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Automatic segmentation of
nasopharyngeal carcinoma on
CT images using efficient UNet‐
2.5D ensemble with semi‐
supervised pretext task
pretraining

Jansen Keith L. Domoguen1*, Jen-Jen A. Manuel2,
Johanna Patricia A. Cañal2 and Prospero C. Naval Jr1

1Computer Vision and Machine Intelligence Group, Department of Computer Science, University of
the Philippines-Diliman, Quezon City, Philippines, 2Division of Radiation Oncology, Department of
Radiology, University of the Philippines-Philippine General Hospital, Manila, Philippines
Nasopharyngeal carcinoma (NPC) is primarily treated with radiation therapy.

Accurate delineation of target volumes and organs at risk is important.

However, manual delineation is time-consuming, variable, and subjective

depending on the experience of the radiation oncologist. This work explores

the use of deep learning methods to automate the segmentation of NPC

primary gross tumor volume (GTVp) in planning computer tomography (CT)

images. A total of sixty-three (63) patients diagnosed with NPCwere included in

this study. Although a number of studies applied have shown the effectiveness

of deep learning methods in medical imaging, their high performance has

mainly been due to the wide availability of data. In contrast, the data for NPC is

scarce and inaccessible. To tackle this problem, we propose two sequential

approaches. First we propose a much simpler architecture which follows the

UNet design but using 2D convolutional network for 3D segmentation. We find

that this specific architecture is much more effective in the segmentation of

GTV in NPC. We highlight its efficacy over other more popular and modern

architecture by achieving significantly higher performance. Moreover to further

improve performance, we trained the model using multi-scale dataset to

create an ensemble of models. However, the performance of the model is

ultimately dependent on the availability of labelled data. Hence building on top

of this proposed architecture, we employ the use of semi-supervised learning

by proposing the use of a combined pre-text tasks. Specifically we use the

combination of 3D rotation and 3D relative-patch location pre-texts tasks to

pretrain the feature extractor. We use an additional 50 CT images of healthy

patients which have no annotation or labels. By semi-supervised pretraining the

feature extractor can be frozen after pretraining which essentially makes it

much more efficient in terms of the number of parameters since only the

decoder is trained. Finally it is not only efficient in terms of parameters but also

data, which is shown when the pretrained model with only portion of the
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labelled training data was able to achieve very close performance to the model

trained with the full labelled data.
KEYWORDS

nasopharyngeal carcinoma, automatic volume segmentation, deep learning,
radiotherapy, semi-supervised learning, pretext tasks
1 Introduction

Nasopharyngeal carcinoma is rare among Caucasians but

one of the more common head and neck cancers found among

Asians and North Africans (1). Standard treatment involves

combination chemotherapy and radiotherapy. Surgery is

generally done as salvage after treatment inadequacies or

failures. Over the past few decades and with improved

digitalization, radiation therapy has become more and more

precise. This came about because of precision in both cross-

sectional diagnostic imaging (CT and MRI) and radiation

delivery. Precision is the key. In the process of radiotherapy,

one of the most critical steps is contouring of the tumor. After

all, if the target is incorrect or imprecise in any way, the

subsequent treatment planning and treatment delivery will be

incorrect and imprecise too.

With the advent of artificial intelligence, there is now

software available for auto-contouring. All commercially

available treatment planning systems contain software that can

auto-contour normal structures or organs. At the present, much

research is being done into auto-contouring the gross tumor

volume (GTV), many of them coming out of China. Since

nasopharyngeal carcinoma is considered endemic in China, it

is logical that resources are being poured into creating artificial

intelligence that can map nasopharyngeal tumors on CT scans

and MRIs.

There are at least 6 studies that have dealt with auto-

contouring of nasopharyngeal tumors using cross-sectional

imaging, both CT scan and MRI (2–6). Work by (2) was one

of the earliest works who applied deep learning methods on the

segmentation of NPC. They proposed a modified UNet

architecture where the downsampling and upsampling layers

have similar number of parameters to ensure that the output

resolution is exactly the same as the input. Moreover, their work

also analyzed the performance of deep neural networks across

different tumors stages as well as predicting gross nodal volumes.

They observed significant performance degradation as the tumor

stage increases and a much lower performance for gross nodal

volumes. In contrast to our work, we don’t distinguish tumor

stage for our performance analysis. Work by (3) proposed a

novel 3D convolutional network which uses cascaded multi-

scale local enhancement for convolutional networks. Specifically
02
they adopted the 3D Res-UNet as their backbone network and

employed a multi-scale dilated convolutional block to enhance

extracted receptive field and improve focus on the target tumor

especially its boundary. This is then integrated to a central

localization cascade model to concentrate on the gross tumor

volume for fine segmentation. The work by (4) is most similar to

ours as they also employed ensemble model based on multi-scale

sampling, however they employed a projection block and

attention block to improve the extracted representation. The

projection block is similar to the popular “SqueezeExcite” (7)

method used to improve the learned representation. However, in

this case they squeeze the feature maps across the three

dimensions which they later combined via summation

operation across the spatial dimension and finally a projection

to the depth dimension which recovers the original shape of the

feature map. The attention module is a spatial attention block

that focuses and refines extracted representation especially for

very small tumors which is common in NPC. Despite the

addition of more sophisticated blocks, we find their method

under performs compared to purely using the UNet-2.5D which

uses much fewer learning parameters. Although the work by (6)

used magnetic resonance images in contrast to CT scans, they

demonstrated that by combining the T1-weighted (T1W) and

T2-weighted (T2W) MRI images of each patient provides

significant performance boost. These two sequences were

combined by their proposed dense connectivity embedding,

which essentially fuses the feature maps of each modes across

the layers in the encoder. Furthermore, a convolutional block is

introduced to process the fused embedding which will then act

as a skip connections to their corresponding decoder block in a

UNet architecture. While MRI would instinctively be the better

imaging modality to become the basis for auto-contouring, MRI

is not always readily available in all countries, especially

developing countries.

The use of deep learning in medical imaging has become a

popular alternative for practitioners to automatically generate

accurate target delineation. Furthermore, it does not only resolve

the time-consuming and tedious task of manual contouring but

can also alleviate the problem of inter-observer variability by

generating more robust predictions since it learns from different

sources. This problem occurs when radiation oncologists

disagree on the delineated gross tumor volume brought by the
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inherent subjectivity of the annotation process itself. This

depends on variety of factors notably years of experience of

the practitioner. However, though deep learning models have the

potential to generate significant benefits in the medical imaging

field, it is also a poor field to apply these methods to. This is

because data in this field are notoriously difficult and expensive

to collect. And when this is coupled with the fact that deep

learning models are only as good as the quantity and quality of

the data you have, then the objective is to not only generate

accurate models but also models that can perform well when

there are few data. To this end, we employ self-supervised

learning (SSL). SSL method has become the mainstream

approach in mitigating problems regarding data scarcity when

utilizing deep learning in the medical setting. It is able to

leverage unannotated scans by using a predefined pre-text

tasks (self-supervision task) which is used to train a feature-

extractor or the encoder network. Ideally, this pre-text task

should be able to help the encoder network or the feature

extractor learn features and representations such as the generic

structure, texture, and other salient features that can be re-used

during the downstream task or the actual target task which is in

our case the segmentation of GTV in NPC. Hence it will require

much fewer annotated data during the downstream task making

it data efficient. For our work, we used an equal number of

unannotated and annotated NPC CT scans. In contrast with

other works which used single pre-text task during SSL

pretraining we used multiple pre-text tasks to pre-train our

encoder network. Specifically we use a combination of relative-

positional location (RPL) and rotation methods to pre-train our

encoder network. This encoder network can then be frozen and

attached to a decoder network used for the segmentation task.

The goal is that by employing SSL pretraining, the feature

extractor will be in a much better starting position to easily

learn the diverse morphologies and sizes of the gross tumor

volume even with much fewer data.

Self-supervised learning in medical images (8–14) is usually

an extension of the self-supervised techniques used in 2D natural

images. The seminal work by (15) proposed different pretext tasks

for 3D medical image that were originally based on 2D images.

Multiple pretext tasks specialized for 3D medical images are

proposed such as: contrastive predictive coding, rotation

prediction, jigsaw puzzles, relative patch location, and exemplar

methods. The predictive coding pretext task first divides an input

3D cube into smaller cubes which are individually encoded by the

network. Given a set of consecutive encoded cubes, the network

must find and choose the next consecutive cube out of a set

potential cubes based on their encoding. Hence, in order to

accomplish this task, the network must be forced to learn the

specific fine-grain morphology and structure of the volume in

order to correctly predict the next adjacent cube. And because this

uses contrastive learning (16), the encoding or representation of

adjacent cubes are much closer than cubes that are farther away.

This conforms with the actual input volume where adjacent
Frontiers in Oncology 03
volumes have very similar features. The important consideration

here is that the network was able to learn and distinguish the

feature, structure and morphology of the volume even without

labels by doing this pretext task. This is essentially the same case

with all pretext tasks, for rotation it randomly rotates the volume

from a predefined class of orientation, then the network must

predict the specific orientation but in order to correctly predict the

orientation it must understand the structure of the volume. For

relative-patch location, it randomly crops an input volume then

divides the volume further into 27 non-overlapping cubes. It then

uses the central cube to predict the location of a cube randomly

queried which has a total of 26 possible locations or classes. In our

work we employ the relative patch location and rotation pre-text

tasks for our proposed SSL since they are much simpler and were

able to produce significantly higher performance over the other

pretext tasks. More recent work by (17) proposed a spatially

guided self-supervised clustering network (SGSCN) for

downstream medical image segmentation. They proposed using

multiple loss functions to train a network in an end-to-end

manner in order to group image pixels that are spatially

connected and thus have similar representations. In addition, a

context-based consistency loss is used to better learn the

boundaries and shape of the target volume. Finally work by (18)

proposed the use of auxiliary tasks for task-level consistency as an

SSL approach. Specifically two auxiliary tasks are used where one

task is responsible for foreground-background reconstruction

aimed for in-formation segmentation while the other task

employs a mean-teacher architecture to perform signed distance

field (SDF) prediction to enforce shape constraints. All these SSL

methods were proposed mainly to address the limited availability

of labeled data while exploiting abundance of unlabeled data.

Similar to ours we propose an SSL approach that uses a

combination of pretext tasks to help a feature extractor learn

representations from unlabeled dataset that are highly relevant to

its downstream segmentation task.

Filipino oncologists have always been aware of the high

number of cases of nasopharyngeal carcinoma in the Philippines

based on their individual experiences in their own clinics and

hospitals. The true number cannot be verified because of the

absence of a government-run nationwide cancer registry.

Because of the number of patients with nasopharyngeal

carcinoma at our institution and the consequent volume of

imaging data, we felt that it would be a good venue for the

creation of auto-segmentation/auto-contouring software for

radiation oncology use. Moreover, since modern deep learning

methods are notoriously hungry for labelled data, we introduce a

self-supervised method to compliment the development and

training of our proposed deep learning method. This will

mitigate overfitting introduced due to very few labelled data

thereby improving performance as well as allows it to exploit

unlabeled data which are often much more abundant than

labelled data. This cuts costs in terms of the resources and

time required to label more data to improve model performance.
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Collaboration between researchers from the Department of

Computer Science of the College of Engineering and the

Division of Radiation Oncology of the Department of

Radiology of the UP-Philippine General Hospital resulted in

this study that set out to create a software that could accurately

contour nasopharyngeal tumors on appropriately acquired CT

scan images.
2 Methods

2.1 Network architecture

The primary network architecture used in this work is the

UNet-2.5D (4) network based on the UNet3D (19). This is

shown in Figure 1 where the main difference compared with

UNet-3D lies in the 2D convolutional block that UNet-2.5D

uses. Following (19) our architecture consists of nine

convolutional blocks where each block consists of two

convolutional layers interleaved with Batch Normalization (20)

and RELU non-linearity (21).

The difference between UNet-3D and UNet-2.5D is the

dimension of the convolutional layer. UNet-3D uses 3D

convolutional layer across its block whereas UNet-2.5D utilizes

2D except for the center or bottleneck block which uses 3D

convolution. In general, the performance of a model is better

with higher number of parameters and convolutions. However,

this is not the case as we will show in our results. The simpler

and lighter UNet-2.5D network – in terms of number of

parameters and operations – significantly outperforms the

UNet-3D network. This is because heavier networks such as
Frontiers in Oncology 04
UNet-3D require more data as there are more parameters

to train.

In a setting where limited data are available such as our case

(i.e., NPC CT images), the parameters will easily overfit the

training data making the model unable to generalize its

prediction to test data.
2.2 Multi-scale training

In general, training time is proportional to the size of the

data fed to the model before it converges. In our case, the GTV in

NPC is smaller relative to the entire patient’s body. Hence

instead of feeding the entire volume as input to the model, we

cropped the input volume along the x, y, and z directions as

suggested by (4) using multiple scales encompassing the GTV.

Five scales are extracted to generate five datasets. These are

extra-small, small, medium, large, and extra-large. The smallest

scale is randomly cropped across x, y, and z direction to extract a

volume that contains the smallest spatial resolution and depth.

By extracting the smallest volume, we ensure that we extract only

the local information of the structure and feature of that given

volume. The largest scale, on the other hand, captures almost the

entire volume with the information extracted mostly globally.

The crop-size used to extract the data for each scale

decreases in a fixed percentage as the scale decreases from

extra-large to extra-small. Along the z direction, the length

(number of slices) of the original input volume is cropped

beginning at 90% with constant decrement of 10% as the scale

decreases. For the x, y dimension, the patch for the large-scale

starts at 100% of the resolution (i.e., 512 x 512 pixels) then cuts
FIGURE 1

The main deep neural network architecture used in our work. It follows the same UNet architecture but with the main use of 3x3x1
convolutions instead of 3x3x3 convolutions employed for 3D volume segmentation. We highlight its effectiveness when used in data-scarce
setting as it is less likely to overfit.
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with decrement of 15% as the scale decreases. This can be seen in

Figure 2. Each of the five datasets generated is then used to train

a corresponding model.

During testing, the outputs of the five trained models given

the same input are aggregated to produce a single result.

Empirically, this produces a much more robust result

compared to simply using a single model because each model

is specialized to a certain scale. Since the features of NPC varies

widely in terms of size and shape, models trained using the

small-scale and large-scale datasets perform better in detecting

tumors that are small and large, respectively.

The rationale behind using multi-scale training is

specializing each model to a certain feature or context of the

volume. As it will be shown, this approach achieves significantly

superior results compared to training a single model.
2.3 Ensemble of models

Five models were trained using the five scaled dataset

obtained via multi-scale cropping: extra-small, small, medium,

large, extra-large. During the evaluation/testing stage, we used a

fixed and uncropped raw CT input scans to evaluate the

performance of each of the five models. Each of the models

was to make a separate prediction in the form of probability

maps. To create a model ensemble, the probability maps from all

the five models for a specific input are averaged to produce a

single probability map. This will be used to create the final

segmentation mask.

Using this model ensemble approach produces a more

robust prediction. Moreover, model ensembles also boost

model performance compared to using a single model. This is

due to having richer and more diverse predictions from each

model that is specialized to a specific scale. The drawback of this

approach, however is the higher computer and memory
Frontiers in Oncology 05
requirements. To mitigate this, the UNet-2.5D is used since it

only uses a single 3D convolution with 2D convolution for the

rest of the layers. This architecture is much more lightweight and

less computationally intensive than 3D convolutions
2.4 Semi-supervised pretraining

2.4.1 Pretext tasks for self-supervised learning
The main pretext tasks used in this work are shown in

Figure 3 which were introduced by (15), these are relative patch

location and rotation pretext tasks. The rotation pre-text task

shown in Figure 3B, is one of the simplest pretext tasks and

therefore can easily be implemented in any setting. The goal of

the rotation pretext task is to simply predict the angle of rotation

for an input data that was rotated for a specific angle. We fix the

possible angles of rotation to 0°, 90°, 180°and 270°. Since there

are three axis of rotations, there will be a total of 10 possible

angles (since 0°is redundant for the three axis) for an 3D input

image. Hence this pretext task is essentially a multi-class (10

classes) classification task where each class consists of a

particular rotation angle for a specific axis. The goal is by

predicting the 3D rotation of each volume, the encoder

network will be forced to learn the structure of the volume

and hence relevant features that can be re-used when making

downstream segmentation tasks. However due to its simplicity,

the features learned at convergence of the rotation pretext task

may not be enough in providing the necessary features for the

downstream segmentation task.

To mitigate this insufficiency, we combine the relative patch

location (RPL) pretext task shown in Figure 3A, which consists

of predicting the location of a query patch relative to a fixed

anchor patch. This self-supervision task enables the model to

learn a much richer structural and finer grained information

within the data. This is crucial for 3D segmentation task since it
FIGURE 2

An input CT scan showing three different scales of the same scan: small, middle, large. Five scales were generated to create the multi-scale
training data.
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needs to understand the structure and spatial features of the

input to correctly predict each voxels. Discretely, the RPL pretext

task is implemented by dividing a 3D input image into a 3×3×3

grid to create a total of 27 non-overlapping patches {xi∈{1,…,N}}.

The central patch xcwill be used as the fixed anchor patch and a

query patch xqwill be randomly sampled from the remaining set

of patches {{yn}. The pretext task trains an encoder model to

learn the location of the query patch with respect to the central

patch by predicting a location yˆq. Since there are total of 26

patches (central patch is excluded), the encoder will be trained

using a multi-class (26 classes) classification similar to the

rotation pretext task. In this case it is predicting the class

location instead of the angle of rotation. However, it is

different in that it needs to fuse both the query and anchor

patch together and make the location prediction based on this

fused information. This is further shown in the following

equation:

LRPL = −o
K

k=1

log p(yqjŷ q, ynf g) (1)

where yqcorresponds to the groundtruth location of

the patch.

2.4.2 Combining pretext tasks for richer
representation

We combined the two pretext tasks shown above in order to

force the encoder to learn a synergy in the feature representation

that is extracted from each image. This is because the encoder

needs to learn how to combine, segregate and choose the

representations that are most relevant for the two tasks. And

since each pretext task have varying objective, the representation

should be compact and sufficient for the two tasks. Moreover, by
Frontiers in Oncology 06
using two pretext tasks simultaneously, the encoder will need to

learn rich and diverse representations that will be much more

useful for the downstream task. Since this is purely self-

supervised, training our encoder network is much more data

and parameter efficient. This is because it can leverage the use of

unlabeled CT scans while using lighter network. The schematic

of our SSL approach is shown in Figure 4 where each image is fed

to two pre-processing blocks before being fed simultaneously to

the encoder network. The overall loss function therefore is

shown below:

L = aLRPL + (1 − a)LRot (2)

where a is the weighting factor to balance and control the

contribution of each pretext task.

2.4.3 Efficient model ensemble
Although model ensemble have been very effective in

improving the performance and robustness of the model by

relying on independent weak learners in traditional machine

learning, it is usually impractical to use it directly in deep

learning. As was discussed above, to create the model ensemble,

five models are trained on five different scales of the dataset which

generates five trained models. This can be computationally

prohibitive especially in very deep network which can be more

expensive than the performance boost it provides. Our proposed

SSL approach can help mitigate this since we can essentially freeze

and re-use the encoder network that was pretrained during the

SSL. We can have essentially a single unified encoder network

while only training or finetuning the decoder of each model in the

ensemble. A diagram of this approach is shown in Figure 5. This

makes our method much more parameter efficient during both

training and inference.
A

B

FIGURE 3

(A) Relative patch location is a pretext task used to pretrain the feature extractor. In practice, the task is a multi-class classification which
predicts the location of a query patch. (B) Rotation pretext task is also casted as a multi-class classification but with rotations as the class.
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3 Materials and methods

3.1 Clinical material

At the outset, it was decided that we would attempt to create

an auto-segmentation or auto-contouring program using

nasopharyngeal tumors. With nasopharyngeal tumors, the

tumors are confined to a single anatomic space and, there is

no need to account for movement, swallowing and breathing.

Additionally, nasopharyngeal cancers are relatively common in

the Philippines, making this work impactful.

A review of census of nasopharyngeal cancer patients at the

Division of Radiation Oncology was done, covering May 2017—

when operations of the linear accelerator started — until

February 2020 — just before the start of the COVID

lockdown. A total of 79 patient records were retrieved.

Patients who were less than 18 years of age and had non-

carcinoma tumors, i.e. lymphomas, sarcomas, were excluded

from consideration. The images of the remaining 63 patients —

44 males and 19 females ranging in age from 18 to 73 and

covering all tumor stages — were used in this paper. Individual

patient consent was waived because of the use of just the images

and the retrospective nature of this study. A total of 50 healthy

patients were also collected to be used for the semi-supervised

pretraining of the encoder network.

Shown in Table 1 are the baseline characteristics of the 63

NPC patients included in this study. Fifty-three (53) of these

patients were randomly selected to be used in the training and

validation of our models. The remaining ten (10) patients were

utilized during testing. Majority of patients included in the study

were male. More than half of patients had T4 disease based on

the American Joint Committee on Cancer (AJCC) Cancer

Staging Manual Eight edition for nasopharyngeal carcinoma.
Frontiers in Oncology 07
Simulation computed tomography (CT) images with

contrast were acquired using a SOMATOM Emotion 16

(Siemens Healthineers). All patients were positioned in supine

and immobilized using a head, neck, and shoulder thermoplastic

mask. Scanning range was from vertex to carina. Obtained CT

images were reconstructed using a matrix of 512 × 512 with

thickness of 3.0 mm. Delineation of the primary gross tumor

volume on CT images was then performed by an experienced

radiation oncologist. The contoured images — all in DICOM

format — were anonymized before being subjected to computer

“training.” Ten (10) image sets were randomly chosen and used

initially for testing. The remaining fifty-three (53) image sets

were used in the training and validation of the software model.

For training to commence on these images, these had to be in a

suitable format to be processed by the proposed deep learning

model. The array volumes (3D tensor) were extracted from the

DICOM files, ensuring isotropic resolution. A uniform

resolution of 1.0 ×1.0×3.0mm3 was enforced. The Hounsfield

Units (HU) of all images (originally ranging from -1024 to 3071)

were truncated and normalized to [-150, 500]. All values above

and below this range were set to zero.
3.2 Data preprocessing and
augmentation

3.2.1 Data preprocessing
The actual raw data that is frequently used by radiation

oncologists are in a DICOM (22) format and while it is

extremely useful in their specialized software tools, it cannot

be directly processed by our deep learning model. It needs to be

cleaned and transformed to a suitable format for training and

inference. The first step is the extraction of the array volume (3D
FIGURE 4

Proposed combination of semi-supervised learning pre-text tasks.
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tensor) from the DICOM files and ensuring an isotropic

resolution. Although the thickness of each patient’s CT scan

are all 3.0 mm, the x,y pixel spacing range varies from patients to

patient. We therefore enforce a uniform resolution of 1.0

×1.0×3.0mm3 for the x, y, z spacing by uniform interpolation.

Afterwards, since the raw array values of the DICOM files are in

Hounsfield unit which ranges between -1024 and 3071 HU for

each voxel, we truncate and normalize their values. We find that

for body and NPC, they have a distinct distribution of

Hounsfield values. We therefore truncated the Hounsfield

values to [-150,500] where outside these range are all

automatically set to zero. This are then finally normalized

to [0,1].
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3.2.2 Data augmentation
Since we have very little training data, there is a high chance

that the model may overfit hence we employ different data

augmentation techniques that can increase data samples and

thus improve model performance. We employ the most effective

data augmentation techniques: rotation, flipping, cropping and

transposing which are randomly applied across the x,y,z

dimension for each batch size iteration during training.

Flipping is also especially important as observed by (23),

which highlighted that it improves the model’s robustness on

different tumor shapes and which is especially important for our

use case because NPC has many different shapes.
3.3 Evaluation metrics

There are a total of eight evaluation metrics used in the

experiment, the primary performance evaluation metric and

most commonly used ones are the Dice-Similarity Coefficient

(DSC) and Intersection-OverUnion (IOU) metrics. Both metrics

measure the same overlap between the groundtruth and the

predicted mask and have a range between 0 and 1 where 0 means

totally no overlap and 1 means perfect overlap. Though it may be

tempting to view both metrics functionally equivalent, their

distinction arises when taking their average values across set of

samples. Specifically, IOU score penalizes wrong predictions

much more than DSC. Thus IOU score can be thought of as

measuring the lower bound of the model performance while the
FIGURE 5

Architecture of model ensemble with a single encoder network while finetuning three decoder networks. Note that the encoder is frozen and
thus will not be affected during finetuning.
TABLE 1 Demographic characteristics of the NPC patients included
in the study.

Characteristics Total number of patients
n = 63

Median age (range) 45 (18 – 73)

Sex

Male 44

Female 19

T classification

T1 6

T2 10

T3 14

T4 33
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DSC measures the average model performance across the test

data. We can expect therefore that IOU usually outputs a

significantly lower score compared to DSC. This is highlighted

later in the section.

The two other metrics are grouped under the distance metric

which measures the distance between two sets that contain point

coordinates from both the groundtruth and points predicted by

the segmentation model. These metrics are the Average

Symmetric Surface Distance (ASSD) and the Hausdorff

Distance. The ASSD determines the average difference (24)

between the surface of the predicted and groundtruth volumes.

The surface points from both the prediction and groundtruth

surfaces are sampled from a set of points that are not part of a

predefined neighborhood. These points can be thought of as the

outlier or the gap with respect to the groundtruth surface. The

closest distance of each of these outlier points are then taken

against the points in the other surface. The average distance of

these points will be the ASSD which will be in a mm unit. ASSD

score will be 0mm for perfect segmentation, with increasing

score corresponding to worsening performance of the model.

The Hausdorff Distance is similar to the ASSD except that it does

not measure the average distance between outliers of two

surfaces, but rather measures the maximum distance of

randomly samples points from the two volumes to create two

sets. The Hausdorff Distance is then the maximum distance from

a point in one set to the closest point in the other set. Again the

lower the distance, the closer the points between the groundtruth

and predicted volumes are.

The final four metrics are: sensitivity, relative volume error,

and positive predictive value (PPV). These are the most

commonly used metrics for medical image segmentation in

deep learning. The sensitivity, also referred to as true positive

rate quantifies the model’s ability to correctly detect the voxels

that is indeed an NPC or tumor. It measures the proportion of

voxels in the volume that are truly tumors and are correctly

detected by the model. Finally the PPV is simply the ratio of

voxels that were correctly identified as tumors to the voxels that

were identified to be tumors. Or essentially it is the probability

that the voxels that were predicted as tumors are indeed tumors.
3.4 Post-processing

Post-processing involves the aggregation of the individual

model prediction in the ensemble and a heuristic-based post-

processing to further refine the prediction. It has been observed

that the aggregated output from the model ensemble still have

some residual volumes that are sparsely distributed and are not

attached from the largest volume prediction. Since it is assumed

that we are only predicting the primary tumor volume, the final

prediction should only have a single large solid volume. Hence

we first perform a series of morphological operation (i.e., erosion

and dilation) to remove the edges in the volume. Afterwards, for
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each 2D-slice of the volume, a contour search is applied to get

only the largest 2D contiguous mask and removing the

remaining 2D contours. This operation is applied across all

the slice in a volume essentially taking only the largest connected

region as the final volume prediction.
3.5 K-fold cross validation and
implementation details

Since there are a total of 63 patients, we performed 7-fold

cross-validation where 54 patients are used for training and

validation and the remaining 9 patients will be used for

evaluation for the final model. The final performance is

averaged across the seven folds. During the training run,

training validation data for each fold is split 80/20 respectively,

where the validation is used to tune the hyperparameters. After

finding the optimal hyperparameters, the training and validation

data are combined to generate a final model which will be

evaluated on the test dataset.

All the experiments were implemented using the Pytorch

deep learning framework using NVIDIA RTX 2080Ti Graphical

Processing Unit (GPU) 11GB. The ADAM (25) optimizer was

employed to train our deep learning network using an initial

learning rate of 1 × 10−3 and with a decay factor of 1 × 10−4 for

every 150 epochs. The whole training-validation run takes a total

of 900 epochs using 32 batchsize for each iteration. Moreover,

random cropping is done where volume of patches is randomly

extracted from each patient volume and fed to the network. This

approach mitigates the memory constraint in the GPU and

speeds up loss convergence. This is applied for the whole five-

scaled dataset to generate five pretrained models for inference

and testing.
4 Results and discussion

4.1 Method comparison

We evaluate first our proposed approach(UNet-2.5D)

against different architectures commonly employed for medical

image segmentation. The other architectures tested are UNet-

3D, VNet and the UNet + Project Excite(PE) + Attention

Module(AM) by (4) proposed specifically for the segmentation

of GTV in NPC. We show that with the simpler UNet-2.5D

architecture, it significantly outperforms the generic UNet

architectures as well as the network proposed by (4).

Moreover, we compare our method on popular architectures

that has gained state-of-the-art performance on multiple

benchmark dataset. One is the Generic Autodidactic Models or

Genesis model proposed by (26). The Genesis model aims to

provide a generic source model that can be transferred on

different application-specific target task. It achieved broad
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performance improvement over different medical segmentation

benchmark dataset from chest to brain data. In our case we use

their pretrained UGenesis model trained on chest CT as our base

model then finetune it to our dataset. Another very popular

method that achieved multiple SOTA results is the no-new-Unet

or nnUNet by (27). They have shown that for a fully optimized

network, “architectural tweaking” provides no improvement in

the segmentation performance, and the influence of non-

architectural aspects in segmentation methods is much more

impactful. nnUNet offers an end-to-end automated pipeline that

is adaptable to any medical dataset. It has an automated pipeline

for preprocessing, data augmentation, and post-processing. It can

also automatically infer important hyperparameters such as

normalization, resampling and batchsize optimized for the

given dataset. For our case, we employ the nnUNet for all the

three available architecture types: 2D, Fully 3D and Low

Resolution 3D. We use the same seven-fold cross validation for

all the evaluation runs.

Except for nnUNet, all the different segmentation methods

made use of themedium-scale preprocessed data as their training

set. This is because data preprocessing from raw data is part of

nnUNet’s automated pipeline.

The quantitative results for DSC, IOU, PPV and RVE are

shown in Table 2. These values are the average value (and

standard deviation) from the seven fold cross-validation

discussed above. Results show that UNet-2.5D network

generally outperforms the other methods except in PPV. Since

the bulk of the convolutional blocks used in our network is 2D

convolutions, this may suggest that for the segmentation of gross

tumor volume in NPC, the across-slice or depth-wise

information does not really improve the performance. This

also means that the 2D spatial information is more than

enough to achieve high predictive performance. Moreover, it

seems adding 3D information in predicting each voxel may

actually hurt the segmentation performance as shown in VNet

and UNet-3D architectures. This may be due to the structural

characteristics of the NPC tumor itself, which has a random and

irregular tumor structure. Aside from not adding any

performance benefits, the added parameters using 3D
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convolution will only hurt performance because of overfitting.

This makes the proposed approach not only much more

powerful in segmenting NPC tumors but more efficient as it

mostly uses 2D convolution with a single 3D convolution at the

bottleneck region of the network.

Although the method proposed by (4) was able to achieve

the highest PPV in Table 2, the addition of Projection-Excitation

and Attention-Module blocks did not significantly achieve high

performance on the other metrics.

Our method was also compared on other nnUNet and

UGenesis family which were all outperformed by our method.

The nnUNet “3D low resolution” variant was able to achieve the

highest DSC score but generally under performed in relative to

even the generic networks. UGenesis with the use of a pretrained

model significantly underperformed across all the metrics. This

is probably due to overfitting as the number of parameters and

network architecture of UGenesis is much deeper.

Results for ASSD, Hausdorff distance and sensitivity for the

different architectures are shown in Table 3. Compared to Table 2,

our method was only able to decisively outperform other methods

in the sensitivity metric. The highest performance for the ASSD

and Hausdorff metrics were achieved generally by the nnUNet

family although our method is still relatively competitive

especially in ASSD metric where our method is statistically

equal when taking into account their standard deviation.
4.2 Ensemble results

As discussed above in order to create a more robust, less

data-scale dependent model as well as to boost performance, we

generated five versions of the training dataset with different

scales and generated five models to create an ensemble of model.

We used our proposed architecture for the architecture of all the

five models which we have established to be superior on majority

of metrics in Tables 2, 3. These five models constituted the

model ensemble. The performance of each model in the

ensemble is shown in Table 4. As shown, models have

different performance across different data scale. Notably the
TABLE 2 Comparative result of different deep neural network architectures for DSC, IOU, PPV and RVE.

Method DSC (%) ↑ IOU (%) ↑ PPV (%) ↑ RVE (%) ↓

UNet-3D 66.01 ± 5.29 43.54 ± 3.49 86.03 ± 6.89 55.14 ± 4.42

VNet 64.25 ± 7.06 46.74 ± 5.13 70.23 ± 7.71 59.55 ± 0.86

UNet-2.5D+PE +AM 67.54 ± 2.16 51.15 ± 1.63 90.32 ± 2.87 38.21 ± 1.22

UGenesis 58.30 ± 7.31 41.68 ± 5.22 83.35 ± 10.44 45.24 ± 5.67

nnUNet-2D 63.14 ± 5.52 52.68 ± 4.61 63.69 ± 5.57 12.57 ± 1.10

nnUNet-3D Full 65.50 ± 8.43 54.65 ± 7.03 66.01 ± 8.50 13.05 ± 1.68

nnUNet-3D Low Res. 66.22 ± 7.94 55.25 ± 6.63 66.80 ± 8.01 13.19 ± 1.58

UNet-2.5D (Ours) 72.47 ± 4.10 60.46 ± 3.42 73.09 ± 4.14 14.43 ± 0.82
f

↑ means that higher means better while ↓ symbol means lower is better.
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model trained with medium-scale outperformed the rest of the

models including the aggregated ensemble performance for

the DSC and RVE metrics, while the model trained on extra-

small scale data achieved the best performance for the IOU

metric. This means that some data scales offer the optimal

information for different metrics, such as tumor’s structure,

topology and texture which are more likely to be emphasized

in a specific data scale. The optimal inference therefore can be

obtained by averaging and combining the predictions of the five

models. In a way by coming the predictions, the voxel tumor that

were missed by one model because it was trained on small scale

dataset may be found by model trained on the large-scale

dataset. This is very useful especially in the case of NPC

segmentation where the GTV have diverse morphology and

sizes. This mimics a kind of majority voting for a specific voxel

across the models which makes it much more robust. This also

offers a kind of confidence for the model prediction.

Furthermore, this allows us to measure uncertainty of

model prediction.

We also evaluated the performance of each model in the

ensemble for ASSD, Hausdorff distance and sensitivity. The

highest performance for ASSD and Hausdorff metrics where

conclusively achieved by the ensemble-model. This makes sense

since most of the uncertainty and difference in segmentation

occurs around the boundary of the GTV. By using the prediction

of the ensemble model, the boundary predictions have more

confidence (when majority of models predict that a boundary

voxel is a GTV) and false positive predictions are removed

(when only a single model predicts that a voxel is a GTV).

Although the ensemble model was not able to achieve the best

performance for the sensitivity it is still relatively close

and competitive.
4.3 Semi-supervised learning
pretraining results

As mentioned in the discussion above, we used a semi-

supervised learning method through the combined Rotation
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+RPL pretext tasks training to generate an encoder block that

can extract sufficient representation even with few data.

Moreover as the encoder block is assumed to be capable to

extract sufficient representation for segmentation performance

we can therefore freeze the encoder block during finetuning for

the GTV segmentation. This effectively means that we will only

finetune and train the decoder block which is very efficient

especially when employing multi-scale training for model

ensemble. This is quantitatively shown in the number of

network parameters that needs to be trained when using a full

model compared when the encoder is frozen, as shown

in Table 5.

The number of parameters for the full UNet-2.5D network is

more than 4x the number of parameters compared to when the

encoder is frozen which makes sense since the encoder or feature

extractor is the backbone network. This efficiency is further

increased when doing a full ensemble model as we do not need to

create separate encoders across different models trained on

different data scale since we can re-use the frozen encoder.

Since the power of a network depends directly on the number of

parameters that it can use to model the data, performance will

naturally degrade if you use fewer parameters however since the

encoder was pre-trained, the knowledge it gained during the

pretext task is very useful and transferable during

the segmentation of GTV and there might no significant

performance degradation. In our case, we observed minimal

performance degradation compared to the performance shown

in Tables 4, 6, which we performed the same exact evaluation.

These results are shown in Tables 7, 8. For Table 7, there is very

small performance degradation in the model ensemble

performance for DSC and RVE metrics. In fact for the IOU

and PPV metric, the model ensemble performance with the SSL-

trained encoder achieves higher performance albeit slight

increase. Hence this method is not only much more parameter

efficient but is actually on par with the performance of a

full model.

The model ensemble performance of the SSL-trained

encoder in the distance metrics shown in Table 8 shows a

relatively steeper performance degradation. For the ASSD and
TABLE 3 Comparative results using distance metric as another measure between predicted and groundtruth contours.

Method ASSD (mm) ↓ Hausdorff (mm) ↓ Sensitivity (%) ↑

UNet-3D 7.55 ± 0.61 27.83 ± 2.23 59.56 ± 4.77

VNet 7.84 ± 0.86 33.28 ± 3.65 50.61 ± 5.45

UNet-2.5D+PE +AM 5.42 ± 0.17 25.52 ± 0.81 55.87 ± 1.78

UGenesis 6.15 ± 0.77 25.61 ± 3.21 49.86 ± 6.25

nnUNet-2D 3.31 ± 0.28 14.58 ± 1.27 63.91 ± 5.59

nnUNet-3D Full 3.43 ± 0.44 15.12 ± 1.95 66.29 ± 8.83

nnUNet-3D Low Res. 3.47 ± 0.42 15.29 ± 1.83 67.03 ± 8.04

UNet-2.5D (Ours) 3.79 ± 0.21 16.73 ± 0.94 73.35 ± 4.15%
↑ means that higher means better while ↓ symbol means lower is better.
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Hausdorff metrics, the full model previously achieved 4.22mm

and 15.73mm respectively while the SSL-trained encoder

degraded to 6.49mm and 16.22mm. However in the sensitivity

metric, SSL-trained encoder outperformed the sensitivity value

achieved in the previous model-ensemble, 72.65% vs. 71.43%.

Aside from parameter efficiency, a more important benefits

that the SSL-trained encoder can provide is data efficiency. More

specifically labelled data efficiency which means that a model can

achieve a specific level of performance with only a fraction or

portion of the data. This has a greater practical advantage both to

the doctors and annotators. They can save much more time and

effort in generating, collecting and actually annotating data if the

model requires much fewer data to achieve a specific baseline

performance. We test to see the effectiveness of using SSL-

trained encoder in achieving data efficiency. To see this we use

different portions of the labelled data for training and evaluate

their DSC. Moreover we compare the performance of the SSL-

trained encoder to the full model to essentially see whether the

use of SSL-trained model is indeed data efficient. The

quantitative results for this experiment are shown in Table 9

which shows that an SSL-trained network with frozen encoder

significantly outperforms the full model especially with very

limited number of data as highlighted when the portion of

labelled data is 10% and 30%, the SSL-trained frozen encoder

was able to outperform the full model by 38.64% and 31.08%

higher performance respectively. This shrinks as the number of

data increases which is later outperformed by the full model

when the full dataset is available. Again, the full model is using

more than 4x the number of parameters compared to the SSL-

trained network with frozen encoder. This effectively highlights

the usefulness of using SSL-trained frozen encoder.
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5 Conclusion and recommendations

Nasopharyngeal carcinoma, a cancer common in Asia and

Africa, is currently treated with a combination of chemotherapy

and radiotherapy. To achieve precise radiation treatments,

accurate target delineation is critical but not always easy,

especially in the head and neck area where not only the gross

tumor volume requires delineation and contouring, but also the

lymph node drainage areas and the numerous organs at risk.

Target delineation on CT scan images takes time, knowledge and

experience. Automatic segmentation can make this task more

objective and efficient.

The use of deep learning is a continuously progressing

direction in advancing modern medical imaging. This work

hopes to be an addition in advancing this goal. Although data

scarcity has always been an issue especially in the medical field,

we have been able to design and create a deep learning model

that is able to perform automatic contouring of gross tumor

volume of nasopharyngeal cancer (NPC).

Compared with other architectures, our proposed method is

able to significantly outperform other architectures in

segmenting NPC. Furthermore, our method is much more

efficient as it uses only 2D convolution compared to 3D

convolutions used by other architectures.

This highlights that in NPC, 2D convolution is enough and

may suggest that across slice information does not only improve

performance but degrades it. This may be a result of NPC’s

structure and topology, in that it forms no regular pattern in its

structure but are random and irregular. Hence, the across-slice

information adds little information to the model during training.

Moreover, we also leverage a multi-scale training data using

five different scales. This allowed us to generate an ensemble of

models that is more robust than the individual model. More

importantly we have employed the use of semi-supervised

learning through the combined rotation and relative-patch-

location pre-text tasks to pretrain and freeze an encoder

network. This made it 4 times more efficient in terms of the

number of parameters required as well as very data efficient. We

have shown that even with a portion of labelled data we are able
TABLE 5 UNet-2.5D parameter comparison.

Network setting Number of parameters

Full Model 3,845,058

Decoder Only (Frozen Encoder) 895,122
TABLE 4 Model ensemble performance for DSC, IOU, PPV and RVE, where each data scale corresponds to a separate and unique model trained
on that specific data scale.

Model ensemble performance

Data-scale DSC (%) ↑ IOU (%) ↑ PPV (%) ↑ RVE (%) ↓

Extra-Small 69.85 ± 4.06 61.23 ± 3.56 74.18 ± 4.31 16.56 ± 0.96

Small 72.13 ± 3.20 58.93 ± 2.62 76.32 ± 3.39 15.15 ± 0.67

Medium 72.47 ± 4.10 60.46 ± 3.42 73.01 ± 4.14 14.44 ± 0.82

Large 71.06 ± 3.31 58.12 ± 2.71 67.86 ± 3.16 26.35 ± 1.41

Extra-Large 66.41 ± 6.44 54.62 ± 5.30 68.92 ± 6.68 16.10 ± 1.56

Ensemble Model 72.02 ± 4.13% 60.87 ± 3.40 74.61 ± 4.19 15.97 ± 0.83
f

↑ means that higher means better while ↓ symbol means lower is better.
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to reach close performance by a model trained from scratch but

using all the training. This has a much greater practical usage in

terms of the time and resources needed to collect and annotate

the data. Moreover it allows one to exploit and take advantage of
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the abundant data of healthy patients. We believe for future

works, that achieving higher performance with fewer data will

gradually become the central focus of researchers as use of

medical data tightens.
TABLE 6 Distance metric results of the model ensemble for each data scale highlighting the effectiveness of the model ensemble.

Model ensemble performance with distance metric

UNet-2.5D-Scale ASSD (mm) ↓ Hausdorff (mm) ↓ Sensitivity (%) ↑

Extra-Small Scale 3.87 ± 0.22 21.98 ± 1.28 67.69 ± 3.93

Small 4.28 ± 0.19 27.70 ± 1.23 69.80 ± 3.01

Medium 3.79 ± 0.21 16.73 ± 0.95 73.35 ± 4.15

Large 4.64 ± 0.21 22.04 ± 1.03 77.74 ± 3.62

Extra-Large 7.07 ± 0.68 21.21 ± 2.05 65.72 ± 6.37

Ensemble-Model 4.22 ± 0.29 15.73 ± 0.89 71.43 ± 4.20
↑ means that higher means better while ↓ symbol means lower is better.
TABLE 7 Model ensemble performance for DSC, IOU, PPV and RVE using a single unified SSL-pretrained encoder hence, effectively training only
the decoder block.

Ensemble performance with a frozen SSL-Pretrained encoder

Data-Scale DSC (%) ↑ IOU (%) ↑ PPV (%) ↑ RVE (%) ↓

Extra-Small 71.05 ± 2.32 62.28 ± 2.04 75.46 ± 2.46 16.84 ± 0.55

Small 71.68 ± 2.55 58.56 ± 2.09 75.84 ± 2.70 15.05 ± 0.54

Medium 71.76 ± 2.48 59.87 ± 2.07 72.38 ± 2.51 14.29 ± 0.49

Large 70.97 ± 3.17 58.06 ± 2.59 67.80 ± 3.03 30.32 ± 1.35

Extra-Large 65.18 ± 4.87 53.61 ± 4.01 67.64 ± 5.05 15.80 ± 1.18

Ensemble Average 71.16 ± 2.93 61.62 ± 2.44 75.59 ± 2.95 15.37 ± 0.52
f

↑ means that higher means betterwhile ↓ symbol means lower is better.
TABLE 9 The DSC segmentation performance using the medium-scale dataset for SSL-trained encoder vs. full model.

% of labelled data frozen encoder (%) Full model (%) Percentage difference

20% 64.18 ± 2.35 46.29 ± 1.70 +38.64%

30% 64.95 ± 2.07 49.55 ± 1.58 +31.08%

50% 68.89 ± 2.93 61.75 ± 2.62 +11.56%

100% 71.76 ± 2.48 72.47 ± 4.10 -0.98%
TABLE 8 Distance metric performance results using a single unified encoder block for multiple decoder for a specific data scale.

Distance metric performance with a Frozen SSL-Pretrained encoder

UNet-2.5D-Scale ASSD (mm) ↓ Hausdorff (mm) ↓ Sensitivity (%) ↑

Extra-Small Scale 3.93 ± 0.13 22.36 ± 0.73 68.86 ± 2.25

Small 5.23 ± 0.15 28.70 ± 0.98 69.36 ± 2.47

Medium 3.56 ± 0.13 15.57 ± 0.57 72.64 ± 2.51

Large 4.14 ± 0.20 20.42 ± 0.85 78.38 ± 3.47

Extra-Large 8.47 ± 0.78 20.82 ± 1.55 64.51 ± 4.82

Ensemble-Average 6.49 ± 0.37 16.22 ± 0.64 72.65 ± 3.08
↑ means that higher means better while ↓ symbol means lower is better.
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