA) under the following conditions: initial denaturation

at 95°C for 1 min, followed by 40 cycles that each involved

incubation at 95°C for 20 s, 55°C for 20 s, and 72°C for 30 s. The

detailed forward and reverse primer is shown in Supplementary

Table 9. All primers were synthesized by Servicebio (Servicebio,

Wuhan, China). The GAPDH gene served as an internal control,

and the relative expression of four lncRNAs was determined

using the 2-DDCt method. The experiment was repeated in

triplicate on independent occasions. Statistical differences in

the four lncRNAs between Para-cancerous tissue and

cancerous tissues samples were detected by paired t-test using
frontiersin.org
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GraphPad Prism V6 (GraphPad Software, La Jolla, CA, USA),

and the level of statistical significance was tested and expressed *

as P< 0.05, ** means P< 0.01. Then, according to the expression

levels of prognostic LncRNAs in each dataset, ROC curves of

individual LncRNAs and all LncRNAs were drawn.
Statistical analysis

The statistical analyses in this study were all generated by R

software. Wilcoxon test was used to perform a difference

comparison between the two groups. Associations between risk

scores and gene function or related pathways were calculated by

Pearson correlation. Cox regression analysis was used to

examine the prognostic power of prognostic features. KM

survival analysis and the Cox proportional hazards model were

used to analyze the association between the two risk

stratifications with the R package Survival. P-values less than

0.05 were statistically significant.
Results

Differential expression analysis

The flowchart of the present study was displayed in

Supplementary Figure 1. A total of 158 DE-lncRNAs(93 were

upregulated and 65 were downregulated) were identified from

the TCGA dataset(Figure 1A). The heat map of the top 100 DE-

lncRNAs were shown in Supplementary Figure 2A. While a total

of 206 DE-lncRNAs(97 were upregulated and 99 were

downregulated) were identified from the GEO dataset

(Figure 1B). The heat map of the top 100 DE-lncRNAs were

shown in Supplementary Figure 2B. Finally, 50 overlapping

lncRNAs were extracted (Figures 1C, D).
Identification of common differentially
expressed lipid metabolism lncRNAs

A total of 1045 genes related to lipid metabolism were

downloaded according to the literature (Supplementary

Table 1). The expression levels of 50 common DE-lncRNAs

and 1011 lipid metabolism-related genes in TCGA samples were

extracted, the results of the correlation analysis are shown in

Figure 2A and Supplementary Table 2. A total of 48 lipid

metabolism-related DE-lncRNAs were obtained in the TCGA

dataset. The correlation of 971 lipid metabolism-related genes

and 50 common DE-lncRNAs in the GSE31210 dataset was also

analyzed (Figure 2B and Supplementary Table 3). A total of 38

lipid metabolism-related DE-lncRNAs were obtained in the

GSE31210 dataset. After taking the intersection, we obtained

38 common lipid metabolism-related DE-lncRNAs (Figure 2C).
Frontiers in Oncology 05
Construction of risk feature

Univariate Cox regression analysis showed that 11 common

DE-lncRNAs were significantly related to OS (P< 0.05, Table 2

and Figure 3A).

Subsequently, a new prognostic signature involving 4

lncRNAs (LINC00857, EP300-AS1, TBX5-AS1, SNHG3) was

established after multivariate Cox regression analysis (Table 3

and Figure 3B). We calculated risk scores with the

following equation: risk score = LINC00857*1.469417445 +

EP300-AS1*0.757747569 + TBX5-AS1*0.660575856 +

SNHG3*0.752442869. Then separated all samples into two

groups depending on the median risk score, (n = 175 and 175,

respectively). The patients with high-risk scores had a

significantly shorter OS (Figure 3C). The AUCs were 0.639,

0.631, and 0.626 at 1, 3, and 5 years, respectively (Figure 3D),

The distribution of risk scores, patient survival status, and

survival time are shown in Figure 3E.
Testing and validation

The 150 LUAD samples in the testing set were separated into

high- (n=75) and low-risk (n=75) groups too. The high-risk

group has a worse prognosis than the low-risk group

(Figure 4A). The AUCs for 1-year, 3-year, and 5-year were

0.741, 0.650, and 0.621, respectively (Figure 4B). The

distribution of risk scores, patient survival status, and survival

time is shown in Figures 4C. In addition, we also evaluated

the correlation between the risk score and clinical traits

(Supplementary Figure 2C), There is a significant difference in

T stage between high- and low-risk groups (P=0.00371)

(Table 4). The validation of the risk feature was done in

the GSE50081 dataset. The 181 LUAD samples in the

GSE50081dataset were divided into high-(n=90) and low-risk

(n=91) groups. The high-risk group has a worse prognosis than

the low-risk group (Figure 4D). The AUCs for 1-year, 3-year,

and 5-year OS were 0.724, 0.666, and 0.651, respectively

(Figure 4E). The distribution of risk scores, patient survival

status, and survival time is shown in Figures 4F. There were

significant differences in N, stage, and smoking status between

high and low risk groups. (P=0.0291, P=0.0129, P=0.0055,

Supplementary Figure 2D and Table 5). Overall, the 4

lncRNAs we detected were prognostic with both the TCGA-

LUAD cohort and GSE50081 dataset.
Independent prognosis analysis

Incorporating clinicopathologic data from the TCGA-

LUAD cohort into univariate Cox regression analysis, and

detected that risk score, gender, M, N, T, and stage were
frontiersin.org
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significantly associated with LUAD prognosis (Table 6).

Subsequently, enrolled these clinicopathological characteristics

into multivariate Cox regression analysis and the results

indicated that stage and risk score were independent

prognostic indicators of LUAD (Table 7). Additionally, a

nomogram was constructed to predict 1, 3, and 5 years OS of

LUAD patients (Figure 5A), and the performance of the

nomogram was evaluated by calibration curve and

demonstrated that 1-, 3-, and 5-year predicted by this

nomogram were close to the actual survival duration

(Figure 5B). Moreover, univariate and multivariate Cox

regression analysis were performed and noted that risk score

and gender were independent prognostic factors for LUAD

patients in the GSE50081 dataset (Tables 8, 9). A prediction

nomogram was established and evaluated by calibration curve

(Figures 5C, D), and showed good predictive accuracy. In

summary, all the results indicated that the nomogram based

on risk score exhibited a good predictive accuracy for the OS of

LUAD patients.
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Identification of mRNAs associated with
prognostic lncRNAs

We also focused on the four prognostic lncRNA-associated

mRNAs, but only two of them obtained associated mRNAs, a total

of 171 mRNAs associated with the two prognostic lncRNAs were

obtained (Tables 10, 11), and their relationships are shown in

Figures 6A, B, with 9 mRNAs were both associated with prognostic

lncRNAs and cis-regulated (Supplementary Figure 3). The GSEA

enriched results showed that the prognostic-related lncRNA had a

strong correlation with collagen-containing extracellular matrix,

extracellular matrix organization, and extracellular matrix

structural constituent conferring compression resistance

(Figure 6C). The key enrichment pathways were “respiratory

system development”, “lung development”, and lung alveolus

development” (Figure 6D). Therefore, these prognostic genes may

affect the prognosis of LUAD patients by regulating the structural

changes of the extracellular matrix or affecting the development of

the respiratory system. The detailed GSEA results are shown in
B

C D

A

FIGURE 1

Screening differentially expressed IncRNAs. (A) Volcano plot of DE-IncRNAs from TCGA dataset. Red and green indicate up-regulated and
down-regulated IncRNAs respectively. (B) Volcano plot of DE-IncRNAs from GEO dataset. Red and green indicate up-regulated and down-
regulated IncRNAs respectively. (C, D) Venn diagram of the intersection of DE-IncRNAs.
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Supplementary Table 4 and Table 5. A 109-protein interaction

network was constructed by the STRING (https://string-db.org)

website (Table 12 and Figure 6E). After identification of hub genes

by cytohubba function of Cytoscape arrayed the hub genes

according to MCC (Supplementary Table 6). Finally, the top3

hub genes (MYH11, ELN, DCN) were obtained (Figure 6F).

Moreover, the expression levels of MYH11, ELN, DCN and the

corresponding survival information were extracted for survival

analysis (Figures 6G–I). The results showed that patients with

higher ENL gene expression had an optimistic prognosis

(P=0.02295), while there was no significant difference in survival

between the high and low expression groups of MYH11 and DCN.
GSEA

We performed GSEA to explore the potential mechanisms of

the risk model. the enriched results showed that the prognostic

differences between it may be related to the up-regulation of
Frontiers in Oncology 07
pathways such as DNA replication, oxidative-phosphorylation,

and pyrimidine-metabolism (Figure 7A). The key enrichment

pathways were “b cell-mediated immunity “,”cell cycle

checkpoint”, “chromosome segregation” etc (Figure 7B). The

detailed results are shown in Supplementary Tables 7 and 8.

Notably, these pathways were significantly enriched in samples

with high risk score.
Immune infiltration analysis
and differences in response
to immunotherapy

The RNA-seq data of 500 patients with LUAD from the

TCGA database were analyzed to evaluate the immune landscape.

Marker genes of 22 immune cell species were evaluated between

the two groups (Figures 8A–C). Then, a rank-sum test was

performed, and as shown in the boxplot, 10 of the 22 immune

cells showed significant differences (Figure 8D). We also
B CA

FIGURE 2

Screening lipid metabolism-related differential expressed IncRNAs. (A) Volcano plot of lipid metabolism-related DE-IncRNAs from TCGA dataset.
Red and green indicate up-regulated and down-regulated IncRNAs respectively. (B) Volcano plot of lipid metabolism-related DE-IncRNAs from
GEO dataset. Red and green indicate up-regulated and down-regulated IncRNAs respectively. (C) Venn diagram of the intersection of lipid
metabolism-related DE-IncRNAs.
TABLE 2 11 common DE-lncRNAS were identified by univariate Cox regression analysis.

id z HR HR.95L HR.95H pvalue

LINC00857 3.03064 1.56222 1.170701 2.084675 0.00244

EP300-AS1 -2.80409 0.594574 0.413412 0.855123 0.005046

FENDRR -2.71124 0.574403 0.384727 0.85759 0.006703

LINC00968 -2.68167 0.347052 0.160133 0.752157 0.007326

TBX5-AS1 -2.42441 0.667035 0.480824 0.925363 0.015333

LINC00092 -2.333 0.384128 0.171946 0.858142 0.019648

KIFC1 2.320891 1.200048 1.028765 1.399848 0.020293

PCAT19 -2.30929 0.677321 0.486614 0.942767 0.020927

LINC00460 2.250591 1.15256 1.018504 1.30426 0.024411

SNHG3 -2.10824 0.797356 0.645984 0.984199 0.03501

SFTA1P -2.08702 0.904885 0.823814 0.993934 0.036887
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calculated the correlation between 10 significantly different

immune cells and risk scores (Figure 8E). The results showed

the expressions of resting memory CD4 T cells, resting dendritic

cells, and resting mast cells were negatively correlated with the risk

score, while activated memory CD4 T cells, M0 macrophages and

M1 macrophages expressions were positively correlated with the
Frontiers in Oncology 08
risk score. The rank-sum test results showed that there were

significant differences in T cell dysfunction score and T cell

exclusion score between the two groups (Figures 8F, G, P<

0.0001 and P< 0.05). However, there was no significant

differences in TIDE scores, PD-1, and PD-L1 between high- and

low-risk groups (Figures 8H, I).
B

C

D

A

E

FIGURE 3

Construction of risk feature. (A) Forest plot of univariate Cox regression analysis results of lipid metabolism-related DE-lncRNAs. Red and green
indicate risk and protective factors, respectively. (B) Forest plot of multivariate Cox regression analysis results of lipid metabolism-related DE-
lncRNAs. (C) K–M survival curve of the risk score. (D) Time-ROC curve analysis of risk feature in 1, 3,5 years. (E) The distribution of risk scores,
patient survival status, and survival time.
TABLE 3 4 prognostic signatures were identified by multivariate Cox regression analysis.

id coef HR HR.95L HR.95H pvalue

LINC00857 0.384866 1.469417 1.096862 1.968513 0.00989

EP300-AS1 -0.2774 0.757748 0.523888 1.096001 0.140707

TBX5-AS1 -0.41464 0.660576 0.460979 0.946595 0.023885

SNHG3 -0.28443 0.752443 0.604604 0.936431 0.010821
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Differences in TMB levels, neoantigen
levels and chemotherapy drug sensitivity

The rank-sum test of the TMB was performed, and the

results showed that there was a significant difference between the

two groups (Figure 9A, P< 0.0001). Moreover, the rank-sum test

of the neoantigen values was performed, and the results

suggested that the neoantigen values of the two groups were

significantly different (Figure 9B, P< 0.01). A total of 33 drugs

showed significant differences between the two groups

(Figures 9C–F). Overall, the IC50 value of the low-risk group

was lower, indicating that the chemotherapy effect of patients in

the low-risk group may be more optimistic.
Expression validation and diagnostic
value analysis of prognostic lncRNAs

The expression trends of the four prognostic factors in LUAD

and normal samples from the TCGA-LUAD and the GSE31210

datasets were basically consistent. Compared with the normal

group, the expressions of EP300-AS1 and TBX5-AS1 was down-

regulated in the tumor group, while the expressions of LINC00857

and SNHG3were up-regulated (Figures 10A, B). The qRT-PCRwas
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used to verify the expression levels of prognostic genes and

indicated that the expression levels of the four lncRNA were

distinctly different between the Para-cancerous tissue and

cancerous tissues samples (all P< 0.05; Figure 10C), with the

expression of LINC00857 (P = 0.0025, t = 2.388) and SNHG3 (P

= 0.0361, t = 2.462) being up-regulated in the cancerous tissues, the

expression of TBX5-AS1 (P = 0.0367, t = 2.451) and EP300-AS1 (P

= 0.0407, t = 2.388) being down-regulated in the cancerous tissues,

consistent with the results of TCGA-LUAD cohort and GSE31210

dataset. Prognostic lncRNAs have a good diagnostic ability in

TCGA and GSE31210 datasets, with AUC greater than 0.78

(Figures 10D, E). In addition, we also evaluated the overall

diagnostic performance of 4 genes, which performed well in

TCGA-LUAD cohort (AUC = 0.997) and GSE31210 dataset

(AUC = 0.939), with AUC greater than 0.9 (Figures 10F, G). This

indicates that the overall diagnostic model of the four prognostic

lncRNAs is more effective than the single-gene diagnostic effect.
Discussion

Dysregulation of lipid metabolism is one of the most

representative metabolic disorders in cancer. Lipid metabolism

is used by cancer cells to enable cancer cells to proliferate,
B C

D E F

A

FIGURE 4

Testing and validation of risk features. (A) K–M survival curve of the risk score in the testing set. (B) Time-ROC curve analysis of risk feature in 1,
3,5 years in the testing set. (C) The distribution of risk scores, patient survival status, and survival time in the testing set. (D) K–M survival curve of
the risk score in the validation set. (E) Time-ROC curve analysis of risk feature in 1, 3,5 years in the validation set. (F) The distribution of risk
scores, patient survival status, and survival time in the validation set.
frontiersin.org

https://doi.org/10.3389/fonc.2022.986367
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2022.986367
survive, invade, metastasize, and obtain the energy, biofilm

components and signal molecules required for cancer

microenvironment and cancer treatment response consists of

various types of cells, cytokines, growth factors, and nutrients

including lipids (33). LncRNAs have become key biomarkers for

tumor diagnosis and treatment (34). Numerous studies have

focused on the functions of genes involved in lipid metabolism

(35–38). There were no studies have been seen on lipid

metabolism-related lncRNA features to predict the prognosis

and treatment of lung adenocarcinoma patients. Therefore, we

conducted this study to establish a lipid metabolism-related

lncRNA signature based on a large-scale database to predict

the prognosis and treatment of LUAD patients.

In this study, we screened lipid metabolism-related lncRNAs

for the first time by correlation analysis between lncRNAs and

lipid metabolism-related genes using multiple datasets from the

TCGA and GEO cohorts. Prognostic features based on four lipid

metabolism-related lncRNAs (LINC00857, EP300-AS1, TBX5-

AS1, SNHG3) were constructed using COX regression. And

validated by ROC curve and KM curve in an independent

cohort, this risk prediction model can be used as an

independent prognostic factor for LUAD.

Our study found that four lncRNAs including LINC00857,

EP300-AS1, TBX5-AS1, and SNHG3 were abnormally expressed
Frontiers in Oncology 10
in LUAD. Among them, LINC00857 is overexpressed in LUAD

and can regulate the proliferation, apoptosis and glycolysis of

LUAD cells by targeting the miR-1179/SPAG5 axis (39). TBX5-

AS1 functions in LUAD, lung squamous cell carcinoma (LUSC),

Adrenocortical carcinoma, and uterine corpus endometrial

carcinoma. TBX5-AS1 belongs to a subclass of lncRNAs called

enhancer RNAs. TBX5-AS1 is downregulated in LUAD.

Inhibition of tumor progression through the PI3K/AKT

pathway affects the prognosis of LUAD patients (40–43).

SNHG3 is up-regulated in ovarian cancer, gl ioma,

hepatocellular carcinoma, and osteosarcoma, all of which are

associated with poor prognosis (44–47). SNHG3 is

overexpressed in lung cancer tissues and cells, and a lot of

studies have suggested that SNHG3 can affect the prognosis of

LUAD through multiple pathways. For example, SNHG3 was

activated by E2F1 and promoted not only proliferation but also

the migration of LUAD cells through activating TGF-b pathway

and IL-6/JAK2/STAT3 pathway (48). SNHG3 promotes the

occurrence and progression of LUAD through regulating miR-

515-5p/SUMO2 axis, miR-216a/ZEB1 axis, the miR-1343-3p/

NFIX pathway or the expression of miR-890 (49–52).

In this study, the expression of EP300-AS1 was down-

regulated in LUAD, which may play a tumor suppressor role

in LUAD. At present, there is no relevant research report, and
TABLE 4 Characteristics of patients in low and high risk groups in TCGA-LUAD cohort.

Variable Expression

Total (N=102) high (N=56) low (N=46) P-value

gender

female 53 (52.0%) 26 (46.4%) 27 (58.7%) 0.301

male 49 (48.0%) 30 (53.6%) 19 (41.3%)

age (years)

>=60 77 (75.5%) 40 (71.4%) 37 (80.4%) 0.412

<60 25 (24.5%) 16 (28.6%) 9 (19.6%)

M

M0 96 (94.1%) 53 (94.6%) 43 (93.5%) 1

M1 6 (5.9%) 3 (5.4%) 3 (6.5%)

N

N0 58 (56.9%) 27 (48.2%) 31 (67.4%) 0.15

N1 32 (31.4%) 21 (37.5%) 11 (23.9%)

N2 12 (11.8%) 8 (14.3%) 4 (8.7%)

T

T1 35 (34.3%) 11 (19.6%) 24 (52.2%) 0.00371

T2 59 (57.8%) 41 (73.2%) 18 (39.1%)

T3 5 (4.9%) 3 (5.4%) 2 (4.3%)

T4 3 (2.9%) 1 (1.8%) 2 (4.3%)

STAGE

Stage I 52 (51.0%) 24 (42.9%) 28 (60.9%) 0.279

Stage II 30 (29.4%) 20 (35.7%) 10 (21.7%)

Stage III 14 (13.7%) 9 (16.1%) 5 (10.9%)

Stage IV 6 (5.9%) 3 (5.4%) 3 (6.5%)
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the specific molecular mechanism and prognostic potential need

to be further explored.

Since our model was confirmed to have good predictive

accuracy, we performed GSEA enrichment analysis of

prognostic lncRNA-related mRNAs, and the results suggested

that they could influence the prognosis of LUAD patients by

modulating structural changes in the extracellular matrix or

affecting the development of the respiratory system. The GO and

KEGG analysis showed that it was enriched in multiple

biological processes, mainly involved in DNA replication,

oxidative phosphorylation, and pyrimidine metabolism. The

key enrichment pathways for prognostic features are B-cell

mediated immunity, cell cycle checkpoint, chromosomal
Frontiers in Oncology 11
segregation, etc. We found that this feature is more involved

in the biological processes and pathways of the cell cycle and

immune response. Studies have shown that lnc00857 can

regulate the cell cycle by regulating CCNE1 and CDK2

expression causing G1/S phase arrest (53). Down-regulation of

TBX5-AS1 expression improves cell viability, migration, and

invasion, while inhibiting apoptosis (40). SNHG3 regulates

LUAD cell proliferation and cell cycle while inhibiting

apoptosis (54). Based on the above results, the difference in

prognosis between high and low risk groups may be related to

cell cycle and immune pathways.

Based on enrichment analysis, prognostic features were

associated with immune pathways. Finally, the immune
TABLE 5 Characteristics of patients in low and high risk groups GSE50081 dataset.

Variable Expression

Total (N=181) high (N=90) low (N=91) P-value

gender

female 83 (45.9%) 38 (42.2%) 45 (49.5%) 0.408

male 98 (54.1%) 52 (57.8%) 46 (50.5%)

age (years)

>=60 154 (85.1%) 76 (84.4%) 78 (85.7%) 0.975

<60 27 (14.9%) 14 (15.6%) 13 (14.3%)

M

M0 181 (100%) 90 (100%) 91 (100%) 0.941

N

N0 129 (71.3%) 57 (63.3%) 72 (79.1%) 0.0291

N1 52 (28.7%) 33 (36.7%) 19 (20.9%)

T

T1 57 (31.5%) 22 (24.4%) 35 (38.5%) 0.0556

T2 122 (67.4%) 66 (73.3%) 56 (61.5%)

T3 2 (1.1%) 2 (2.2%) 0 (0%)

STAGE

STAGE I 127 (70.2%) 55 (61.1%) 72 (79.1%) 0.0129

STAGE II 54 (29.8%) 35 (38.9%) 19 (20.9%)

smoking

Current 57 (31.5%) 35 (38.9%) 22 (24.2%) 0.0055

Ex-smoker 79 (43.6%) 37 (41.1%) 42 (46.2%)

Never 24 (13.3%) 5 (5.6%) 19 (20.9%)

Unable to determine 21 (11.6%) 13 (14.4%) 8 (8.8%)
front
TABLE 6 Prognostic factors associated with LUAD were detected by univariate Cox regression analysis in the TCGA-LUAD cohort.

variable coef HR HR.95L HR.95H pvalue

age 0.018574 1.018748 0.994246 1.043854 0.134812

gender 0.659332 1.933501 1.189575 3.142656 0.007804

T 0.743096 2.102435 1.22163 3.618308 0.007304

N 0.428074 1.534299 0.945599 2.489504 0.083015

STAGE 0.523916 1.688628 1.049138 2.717911 0.030967

riskscore 5.500862 244.9029 8.368246 7167.267 0.001407
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infiltration analysis revealed that the expressions of T cells CD4

memory rest, Dendritic cells resting and Mast cells resting were

negatively correlated with risk score, while T cells CD4 memory

activated, Macrophages M0 and Macrophages M1 expressions

were positively correlated with risk score. The predicted

prognosis of LUAD patients may be related to differences in

immune cell composition.

We used three immunotherapy biomarkers to assess the

predictive power of this signature. Notably, we predict the

possibility of response to immunotherapy based on TIDE

score and used the TIDE to predict immune checkpoint

blockade response. It integrates the expression of two main

mechanisms of tumor immune escape, T cell dysfunction and T
Frontiers in Oncology 12
cell rejection, to simulate tumor immune escape and can be used

to predict the immunotherapy response of lung cancer (55).

Interestingly, the low-risk group had higher T cell dysfunction

score, while the high risk group had higher T cell exclusion score.

This suggests that high-risk groups may benefit from the

administration of checkpoint inhibitors (ICIs). Next, we also

compared tumor mutational burden(TMB)and neoantigen

between high and low-risk groups. Both TMB and neoantigens

play an important role in tumor immune response. TMB can be

used as a biomarker of response to checkpoint inhibitors (56),

and neoantigens can be used as a biomarker to predict immune

response to lung cancer (57). As predicted, the high-risk group

exhibited higher mutational loads and neoantigens. Relatively
TABLE 7 Independent prognostic indicators of LUAD were detected by multivariate Cox regression analysis in the TCGA-LUAD cohort.

variable coef HR HR.95L HR.95H pvalue

gender 0.650719 1.916919 1.175847 3.12505 0.009065

T 0.516487 1.676129 0.974879 2.881801 0.061769

STAGE 0.418222 1.519259 0.934037 2.471152 0.091984

riskscore 4.243822 69.67362 1.631621 2975.209 0.026722
frontie
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FIGURE 5

Independent prognosis analysis. (A) The nomogram of survival probability based on all independently predictive variables from GEO dataset.
(C) The nomogram of survival probability based on all independently predictive variables from TCGA dataset. (B, D) Calibration curves for
evaluating the agreement between the predicted and the actual survival rate for the prognosis model.
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speaking, the high-risk group had a higher objective response

rate to immunotherapy and could benefit from the ICIs of

LUAD (58). Studies have shown that the ability of TIDE to

predict response to immunotherapy has been proven to be

empirically superior to known immunotherapy biomarkers

such as TMB and neoantigens (55). However, there was no

significant difference in TIDE score, PD-1, and PD-L1

distribution between the two groups. Whether this feature can

effectively predict the response to immunotherapy needs further

research to verify.

We also focused on the differences in chemotherapeutic drug

sensitivity. Interestingly, IC50 values in the low-risk group were

significantly lower than those in the high-risk group, suggesting

that the patients in the low-risk group may have better outcomes

with chemotherapy. Based on this result, individualized

treatment regimens can be developed according to the risk

scores of different LUAD patients.

A large number of studies have shown that lncRNAs have

been confirmed to be associated with poor prognosis of cancer,

and the expression levels of lncRNAs can be used as diagnostic

markers in addition to prognostic markers of intrinsic

characteristics of cancer (59). A diagnostic biomarker detects or

confirms the presence of a disease or condition of interest, or

identifies an individual with a subtype of the disease. However, the

diagnostic value of lncRNAs is rarely reported. The development

of new diagnostic biomarkers is particularly important for early

detection, early treatment and improved prognosis of LUAD

patients (60). Therefore, to verify whether our model has

diagnostic value, we performed expression validation of

prognostic lncRNAs using an external independent dataset, and

validated the expression levels of prognostic-related genes by
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performing qRT-PCR on paracancerous tissue and cancerous

tissue samples from LUAD patients. Biomarkers need to ensure

a low false positive rate. The use of ROC curve is conducive to the

rational use of diagnostic biomarker evaluation. Decision

thresholds and clinical utility are becoming important measures

for assessing the value of biomarkers for clinical application (61).

In this study, four lncRNAs (LINC00857, EP300-AS1, TBX5-AS1,

and SNHG3) that are significantly related to the survival of LUAD

patients (p<0.05) were used as diagnostic biomarkers, and their

false positive concerns as LUAD biomarkers were ruled out by

drawing the ROC curve of prediction model and single lncRNA.

The results of clinical and independent prognostic analysis show

that the risk score based on this model has independent

prognostic value, and the corresponding nomogram and

calibration curve also show that the model we built can be used

in clinical diagnosis. On the other hand, the method of cross

validation using multiple mutually exclusive “training” and

“validation” samples is usually used for clinical validation of

biomarkers (62). In this study, TCGA-LUAD (test set and

validation set) and GSE50081 (external validation set) were

jointly used to evaluate risk models, ensuring their effectiveness.

As expected, the four prognostic lncRNAs signatures related to

lipid metabolism showed good diagnostic ability and were able to

distinguish between paracancerous and cancerous tissues. At the

same time, the overall diagnostic model of the four prognostic

lncRNAs is more robust than the individual lncRNAs. This study

also suggests that this lncRNAs signature is a potential diagnostic

tool for LUAD patients.

Based on survival analysis, prognostic features can effectively

predict the total survival (OS) of early LUAD (63). By combining

the prognostic features with classic clinical risk factors, it can
TABLE 8 Prognostic factors associated with LUAD were detected by univariate Cox regression analysis in the GSE50018 dataset.

variable coef HR HR.95L HR.95H pvalue

STAGE 0.459406 1.583133 1.35183 1.854013 1.19E-08

N 0.535674 1.7086 1.405516 2.07704 7.59E-08

T 0.458022 1.580944 1.297362 1.926512 5.60E-06

riskscore 0.504493 1.656146 1.276325 2.148998 0.000147

M 0.608396 1.837482 1.034448 3.263905 0.03794

gender 0.053664 1.05513 0.751376 1.481682 0.756715

age 0.001727 1.001728 0.984147 1.019624 0.84841
frontie
TABLE 9 Prognostic factors associated with LUAD were detected by multivariate Cox regression analysis in the GSE50018 dataset.

Variable coef HR HR.95L HR.95H pvalue

N 0.22638 1.254052 0.977701 1.608513 0.074683

STAGE 0.250762 1.285005 1.023977 1.612572 0.030427

T 0.213124 1.237538 0.994005 1.540738 0.056626

riskscore 0.361873 1.436016 1.094731 1.883698 0.008957
Because of covering several pages, Tables 9–11 are provided in Supplementary Material.
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also be found that when patients are exposed to the same clinical

risk factors, the prognosis of the high-risk group is significantly

worse. At the same time, prognostic features can also be used to

guide treatment (64). A large number of studies have shown that

proteins and mRNAs have been validated as biomarkers of

various cancers (38, 65). However, the stability of these

biomarkers will be affected by the regulation and modification
Frontiers in Oncology 14
of proteins and mRNAs at the transcriptional level. LncRNAs

are effectors whose function depends on their expression levels.

Many lncRNAs have also been shown to be associated with poor

cancers prognosis (59, 66, 67). Therefore, the expression level of

lncRNAs can be used as a better biomarker to predict or

diagnose the prognosis of tumors. In this study, this lncRNAs

signature is not only related to lipid metabolism, but also related
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FIGURE 6

Identification of mRNAs associated with prognostic lncRNAs. (A) The coexpression network between prognostic lncRNAs and mRNA. Red
diamond nodes represent prognostic lncRNAs, and the sky blue round nodes represent prognostic-related mRNAs. The coexpression network
was visualized using Cytoscape 3.7.2 software. Green circles represent mRNAs that are both associated with prognostic lncRNAs and cis-
regulated. (B) Sankey diagram showed the association between prognostic related lncRNAs and mRNAs.(C) GO enrichment analysis. (D) KEGG
enrichment analysis. (E) Protein interaction network. (F) identification of the top3 hub genes. (G–I) K–M survival curve of the expression levels of
MYH11, ELN, DCN and the corresponding survival information.
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FIGURE 7

The results of gene set enrichment analysis. (A) KEEG enrichment analysis. (B) GO enrichment analysis.
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FIGURE 8

Immune infiltration analysis and differences in response to immunotherapy.(A) Proportion of immune cell infiltration.(B) Correlation heatmap of
immune cell proportion. (C) Correlation p-value heatmap of immune cell proportion. (D) Boxplot of immune cell differences between the low-
and high-risk group. (E) The correlation between significantly different immune cells and risk scores. (F) Boxplot of T cell dysfunction score
between high- and low-risk groups. (G) Boxplot of T cell exclusion score between high- and low-risk groups.(H) Boxplot of TIDE score
between high- and low-risk groups. *, **, ***, and **** represent P < 0.05, P<0.01, P < 0.001, and P < 0.0001, respectively. ns, not significant.
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to specific biological mechanisms. In contrast, this is the

advantage of our prognostic model.

Although this is the first time to construct the prognostic

characteristics of lipid metabolism-related lncRNA of LUAD, and

multi-dimensional verification has been carried out, our study still

has certain limitations. First, the data analyzed in this study are all
Frontiers in Oncology 16
from online databases, and larger samples are needed to further

study the clinical application of our findings in LUAD. Second, this

paper is a retrospective study, needed to corroborate by

corresponding prospective studies. Finally, functional experiments

are needed to further elucidate the intrinsic molecular mechanisms

of lipid metabolism-related lncRNAs.
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FIGURE 9

Differences in TMB levels, neoantigen levels, and chemotherapy drug sensitivity between high- and low-risk groups. (A) Boxplot of the TMB
between high- and low-risk groups. (B) Boxplot of the neoantigen values between high- and low-risk groups. (C–F) Boxplot of 33
chemotherapy drug sensitivity between high- and low-risk groups. ** represents P < 0.01, **** represents P < 0.0001.
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In conclusion, this study constructed the prognostic

characteristics of 4 lncRNAs related to lipid metabolism for

the first time by analyzing bioinformatics methods and based on

multiple databases, which proved to have important prognostic

and therapeutic value for LUAD patients, as well as good

diagnostic ability.
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datasets. (C) Boxplots of the expression levels of the four lncRNAs between the paracancerous and cancerous tissue samples. (D, E) ROC curve analysis
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P < 0.05, P < 0.01, and P < 0.0001, respectively.
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