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Pyroptosis is a newly discovered programmed cell death mechanism involved

in tumorigenesis. Long non-coding RNAs (lncRNAs) have been implicated in

colorectal cancer (CRC). However, the potential role of pyroptosis-related

lncRNAs (PRLs) in CRC remains unelucidated. Therefore, we retrieved

transcriptomic data of CRC patients from The Cancer Genome Atlas (TCGA).

With the use of univariate and multivariate Cox proportional hazards regression

models and the random forest algorithm, a new risk model was constructed

based on eight PRLs: Z99289.2, FENDRR, CCDC144NL-ASL, TEX41, MNX1-AS1,

NKILA, LINC02798, and LINC02381. Then, according to the Kaplan–Meier

plots, the relationship of PRLs with the survival of CRC patients was explored

and validated with our risk model in external datasets (Gene Expression

Omnibus (GEO) databases; GEO17536, n = 177, and GSE161158, n = 250). To

improve its clinical utility, a nomogram combining PRLs that could predict the

clinical outcome of CRC patients was established. A full-spectrum immune

landscape of CRC patients mediated by PRLs could be described. The PRLs

were stratified into two molecular subtypes involved in immune modulators,

immune infiltration of tumor immune microenvironment, and inflammatory

pathways. Afterward, Tumor Immune Dysfunction and Exclusion (TIDE) and

microsatellite instability (MSI) scores were analyzed. Three independent

methods were applied to predict PRL-related sensitivity to chemotherapeutic

drugs. Our comprehensive analysis of PRLs in CRC patients demonstrates a

potential role of PRLs in predicting response to treatment and prognosis of

CRC patients, which may provide a better understanding of molecular

mechanisms underlying CRC pathogenesis and facilitate the development of

effective immunotherapy.
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Introduction

Colorectal cancer (CRC) is the third most common cancer

and the second leading cause of cancer death worldwide (1). In

2018, there were about 1.8 million new cases and 880,000 deaths

of CRC globally (2). CRC is a group of heterogeneous diseases;

therefore, the genetic makeup, age, family history, ethnicity, and

lifestyle of patients varied greatly (3). Interestingly, pyroptosis-

related genes and long non-coding RNAs (lncRNAs) may play a

vital role as independent molecular biomarkers of tumor

diagnosis and prognosis (4). Considering the high mortality

rate, a new series of biomarkers suitable for CRC prognosis shall

be urgently needed.

Pyroptosis, which belongs to inflammatory cell death, is

distinct from apoptosis and ferroptosis (5). It is characterized by

cell swelling, pore formation, osmotic lysis, Gasdermin family-

mediated pore-forming, cell lysis, and release of inflammatory

factors, including interleukin IL-18, IL-1b, and high mobility

group box 1 (HMGB1) (6–8). The Gasdermin superfamily is the

executioner of pyroptosis (9). Downregulation of GasderminD

(GSDMD) in CRC was associated with poor prognosis in CRC,

suggesting that the Gasdermin family may be a potential

therapeutic target for CRC (10).

LncRNA is a non-coding RNA with transcripts longer than

200 nucleotides (11). Accumulating evidence suggests that

lncRNAs may participate in various human diseases and

disorders (12). The lncRNAs were associated with metastasis

and prognosis of CRC. For example, HOTAIR was associated

with poor prognosis in CRC (13). H19 promotes CRC metastasis

via binding to hnRNPA2B1 (14). Metastasis-Associated Lung-

Adenocarcinoma Transcript 1 (MALAT1) was associated with

metastasis and survival of CRC patients (15). The high

expression level of RAMS11 in primary CRC tumors may

predict a worse outcome (16). Although lncRNAs were

involved in the progression and prognosis of CRC, relevant

evaluation of gene signature based on lncRNAs in CRC has yet

to be explored.

In this study, we obtained colon adenocarcinoma (COAD)

and rectal adenocarcinoma (READ) RNA-seq and clinical data

from The Cancer Genome Atlas (TCGA) and explored the

prognostic significance of PRLs using bioinformatic and

statistical analyses. Eight PRLs holding prognostic values in
Abbreviations: lncRNAs, long non-coding RNAs; PRL, pyroptosis-related

long non-coding RNA; DEL, differentially expressed lncRNA; CRC, colorectal

cancer; COAD, colon adenocarcinoma; TCGA, The Cancer Genome Atlas;

GEO, Gene Expression Omnibus; AUCs, areas under the receiver operating

characteristic curve; OS, overall survival; TMB, tumor mutational burden;

TME, tumor immune microenvironment; FPKM, fragments per kilobase of

transcript per million mapped reads; GO, Gene Ontology; KEGG, Kyoto

Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis;

CTRP, Cancer Therapeutics Response Portal; PRISM, PRISM Repurposing

dataset; IC50, half maximal inhibitory concentration; K-M, Kaplan–Meier.
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COAD and READ patients were used to construct a PRL

model. In addition, we developed a nomogram to assess

prognosis. Its predictive power was verified using the Gene

Expression Omnibus (GEO) databases. Based on the median

risk scores, CRC patients in TCGA were divided into high- and

low-risk subtypes. Then, prognosis, the functional pathways

consisting of differential expression genes, immune cell

infiltration, microsatellite instability (MSI) status, tumor

mutational burden (TMB), and chemotherapeutic drug

sensitivity were evaluated.
Materials and methods

Data resources and preparation

The DNA methylation, gene expression profile, and

corresponding clinical information data of CRC patients were

downloaded from TCGA database (https://cancergenome.nih.

gov/). After screening, we excluded samples with insufficient

clinical information. A total of 571 CRC cases containing mRNA

expression and corresponding clinical data were used as a

training cohort. The fragments per kilobase of transcript per

million mapped reads (FPKM) data of TCGA cohort were then

converted into transcripts per kilobase million (TPM) data for

the next analysis. Then, two independent datasets with

expression data and detailed clinical information were

downloaded from the GEO datasets (GSE17536, n = 177;

GSE161158, n = 250; https://www.ncbi.nlm.nih.gov/geo/) and

were used as validation sets. Gene Ensemble ID was annotated as

Gene Symbol through GENE CODE v27. After that, expression

profile and somatic mutations data of human cancer cell lines

were obtained from the Broad Institute Cancer Cell Line

Encyclopedia (CCLE) project (https://portals.broadinstitute.

org/ccle/) (17). A total of 33 pyroptosis-related genes (PRGs)

were obtained from previous literature (Supplementary Table

S1) (18–22). The workflow of this study is described in Figure 1.
The construction and validation of
pyroptosis-related lncRNA prognostic
model

The R package “DESeq2” was used to identify differentially

expressed lncRNAs (DELs) between normal and tumor

samples in TCGA cohort (Supplementary Table S2).

Spearman’s correlation analysis between lncRNAs and PRGs

was set to identify PRLs and acquisition of 477 PRLs (|R2| > 0.4

and p< 0.05, Supplementary Table S3). Take the intersection of

477 PRLs and 641 DELs (padj.< 0.05 and |log2FC| > 1), and 158

PRLs are obtained. Then, a univariate Cox proportional risk

regression model was used to select candidate survival-related

PRLs, and p< 0.01 was set as the threshold (Supplementary
frontiersin.org
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Table S4). Then, the random survival forests-variable hunting

(RSFVH) algorithm was used to further filter the genes. The

best log-rank p-values of the Kaplan–Meier (KM) analysis were

used to establish the final PRL gene signature. A combination

of eight PRLs was chosen for establishing the risk gene model

because it had a relatively significant −log10 p-value and the

smallest number of genes. Finally, according to the eight

lncRNAs obtained by the RSFVH, we performed a

multivariate regression analysis to construct the prognostic

model.

Risk  score = 0:12095 * expZ99289:2  + 0:20536 * expMNX1-AS  +   −0:21082831 * ð
expFENDRRÞ  + 0:10058 * expCCDC144NL-AS1  + 0:04314 * LINC02798  + 

0:053611 * expTEX41  + 0:08983 * expLINC02381

According to the median risk scores, patients in the training

cohort were divided into low-risk and high-risk groups. Then,

the Kaplan–Meier (K-M) plots were used to compare the overall

survival (OS) time of the high- and low-risk groups. Before the

construction of the nomogram, Schoenfeld’s residuals test was

used to test the proportional hazards assumption in the Cox

model. Finally, with the use of risk scores, age, and N and M, a

nomogram was constructed. Time-dependent receiver operating

characteristic (ROC) curves were used to evaluate the

performance of this model for predicting prognosis. In

addition, to depict the predictive value, corresponding

calibration plots of the nomogram were used for 1-, 2-, and 5-

year survival events. In the validation set, the risk scores were

calculated using the same formula as that in the training set. All

patients in the validation set were subdivided into low-risk and

high-risk groups. Then, K-M plots were used to compare the OS

between the two groups.
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Gene set enrichment analysis

The gene set enrichment analysis (GSEA) was performed by

using the R package “Clusterprofiler” to compare related

pathways and biological processes between the high- and low-

risk groups. The hallmark gene set contains 50 representative

pathways, which cover clearly defined sets of genes involved in

development and immunity, which were analyzed in this study.

Gene sets with nominal (NOM) p< 0.05 and |NES| > 1 were

considered significant based on the user guide of GSEA (23).
Chemotherapeutic response analysis

Drug sensitivity was calculated using data from three

databases. The drug sensitivity data of human cancer cell lines

(CCLs) were downloaded from the Cancer Therapeutics

Response Portal (CTRP; https://portals.broadinstitute.org/ctrp)

and PRISM Repurposing dataset (PRISM, https://depmap.org/

portal/prism/). Both CTRP and PRISM datasets contain

sensitivity to compounds in CCLS and provide the area under

the dose–response curve (area under the curve (AUC)) values as

a measure of drug sensitivity. The lower the value of AUC, the

higher the sensitivity of the treatment (17). With the use of the

ridge regression algorithm provided by the R package

“pRRophetic”, the chemotherapeutic response of each patient

was determined by the half-maximal inhibitory concentration

(IC50) based on a pharmacogenomics database called Genomics

of Drug Sensitivity in Cancer (GDSC) (https://www.

cancerrxgene.org/) (24, 25).
FIGURE 1

Flowchart of the whole study. PRLs, pyroptosis-related long non-coding RNAs. * represents p < 0.05, ** represents p < 0.01, *** represents p <
0.001, ns represents no significant.
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Immune cell infiltration analysis

To explore interactions of PRLs with tumor immune

microenvironment (TME) in CRC, the currently acknowledged

seven methods to calculate the immune infiltration status

including ssGSEA, CIBERSORT, Estimate, MCP_counter,

Quanti-seq, TIMER, and xCELL were used to analyze the

infiltration level between the high- and low-risk groups of our

constructed model (26, 27). The R package “matfools” was used to

calculate TMB, while package “PreMSIm” was used to predict the

MSI status. Finally, Tumor Immune Dysfunction and Exclusion

(TIDE; http://tide.dfci.harvard.edu/) was used to evaluate the

possibility of tumor immune escape in the gene expression

profile between the low- and high-risk groups (28).
Statistical analysis

Statistical analysis was performed with the R software 4.1.2.

Spearman’s correlation analysis was used to identify PRLs. U

tests were used when appropriate. If not stated above, p< 0.05 is

considered significant.
Results

Identification of pyroptosis-related
lncRNA signature

A total of 998 patients with CRC gene expression data and

relative clinical information were included in this study. The

clinical information of TCGA cohort is summarized in

Supplementary Table S5. We obtained 33 pyroptosis-related

genes from the literature and analyzed their associations with

lncRNAs in CRC patients to identify PRLs (Spearman’s

threshold value |R2| > 0.4 and p< 0.05, Figure 2A). Next,

differently expressed lncRNAs (DELs) in CRC patients

between normal and cancer tissues were obtained. Taking

genes shared by DELs and PRLs, we obtained 158 PRLs to do

the next univariate Cox proportional hazards analysis and

identify PRLs that are significantly related to OS of CRC

patients (p< 0.05, Figures 2B, C). Subsequently, 15 lncRNAs

(ALMS1-IT1, AC004846.1, LINC01354, SNHG7, Z99289.2,

LINC02397, AC009549.1, GAS1RR, AL354836.1, LINC02381,

AL137026.1, LINC00702, AC012313.5, ELFN1-AS1, and

LINC02798) were screened out with random forest supervised

classification algorithm (Figure 2D). The K-M analysis was

performed to screen genes that would be best for a risk model.

The final prognostic signature is composed of eight PRLs

(TEX41, Z99289.2, LINC02798, CCDC144NL-AS1, LINC02381,

MNX1-AS1, FENDRR, and NKILA) based on a bigger −log10
plog-rank value and a smaller number of genes (Figure 2E). The

high correlation between eight PRLs and pyroptosis-related
Frontiers in Oncology 04
genes is shown in Figure 2F. The expression level of

CCDC144NL-AS1, MNX1-AS1, TEX41, NKILA, and Z99289.2

was higher in tumor tissue. In the meantime, the expression of

LINC02381 and LINC02798 in the tumor is lower than that in

normal tissue in CRC patients (Figures 3A–H). Furthermore, the

expression levels of lncRNAs TEX41, Z99289.2, LINC02798,

CCDC144NL-AS1, LINC02381, MNX1-AS1, and NKILA

positively correlated with the OS. A higher expression level of

lncRNA FENDRR correlated with better survival probability in

TCGA CRC cohort (Figures 4A–H).
Survival prediction performance
of the model

CRC patients were divided into low- and high-risk groups

according to the median risk scores. Based on the Kaplan–Meier

survival curves, the low-risk group had a higher survival

probability in TCGA dataset (Figure 5A). The risk scores and

survival status were distributed in scatter plots. Patients with a

higher risk score had shorter OS and a higher mortality rate

(Figure 5B). According to the ROC curves, PRLs might predict

OS in TCGA cohort, with an AUC at 1, 2, and 5 years of 0.660,

0.768, and 0.734, respectively (Figure 5C). Next, the GEO was

used as an external dataset to validate the prognostic ability of

PRLs. The GSE17536 and GSE161158 were explored as the

validation cohorts. The risk scores in the validation cohorts

were calculated using the same formula as in TCGA cohort. The

results were consistent with the previous conclusion. Patients in

the validation cohorts with a higher risk score had a lower

survival rate compared to those with a low-risk score

(Figures 5D–I).
Stratified analysis and nomogram
constructed based on the
pyroptosis-related lncRNAs

The relationships between risk scores and different

clinicopathological factors (age, gender, tumor type, and

clinical stage) were investigated. The patients with a low-risk

score had a better survival probability than those with a high-risk

score (Figures 6A–H). Then, prognostic factors of CRC patients

were identified independently. The univariate and multivariate

Cox analyses were performed to screen factors with prognostic

power (Figures 7A, B). Schoenfeld’s test was used to examine the

quality of factors used to build a nomogram (Supplementary

Figure S1). Then, a nomogram was constructed to calculate the

1-, 2-, and 5-year survival probability of a CRC patient based on

tumor grade, age, and risk score (Figure 8A). The AUC

experiments on the nomogram model showed higher accuracy

for OS at 1, 2, and 5 years in TCGA cohort (Figure 8B). In

addition, based on calibration plots, the predicted power was
frontiersin.org

http://tide.dfci.harvard.edu/
https://doi.org/10.3389/fonc.2022.983895
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Cai et al. 10.3389/fonc.2022.983895
close to an ideal curve (Figure 8C), which demonstrated that this

nomogram had a good prognostic performance in CRC and was

helpful to improve the clinical utility of PRL risk score.
Pyroptosis-related lncRNA-associated
different functional pathways and
somatic mutation landscape

The lncRNAs might play an important role in biological

processes such as cell differentiation, development, tumor
Frontiers in Oncology 05
growth, and metastasis of CRC (29, 30). We performed Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analyses based on differential gene expression

profiles in the low- and high-risk groups to uncover relevant

functional pathways (differentially expressed genes (DEGs) [|

log2 (fold change) | > 0.5 and p< 0.01). The DEGs were enriched

in a variety of cellular and biological functions, including

external encapsulating structure organization, immunoglobulin

complex formation, antigen binding, metalloendopeptidase

activity, endopeptidase activity, protein digestion and

absorption, TGF-beta signaling pathway, and proteoglycans in
A B

D

E F

C

FIGURE 2

Identification of PRLs and development of a PRL signature. (A) Sankey diagrams to describe the associations between PRGs and lncRNAs.
(B) Volcano diagrams exhibit differentially expressed lncRNAs. (C) The Venn diagrams identify the intersects of DELs and PRLs. (D) Random
survival forest analysis on the screened 15 lncRNAs. (E) The top eight lncRNAs were sorted according to the p-values of K-M plots. (F) Heatmap
shows the correlation of 33 PRGs with eight lncRNAs. PRGs, pyroptosis-related genes; lncRNAs, long non-coding RNAs; DELs, differentially
expressed lncRNAs; KM, Kaplan–Meier. * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001.
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cancer (Figures 9A, B). The GSEA discovered mainly

enrichment of tumor invasion and progression pathways in

high-risk groups (Figure 9C; Supplementary Table S6). Then,

changes in the distribution of somatic mutations were explored
Frontiers in Oncology 06
in the low- and high-risk groups. We found differences in the

frequency of mutations in certain genes between the individual

groups (Supplementary Table S7). The mutation frequencies of

APC, TP53, TTN, PIK3CA, MUC16, and OBSCN were higher in
A B

D

E F

G H

C

FIGURE 3

Boxplot shows the comparisons of relative expression in normal and tumor tissue in TCGA cohort. (A) Comparison of the relative expression of
CCDC144NL-AS1 in normal and tumor tissues. (B) Comparison of the relative expression of MNX1-AS1 in normal and tumor tissues.
(C) Comparison of the relative expression of TEX41 in normal and tumor tissues. (D) Comparison of the relative expression of NKILA in normal
and tumor tissues. (E) Comparison of the relative expression of LINC02381 in normal and tumor tissues. (F) Comparison of the relative
expression of FENDRR in normal and tumor tissues. (G) Comparison of the relative expression of Z99289.2 in normal and tumor tissues. (H)
Comparison of the relative expression of LINC02798 in normal and tumor tissues. TCGA, The Cancer Genome Atlas. **** represents p < 0.001.
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the high-risk group than in the low-risk group (Figures 9D, E).

However, there were no differences in pyroptosis-related genes

between the high- and low-risk groups (Supplementary Table

S7), and the mutations of pyroptosis-related genes are shown

in Figure 9F.
Immune landscape analysis between two
pyroptosis-related lncRNA groups

Firstly, we can observe from Figure 10A that there was more

proportion of stage III and stage IV patients in the high-risk group,

while there were more stage I and stage II patients in the low-risk

group (p< 0.001, chi-square test). To characterize the immune

characteristics between the low- and high-risk groups, several

immune-related analytical methods were performed. Primarily,

565 samples in TCGA cohort were sorted into six subtypes

according to pan-cancer immune phenotype set by a previous

study (C1, wound healing; C2, IFN-g dominant; C3, inflammatory;

C4, lymphocyte depleted; C5, immunologically quiet; C6, TGF-b
dominant) (31). There was no significant difference in the

distribution of immune subtypes between the low- and high-risk

groups (Figure 10B). Generally, immunomodulators (IMs) are

critical for cancer immunotherapy, which can unleash antitumor

immunity. Several immunomodulator agonists and antagonists

have been applied in clinical practice (32). In our study, 78 IMs

were included to examine differences in expression levels across

PRL subtypes (31, 33, 34). To explore the relationship between gene
Frontiers in Oncology 07
expression and DNA methylation, amplification, or deletion,

Spearman’s correlation analysis was conducted in each PRL

subtype. The potential effects of PRL expression levels on TME

were tested. Interestingly, gene repression of IMs largely segregated

CRCs by PRL groups (Figure 11A). Tumor-infiltrating lymphocytes

(TILs) have been recognized as a positive prognostic factor in CRC

(35). We compared TILs between the low- and high-risk groups to

investigate if PRLs could affect immunogenicity and immune

infiltration. The results of seven immunocyte-associated

algorithms (CIBERSORT, EPIC, Estimate, MCP_counter, Quanti-

seq, TIMER, and xCell) are shown in Supplementary Figure S2.

Notably, activated B cells, activated CD4 T cells, activated CD8 T

cells, eosinophils, and type 1 T helper cells were decreased

significantly in CRC patients in the high-risk group (Figure 11B).

A higher risk score negatively correlated with the number of naïve B

cells, activated CD4 T cells, activated CD8 T cells, and eosinophils

(Figure 11C). Furthermore, the expression levels of 13 immune-

related pathways in the high- and low-risk groups of CRC patients

related to clinical features are listed in Figure 11D. Then, TIDE

analysis was used to predict the efficacy of immune checkpoint

blockade (ICB) therapy. The high-risk group had a higher score of

T-cell dysfunction (Figure 11E). In addition, deficient mismatch

repair (dMMR)/microsatellite instability-high (MSI-H) is of great

significance for the diagnosis, prognosis, and treatment of various

tumors. CRC patients with MSI-H tumors could especially benefit

from immunotherapy (36, 37). In colorectal cancer, which is

characterized by microsatellite instability, increased TMB was

observed (38). As shown in Figure 11F, the patients with MSI-H
A B D

E F G H

C

FIGURE 4

K-M survival curves showing that CRC patients with different expression levels of the eight PRLs had different survival probabilities. (A–H) K-M
plots of lncRNAs Z99289.2, FENDRR, CCDC144NL-AS1, MNX1-AS1, NKILA, LINC02798, and LINC02381. K-M, Kaplan–Meier; CRC, colorectal
cancer; PRLs, pyroptosis-related lncRNAs.
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had a lower risk score. In CRC characterized by MSI, increased

TMB was observed. Tumors with highly TMB are more easily

recognized by our immune system; current evidence suggests that

TMB is associated with the efficacy of ICB therapy, as shown in

Figure 11G, and patients with low TMB have a higher survival

probability. Then, a joint survival analysis of the PRL signature

combined with TMB was performed. CRC patients had a higher

survival probability in the low-risk group with a lower TMB in

TCGA cohort than in the high-risk group with a higher TMB

(Figure 11H) (39). These results indicated that the eight-lncRNA

signature had the potential to predict tumor response to ICB

therapy in CRC.
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Estimation of the drug responses
with pyroptosis-related lncRNAs
in clinical samples

To further explore if PRLs could influence the effect of

chemotherapy, we use three different methods to identify

candidate potential therapeutic agents in patients with high

PRL scores by using the CTRP, PRISM, and GDSC cell line

data. The workflow of drug responses in this study is shown in

Figure 12A. Firstly, the CTRP and PRISM were used to analyze

differential drug responses between the high- and low-risk score

groups. The correlation of AUC and PRL scores was calculated
A B

D E F

G IH

C

FIGURE 5

Prognostic value of a candidate risk model including eight PRLs. TCGA: (A) K-M plots for OS in the high-risk and low-risk groups stratified by
PRLs. (B) Distribution of risk scores and survival status in TCGA cohort. (C) ROC curves for the eight lncRNAs. GSE17536: (D) K-M curves for OS
in the high-risk and low-risk groups stratified by PRLs. (E) Distribution of risk scores and survival status in the validation cohort. (F) ROC curves
for the eight lncRNAs. GSE161158: (G) K-M curves for OS in the high-risk and low-risk groups stratified by PRLs. (H) Distribution of risk scores
and survival status in the validation cohort. (I) ROC curves for the eight lncRNAs. PRLs, pyroptosis-related lncRNAs; TCGA, The Cancer Genome
Atlas; K-M, Kaplan–Meier; OS, overall survival; ROC, receiver operating characteristic.
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FIGURE 6

Subgroup analysis of OS for CRC patients based on PRLs. (A) cancer type—COAD. (B) Age< 65. (C) Gender—female. (D) Tumor stage I_II.
(E) Type—READ. (F) Age ≥ 65. (G) Gender—male. (H) Tumor stage III_IV. COAD, colon adenocarcinoma; READ, rectal adenocarcinoma;
OS, overall survival; CRC, colorectal cancer; PRLs, pyroptosis-related lncRNAs.
A

B

FIGURE 7

Univariate and multivariate Cox analyses of clinical factors and risk score with OS. (A) Risk score was an independent predictor as demonstrated
by univariate analyses. (B) Risk score was an independent predictor as demonstrated by multivariate analyses. OS, overall survival.
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by Spearman’s correlation coefficient. A negative association was

selected because a higher AUC value indicated decreased

sensitivity to treatment. The results yielded four CTRP-

produced compounds (ML210, ML162, 1S,3R-RSL-3, and

dasatinib) and three PRISM-produced compounds (dasatinib,

YM-155, and romidepsin). These compounds had a negative

association with PRLs and have a lower AUC value (Figures 12B,

C). Then, based on GDSC, a low-risk score correlated with a

higher IC50 value of ABT.263, AMG.706, AP.24534, or

bleomycin. The IC50 values of chemotherapeutics such as

axitinib, bexarotene, BIBW2992, BI.D1870, and bortezomib

were significantly lower in the low-risk score group

(Figures 12D–L). The eight lncRNAs are expected to predict

response to immunotherapy in CRC.
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Discussion

The incidence of CRC keeps rising globally. Because of its

malignant characteristics such as frequent relapse, early

metastasis, and resistance to radiotherapy and chemotherapy,

the prognosis of patients with advanced tumors remains dismal.

Furthermore, CRC has high heterogeneity (interpatient,

intertumoral, and intratumoral differences), so clinical

outcomes among cancer patients are greatly varied. The

predictive power of existing molecular markers can be very

limited. Therefore, it is of great significance to explore new

prognostic molecular markers with great potential. Pyroptosis is

a form of non-apoptotic cell death, which has been indicated to

be a double-edged sword for innate immunity and antitumor
A

B C

FIGURE 8

Construction of a nomogram for survival prediction. (A) A candidate nomogram was developed to predict 1-, 2-, and 5-year survival rates. (B) A
comparison of 5-year ROC curves with common clinical characteristics (age and N and M status) and risk score, indicating the superiority of this new
risk score. (C) Calibration curves described nomogram prediction abilities for 1-, 2-, and 5-year survival rates. ROC, receiver operating characteristic.
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effects (40, 41). For example, pyroptosis-related gene signatures

can be effectively applied to the prognosis of CRC patients (19).

Notably, lncRNAs are related to tumor progression (42). It is

important to explore the potential molecular targets of CRC in-

depth. In this study, some of the already identified PRLs involved

in the model constructed are already being proven to play a vital

role in cancer development. For example, CCDC144NL-AS1 has

been reported to promote the progression of CRC,

hepatocellular carcinoma, and osteosarcoma (43–45); lncRNA

MNX1-AS1 is an oncogenic propellant in a variety of tumors,

including esophageal squamous cell carcinoma (46); NKILA can

promote tumor immune escape by interacting with NF-kB in

breast cancer (47); TEX41 promotes the malignant behaviors of

skin cutaneous melanoma and lymphoblastic leukemia (48, 49).

In addition, recent evidence has validated that FENDRR is

abnormally expressed in a variety of cancers and associated

with advanced-stage CRC and lung cancer (50, 51). LINC02381,

downregulated in CRC tissues, when its functions were

epigenetically silenced, will be an inhibitor of proliferation and

viability in colorectal cancer cells (52). However, among these
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lncRNAs, the function of Z99289.2 and LINC02798 is not

clear enough.

To investigate the potential biological function of this

signature, GO and KEGG pathway analyses were carried out

on those identified differentially expressed genes. Interestingly,

the eight-lncRNA signature can be primarily enriched in

encapsulating structure organization, immunoglobulin

complex formation, antigen binding, endopeptidase activity,

protein digestion and absorption, TGF-beta signaling pathway,

and proteoglycans in cancer.

The TME plays an important role in tumor development,

progression, and drug resistance (53). Cancer cells eventually

acquire the ability to suppress tumor antagonism of immune

cells and evade immune surveillance, leading to tumor

progression (37, 54). An immunosuppressive TME is key to

promoting tumor development and progression in CRC. Despite

the pivotal advance in immunotherapy, the prognosis of CRC

remains highly heterogeneous (55–57). The low-risk score group

has higher infiltration of activated B cells, activated CD4+ T

cells, activated CD8+ T cells, and natural killer cells and thus a
A B

D E F

C

FIGURE 9

Enrichment analysis and cell mutation landscape. (A, B) GO and KEGG enrichment analyses. (C) GSEA functional enrichment analysis. (D, E) The
waterfall plot of 10 mutated genes in high- and low-risk groups (APC, TP53, TTN, KRAS, SYNE1, PIK3CA, MUC16, FAT4, RYR2, and DNAH5).
(F) The waterfall plot of PRG mutation frequencies in high- and low-risk groups. GO, Gene Ontology; GSEA, gene set enrichment analysis;
KEGG, Kyoto Encyclopedia of Genes and Genomes; PRG, pyroptosis-related gene.
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better clinical outcome. Thus, PRLs play a positive role in CRC

progression and may be a potential molecular biomarker for

predicting the efficacy of immunotherapy. Immune checkpoint

inhibition therapy can provide rapid and long-lasting treatment

for cancer patients, especially those with advanced metastatic

diseases, compared with conventional therapies. The TIDE score

could become a molecular biomarker to predict response to ICB

therapy. In our study, the high-risk group has a higher TIDE

score, which reinforces our hypothesis. Mismatch repair defect is

present in approximately 15% of all CRC patients, while patients

with MSI have upregulation of immune checkpoint proteins and

improved prognosis (58). Thus, patients with MSI-H have a

lower risk score and might be more inclined to respond to

immune checkpoint blockade.
Frontiers in Oncology 12
Finally, a diagnostic nomogram model has been constructed

with age, tumor stage, T, N, M, and risk score, which improves

the ability of PRLs and can be used to identify CRC patients with

poor prognoses. In our study, prognostic signature including

eight lncRNAs might serve as an independent predictor for

clinical outcomes of CRC. It is worth noting that the

performance of this signature is better than that of common

clinicopathological characteristics in predicting OS of CRC

patients, such as age and TNM. Our prognostic model has

exhibited satisfactory estimated performance; a patient who

has a higher risk score has a worse prognosis, and this was

proved in the validation cohorts. In the validation cohorts, the

average value of AUC exceeds 0.7. In addition to this, we

performed expression and prognosis analyses for each PRL
A

B

FIGURE 10

Distribution of stage and pan-cancer subtypes in low- and high-risk score subgroups. (A) The proportion of patients with different clinical stages
between low- and high-risk groups shown in heatmap and tables. (B) The proportion of patients with different pan-cancer immune subtypes
(C1, C2, C3, C4, C5, and C6) between low- and high-risk groups shown in heatmap and tables. C1, wound healing; C2, IFN-g dominant; C3,
inflammatory; C4, lymphocyte depleted; C5, immunologically quiet; C6, TGF-b dominant. The comparison analysis between the two risk groups
through the chi-square test.
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included in the prognostic model. By the result of immunity and

drug sensitivity analysis, we anticipate that this signature will

help to provide a better understanding of molecular mechanisms

underlying CRC pathogenesis as well as shed light on new ideas

of targeted therapy for CRC treatment.
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In summary, a newly pyroptosis-related long non-coding

RNA prognostic model has been constructed, which may

provide a better treatment strategy and clinical management

for CRC. However, some limitations need to be considered.

Firstly, only bioinformatic methods were used to conclude,
frontiersin.or
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FIGURE 11

Immune landscape shaped by PRLs. (A) Differences in expression of immunomodulators among two pyroptosis-related lncRNA subtypes. From left to
right: lncRNA expression; lncRNA expression versus methylation; amplification frequency and deletion frequency for 75 IM genes stratified by PRL
subtypes. (B) The ssGSEA score group is stratified by high- and low-risk scores. (C) The associations between naïve B cell-activated CD4+ T cells,
activated CD8+ T cells, eosinophils, and risk scores. (D) Heatmap of the associations between clinicopathological features, immune-related pathways,
and risk scores. (E) Different TIDE scores between high- and low-risk groups. (F) Different MSI statuses between high- and low-risk groups. (G) K-M
curves of patients in high- and low-TMB subgroups. (H) K-M curve for H-TMB with high-risk score group, H-TMB with low-risk score group, L-TMB
with high-risk score group, and L-TMB with low-risk score group. IMs, immunomodulators; ssGSEA, single sample gene set enrichment analysis; TIDE,
Tumor Immune Dysfunction and Exclusion; MSI, microsatellite instability; TMB, tumor mutational burden. * represents p < 0.05, ** represents p < 0.01,
*** represents p < 0.001, ns represents no significant.
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molecular mechanisms were not explored, and experimental

verification was not carried out. Secondly, the sample size should

be expanded to observe the differential expression of these

lncRNAs between normal and tumor tissues. In addition, the

effectiveness of this model in clinical practice is unclear. Thus,

we intend to investigate its application in the near future
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Conclusion

To sum up, a novel risk model has been constructed based

on eight PRLs (TEX41, LINC02798, CCDC144NL-AS1,

LINC02381, MNX1-AS1, FENDRR, NKILA, and Z99289.2).

This signature holds predictive value in CRC patients. A self-
A B
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FIGURE 12

Relationships between risk score and chemotherapeutic sensitivity. (A) The outline of the research strategy to explore tumor sensitivity to
chemotherapeutic drugs. (B) Four CTRP-derived compounds: correlation coefficient of Spearman’s correlation analysis and differential drug
response between high- and low-risk score groups. (C) Three PRISM-derived compounds: correlation coefficient of Spearman’s correlation
analysis and differential drug response between high- and low-risk score group. (D–L) The PRLs predict chemosensitivity to chemotherapeutics.
CTRP, Cancer Therapeutics Response Portal; PRISM, PRISM Repurposing dataset; IC50, half maximal inhibitory concentration; PRLs, pyroptosis-
related lncRNAs. *** represents p < 0.001, **** represents p < 0.0001.
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developed risk model may provide a new strategy for exploring

the pathogenesis of CRC. The eight lncRNAs are expected to

predict response to immunotherapy in CRC.
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