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Epithelioid glioblastoma exhibits
a heterogeneous molecular
feature: A targeted next-
generation sequencing study

Rui Pan, Xiaotong Wang, Ru Fang, Qiuyuan Xia,
Nan Wu* and Qiu Rao*

Department of Pathology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
Introduction: Epithelioid glioblastoma (eGBM) is one of the rare glioblastoma

(GBM) variants in the current World Health Organization (WHO) categorization

of central nervous system (CNS) tumours. However, the diagnostic basis and

molecular features of eGBM have not been clearly defined to date. In this study,

we aimed to molecularly characterize these tumours.

Methods: The clinicopathological, molecular, and immunohistochemical

characteristics of 12 cases of eGBM were investigated.

Results: The tumours were found to bemade up of epithelioid and rhabdoid cells

when examined under a microscope. Six cases (50%) harboured the BRAF V600E

mutation, and NF1 mutation was detected in 2 eGBM cases (16.7%). CDKN2A/B

homozygousdeletionwas seen in5cases (41.7%). TP53mutationwas recognized in

2 instances (16.7%), andTERTpromotermutationwas recognized in 5 cases (41.7%).

Discussion: eGBM is characterized by high molecular heterogeneity and has

molecular overlaps between low-grade gliomas. Moreover, rather than being a

variant or entity, the biological significanceof the "epithelioid" appearancemay be

reduced toa simplymorphological pattern. Inorder to target theproper treatment

to suitable patients, molecular stratification via genome-widemolecular profiling

will be crucial.

KEYWORDS

glioblastoma, epithelioid glioblastoma, BRAF V600E, molecular genetics, central
nervous system tumour
Introduction

GBM is the extremely frequent and aggressive tumour of the human brain.

Epithelioid glioblastoma (eGBM) is the rare type of GBM variables in the 2021 WHO

CNS tumours classification. This entity is mostly made up of epithelioid cells with

abundant cytoplasm, eccentrically placed nuclei, and prominent nucleoli (1). Due to the
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lack of particular immunohistochemical or molecular markers

for eGBM, diagnosis can be difficult. The BRAF V600Emutation

has been identified in eGBMs at a relatively great frequency,

despite being rare in conventional GBM (54%) (2–5). Moreover,

low-grade glioma components in eGBM were reported in recent

studies, and a few eGBM patients were previously diagnosed

with pleomorphic xanthoastrocytoma (PXA) (6–9). Therefore,

several studies have suggested that eGBM and PXA may be

either the same entity or closely related (6, 10–13).

eGBM is commonly considered more devastating than

classical GBM and has a higher molecular heterogeneity (12,

14). Nevertheless, the clinical features, pathological results and

molecular characteristics of eGBM are still poorly understood.

Moreover, the diagnostic basis and molecular features of eGBM

have not been clearly defined to date. Wide panels of molecular

and immunohistochemical markers are required to achieve the

correct diagnosis. We described the clinicopathological and

molecular characteristics of 12 eGBMs and discussed their

molecular genetic features.
Methods

Data collection

The Institute Research Ethics Committee of Jinling Hospital

approved this study. Slides from glioblastomas were retrieved

from 2014 to 2022 surgical pathology files of the authors’

institution (Affiliated Jinling Hospital, Medical School of

Nanjing University) and were involved in the study if they were

diagnosed as eGBM on the basis of characteristic morphological

and molecular features. Two pathologists performed a blinded

review of the pathological materials according to the pathological

and molecular definition of eGBM in the 2021 WHO

categorization of CNS tumours. Thirteen GBM cases were

consistent with epithelioid morphology. Case 13 was eliminated

from the series because of the involvement of an IDH1 mutation.

In total, 12 eGBMs were gathered in this study. The clinical,

radiological and pathological data were obtained from the

Department of Pathology, Affiliated Jingling Hospital, Medical

School of Nanjing University. Reviewing electronic health records

and attempting to contact referring pathologists and clinicians

yielded clinical and demographic follow-up information.
Immunohistochemistry

Tumour tissues were embedded in paraffin after being fixed

in 10% formalin. Sections were cut out at 3 mm thickness and

immunohistochemically stained with conventional antibodies as

well as several available commercially antibodies against gene

expression targets identified throughout the gene expression

analysis. The following proteins were chosen as targets: GFAP
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(MAB-0764, 1:150, Maixin Bio (MXB)), INI1 (ZA-0696, ready-

to-use, Zhongshan (ZSGB)), IDH1 (ZM-0447, ready-to-use,

ZSGB), BRAF V600E (790-5095, ready-to-use, Roche), CKpan

(kit-0004, 1:200, MXB), ATRX (MAB-0855, ready-to-use,

MXB), EMA(ZM-0095, ready-to-use, ZSGB) and TP53 (ZM-

0408, 1:200, ZSGB).

TP53 immunostaining was identified as a missense mutation

when higher than 10% nuclear positivity was exist (15).

Immunostaining was defined as a frameshift when tumour

cells demonstrated a full absence of nuclear staining, and

intrinsic control cells showed focal nuclear staining (16, 17).

Both missense and frameshift mutations were considered TP53

mutants (15, 16). Internal negative or positive controls,

including endothelial cells and/or trapped cortical neurons,

were identified in all immunostainings.
Targeted next-generation sequencing

Sequencing of a 425-gene panel was performed on the cases

(Supplementary Table S1). Nucleic acid isolation for NGS was

performed on formalin-fixed paraffin-embedded (FFPE) tumour

tissue from a microdissected representative block. Following the

generator’s instructions, five 10 mm tumour slices were utilized

for DNA extraction utilizing the QIAamp DNA FFPE Kit

(QIAGEN, Valencia, CA, USA). The quality of the DNA was

determined using spectrophotometry with absorbance at 230,

260, and 280 nm, and the DNA was measured using Qubit 2.0.

Sequencing libraries were created utilizing the KAPA Hyper

Prep Kit (KAPA Biosystems) based on the manufacturer’s

recommendations for various specimen types.

In summary, end repair, A-tailing, and ligation with indexed

adapters were applied to 1 g of fragmented genomic DNA prior

to size selection with Agencourt AMPure XP beads (Beckman

Coulter). For hybridization-based target enrichment, the

GeneseeqOneTM pan cancer gene panel (425 cancer-relevant

genes, Geneseeq Technology Inc.) and the xGen Lockdown

Hybridization and Wash Reagents Kit were utilized

(Integrated DNA Technologies). Libraries captured by

Dynabeads M-270 (Life Technologies) were amplified in

KAPA HiFi HotStart ReadyMix (KAPA Biosystems), and their

quantities were assessed by qPCR through KAPA Library

Quantification Kit (KAPA Biosystems). On the Illumina

HiSeq4000 platform, target-enriched libraries were sequenced

with 2×150 bp paired-end reads. The Burrows-Wheeler Aligner

was applied to match the sequencing dataset to the reference

hg19 genome (Human Genome version 19). Sequencing data

collected were demultiplexed by bcl2fastq (v2.19), analysed by

Trimmomatic (18) to eliminate low-quality (quality <15) or N

bases, and afterwards aligned to the reference hg19 genome (19).

By using Picard (found at https://broadinstitute.github.io/

picard/), PCR duplicates were eliminated. For base quality

assurance and local realignments around indels, the Genome
frontiersin.org
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Analysis Toolkit (GATK) was used (20).SNPs and indels were

identified by VarScan2 (21) and Haplotype Caller/Unified

Genotyper in GATK, with a mutant allele frequency (MAF)

cut-off of 0.5% for tissue cases and a least of three optimal

mutant reads. Frequent variants were eliminated utilizing

dbSNP and the 1000 Genome Project. An internal list of

repeated sequencing errors generated from more than 10000

normal control cases sequenced on the same platform was used

to further filter the resulting somatic variants. FACTERA

identified gene fusions (22), and copy number variations

(CNVs) were measured with ADTEx (23). For tissue samples,

the log2 ratio cut-off for copy number gain was given as 2.0. All

specimen types were used to detect copy number loss using a

log2 ratio cut-off of 0.67. The thresholds were established from

the absolute CNVs found by droplet digital PCR, which was used

for earlier assay validation (ddPCR). FACETS (24) was used to

estimate allele-specific CNVs with a 0.2 drift cut-off for unstable

joint segments. By splitting the size of drifted segments by the

overall segment size, the chromosomal instability’s percentage

(CIN) was recorded.
Results

Clinical data

The clinical and histopathological data of eGBMs were

tabulated and are presented in Table 1. There were 9 female

and 3 male cases with ages varying from 28 to 70 years. The

frontal lobe involving was 3, the temporal lobe involving was 5,

the parietal lobe involving was 2, and the basal ganglia was 2.

The most common symptoms were headaches and seizures.

Radiological examination demonstrated gadolinium-enhancing,

comparatively circumscribed lesions with significant perilesional

oedema and central necrosis in all cases (Figure 1). In 1 case,

there was a midline shift (8.33%). All patients had gross total

resection. After surgery, 7 patients (58.3%) received radiation or

chemotherapy. One patient received targeted therapy (case 12),

and have not demonstrated tumour recurrence or metastatic

disease to date. The follow-up period varied from 1 to 30

months. One patient was lost to followed-up. At the time of

data cut-off, 4 cases developed local recurrences, and succumbed

to complications (case 4, case 5, case 6 and case 7). One case

developed a pulmonary metastasis (case 2). No radiological or

histological evidence of cerebrospinal fluid dissemination

was found.
Histopathological findings

The histological results are presented in Table 1 and

Figure 2. The main notable features of most eGBMs were
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abundant epithelioid cells and extensive necrosis (Figure 2). In

al l 12 cases analyzed, microscopy revealed eGBM

histopathological types (or melanoma or epithelioid-like cells’

sheets with abundant cytoplasm, eccentric nuclei, and loose

cohesion). All tumours showed signs of microvascular

proliferation, brisk mitotic activity, and necrosis. However, 4

cases had focal areas that resembled PXA (WHO grade 2)

appearance (the set of spindled cells forming fascicles, single

large bizarre cells, and vacuolated tumour cells with perivascular

lymphocytic cuffing).
Immunohistochemistry

The immunohistochemistry outcomes are presented in

Table 2 and Figure 3. eGBM showed diffuse and strong

staining with vimentin. GFAP (glial fibrillary acidic protein)

immunoreactivity was diffusely observed in epithelioid cells and

lower-grade glioma cells. eGBMs did not show cytokeratin (CK)

or epithelial membrane antigen (EMA) staining. The SMARCB1

(INI1) staining was universally intact. Mutant TP53 was

observed in 2 cases, and both cases were frameshift mutations.

The ATRX loss expression was not observed in any case. IDH1

expression was also not observed in any case. BRAF V600E

expression occurred in 50% (6/12) of cases.
Genetic analysis

The findings of genetic analysis are outlined in Figure 4 and

Supplementary Table S2. Six cases (50%) harboured the BRAF

V600E mutation, and CDKN2A/B homozygous deletion was

seen in 5 cases (41.7%). TP53 mutation was detected in 2 cases

(16.7%), and TERT promoter mutation was detected in 5 cases

(41.7%). PTEN deletion was detected in 2 cases (16.7%). Two of

6 cases without BRAF V600E mutation showed NF1 mutation.

IDH and H3 K27M mutations were not found in any cases. In

conclusion, eGBMs are complex and heterogeneous tumours,

exhibiting multiple genetic mutations.
Discussion

Epithelioid glioblastoma is a rare and extremely aggressive

variant of GBM. Kepes et al. first characterized it in 1982, and it

was suggested as a histological subtype in the WHO

classification of CNS tumours in 2021 (25, 26). However, the

radiological, histological and molecular signature of eGBM have

not been clearly defined (10, 27). In this study, we applied

combined NGS, histology, radiology and immunohistochemistry

to describe the clinicopathological and molecular characterization

of eGBM.
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TABLE 1 Summary of the clinical parameters of 12 eGBM patients.

Case 1 2 3 4 5 6 7 8 9 10 11 12

F/61 F/69 M/30 F/42 M/55 F/62 F/70 M/28

Right
Temporal
lobe

Left Frontal lobe Left
Temporal
lobe

Right
Temporoparietal

Bilateral
Frontal lobe

Right Basal
ganglia

Left Basal
ganglia

Right Parietal lobe

Headache Headache,
slurred speech

Headache,
seizures

Seizures Headache,
memory loss

Limited limb
mobility

Headache,
slurred speech

Headache, seizures

15 (Dead) 10 (Dead) 1 (Dead) 8 (Alive) 16 (Alive) 12 (Alive) 18 (Alive) 28 (Alive)

GTR GTR GTR GTR GTR GTR GTR GTR

Radiation
therapy

None None None Chemotherapy None Chemotherapy Radiation therapy,
Chemotherapy

Present Present Present Present Present Present Present Present

≥30% ≥30% ≥30% ≥20% ≥20% ≥20% ≥20% ≥30%

Confluent Confluent Confluent Confluent Confluent Confluent Confluent Confluent

Recurrence Recurrence Recurrence None None None None None

None None None None None None None None

None None None None None None None None

P
an

e
t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
2
.9
8
0
0
5
9

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

0
4

Age/Sex F*/58 F/59 F/51 M*/53

Location Right Parietal
lobe

Right
Temporal
lobe

Left Frontal
lobe

Left Frontal
lobe

Symptoms Myodynamia
weakness

Headache Headache Slurred
speech

Follow up in months 24 (Alive) 30 (Alive) (Lost to
follow-up)

12 (Dead)

Resection
type

GTR* GTR GTR GTR

Chemotherapy/
radiation therapy

Radiation
therapy

Radiation
therapy

(Lost to
follow-up)

Radiation
therapy

Microvascular
proliferation

Present Present Present Present

Epithelioid cells ≥30% ≥30% ≥30% ≥30%

Necrosis Confluent Confluent Confluent Confluent

Recurrence None None None Recurrence

Metastasis None Pulmonary None None

Cerebrospinal fluid
dissemination

None None None None

*GTR, gross total resection; F, female; M, male.
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Histologically, eGBMs are dominated by a population of

epithelioid cells with focal discohension, eosinophilic cytoplasm,

a differentiated cell membrane, and a nucleus placed laterally.

The tumour is richly vascularized, involving thick- and thin-

walled vessels with microvascular proliferation and hyaline

degeneration, and also glomerulus-like vasculature. Extensive

palisading necrosis has also been observed in eGBM. Although

the exact aetiology and origin of epithelioid cells are

unidentified, there have been numerous studies of eGBMs

occurring concurrently with PXA, particularly tumours with

anaplastic transformation and epithelioid characteristics, or

occurring years after initial tumour resection (5, 10). Four

eGBM cases in our series also presented PXA-like (WHO grade

2) morphological characteristics focally. PXA-like components

(WHO grade 2) coexisting with eGBM demonstrated a spindle-

shaped cells with somemono- ormultinucleated pleomorphic cells

(Figure 2). Intercellular reticlin meshwork and perivascular

lymphocytic cuffing were noticed. Although eGBM is commonly

considered to be a primary/de novo lesion, numerous cases of

eGBMwith a pre- or coexisting lower-grade component have been

noted (2, 4, 6, 9, 13, 28). The majority of the lower-grade lesions

identified thus far were PXA (WHO grade 2), and a few were low-

grade diffuse glioma-like lesions (6–9). We speculate that these

unique pathological features may be associated with the

molecular heterogeneity.

Consistent with those reported in the literature, half of the

eGBMs (50%) in our series were involved in the BRAF V600E

mutation. NF1 mutation was detected in 2 eGBM cases (16.7%).

The NF1 mutation was mutually exclusive to the BRAF V600E

mutation. The codon 600 mutation (V600E) is the main mutation

site for the BRAF gene, which is located on chromosome 7q34.

BRAF is the gene that encodes cytoplasmic serine-threonine
Frontiers in Oncology 05
kinase. Subsequent activation of the mitogen-activated protein

kinase (MAPK) signaling pathway occurs through the mutated

BRAF protein, which in turn promotes tumourigenesis, cellular

proliferation, as well as resistance to apoptosis (3, 14). The NF1

gene is located on 17q11.2 and encodes a tumour suppressor that

works as a GTPase-activating protein to deactivate the RAS/

MAPK signalling pathway, finally causing the occurrence of

tumours (29, 30). Hence, both NF1 mutations and BRAF V600E

mutations contribute to the constitutive stimulation of

downstream RAS/MAPK signalling pathways (31–33), which

may be associated with unique pathological features similar to

eGBM and PXA (30, 34). Several studies have reported that part of

wt-IDH glioblastomas with NF1 mutation also presented a

xanthomatous histological appearance (34, 35). Consequently, in

addition to BRAF V600E, NF1 mutation may be another

meaningful biomarker for the diagnosis of eGBMs. However,

the proportion of NF1 mutation in BRAF V600E negative eGBMs

demands further investigation.

The work of Korshunov et al. has also illustrated the

molecular heterogeneity of eGBM (11) (Table 3). They

identified three distinct, previously described subtypes of

tumours by combining data from methylation types, copy

number alterations, as well as mutations analysis with

outcomes from clinical trials. According to the authors,

histopathologically defined eGBM is divided into at least 3

molecularly and biologically distinguishable classifications.

Consequently, the outcome that eGBM molecularly shares

overlaps with other subtypes of glioblastoma may reduce their

epithelioid appearance to a morphological pattern, and decrease

the biological significance of it.

Molecularly, in this series, TERT promoter mutation was

detected in 41.7% (5/12) of cases. CDKN2A/B homozygous
A B C

FIGURE 1

Neuroradiological findings for eGBM case 11. Neuroradiological results for eGBM case 11. (A) A heterogeneous lesion with necrosis and
perilesional oedema on T1 in the right basal ganglia with significant midline shift, 23 mm × 28 mm × 17 mm in size. (B) A heterogeneous lesion
with perilesional oedema (T2). (C) A rim-enhancing mass with perilesional oedema (T1-weighted enhanced).
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deletion was seen in 41.7% of cases and TP53 mutation was

detected in 16.7% of cases. A total of 16.7% of cases were

confirmed to have PTEN deletion (Figure 4). Some reports

documented the TERT promoter mutation in GBMs,
Frontiers in Oncology 06
suggesting its role in the aggressive clinical course (4, 36).

TERT promoter mutation is a poor prognostic indicator in wt-

IDH gliomas. Moreover, the exitance of pTERT mutation

partially clarifies the aggressive nature of GBMs, and its
FIGURE 2

Histological findings of eGBM. (A) Patches of epithelioid and rhabdoid cells were presented (×200). (B) The tumour showed microvascular
proliferation and zonal necrosis, and epithelioid and rhabdoid cells constituted abundant and uniformly eosinophilic cytoplasm and laterally
located oval to pleomorphically shaped nuclei. Mitoses could easily be seen (×400). (C, D) PXA-like components in eGBM cases showed
multinucleated pleomorphic cells, a fascicular arrangement of spindle-shaped cells and single large bizarre cells (×200 and ×400). (E, F)
Histopathological findings of case 13 (IDH-mutant astrocytoma). The tumour presented epithelioid morphology (×200 and ×400).
TABLE 2 Immunohistochemistry of 12 eGBM cases.

1 2 3 4 5 6 7 9 10 11 12 13

GFAP* 3+ 2+ 2+ 3+ 3+ 3+ 3+ 1+ 3+ 2+ 3+ 3+

S-100 3+ 3+ – 1+ 3+ 2+ 3+ 3+ 3+ 2+ 2+ 2+

ATRX 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+

BRAF V600E – – – – 3+ – 2+ 1+ – – 3+ 3+

INI-1* Intact Intact Intact Intact Intact Intact Intact Intact Intact Intact Intact Intact

IDH1 – – – – – – – – – – – –

TP53 – – Mutated – – – – – – – Mutated –

CK* – – – – – – – – – – – –
frontiers
*GFAP, glial fibrillary acidic protein; CK, cytokeratini; EMA, epithelial membrane antigen; INI1, SMARCB1.
in.org

https://doi.org/10.3389/fonc.2022.980059
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Pan et al. 10.3389/fonc.2022.980059
correlation with the tumour’s ability to overcome escape

apoptosis and replicative senescence (the fundamental steps in

tumourigenesis). CDKN2A is a tumour suppressor gene located

on chromosome 9p21. It encodes the p16 protein, a negative
Frontiers in Oncology 07
regulator of cell cycle progression. The CDKN2B gene is located

next to CDKN2A. The mutation to either CDKN2A or CDKN2B

will lead to cellular proliferation and the disruption of

proapoptotic pathways (37). In IDH-mutated gliomas,
FIGURE 3

Immunohistochemical findings. The immunohistochemical findings of eGBMs. (A) Immunohistochemical studies showed negtive PTEN
expression in 2 cases. Vascular endothelial cells provided an internal positive control (×200). (B) INI1 staining was universally intact (×200). (C)
Positive expression of BRAF V600E in eGBM (×200). (D) The tumour cells demonstrated a complete absence of TP53 staining and lymphocytes
showed TP53 nuclear staining focally (×200).
FIGURE 4

Genomic landscape of eGBM. Clinical and genomic features of 12 eGBM cases. In addition to BRAF V600E mutation, eGBM also showed TP53
mutation, CDKN2A/B homozygous deletions and NF1 mutation.
frontiersin.org
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CDKN2A homozygous deletion is a strong adverse prognostic

factor (38). PTEN is located on 10q23.3 and consists of 9 exons.

PTEN deletion has been proven to correlate with poor survival in

glioblastoma, suggesting that PTEN plays a role in patient

outcomes (39). In this study, most cases (83.3%, 10/12)

showed at least 1 mutation mentioned above, which has been

detected frequently in gliomas and associated with poor

prognosis. Even though, the prognosis of patients are quite

different (Table 1), which further illustrates the clinical

heterogeneity of eGBM.

Interestingly, case 13 in our study, which exhibited an

epithelioid morphology (Figure 2), had both the BRAF V600E

mutation and an IDH1 mutation. Consistent with the reports of

IDH-mutated glioblastomas, this patient had a relatively long

overall survival of up to 30 months. In consequence, this case

should be diagnosed as IDH-mutant astrocytoma (WHO grade

4). Accordingly, when high-grade gliomas present epithelioid

morphology, the diagnosis of eGBM may not be necessary.

Another study also reported that K3 K27M-altered gliomas

exhibited an epithelioid appearance (10).

In summary, we studied 12 eGBM cases and further

described the clinicopathological and molecular features of the

tumours. Our study indicates clinical and molecular

heterogeneity among eGBMs. We propose that in addition to

BRAF V600E, NF1 mutation may be another meaningful

biomarker for the diagnosis of eGBMs. Instead of being a

variant or entity, the “epithelioid” GBM phenotype might be a

histologic subtype. In order to target the proper treatment to

suitable patients, molecular stratification via genome-wide

molecular profiling will be crucial in the upcoming years.
Frontiers in Oncology 08
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TABLE 3 Review of previous studies including mutational analysis.

Author/
year

No. of
cases

Age/
Sex

Necrosis (%
of cases)

Follow up
in months

MVP* (%
of cases)

IDH1 CDKN2A/
B

PTEN Braf
V600E

TP53 TERT NF

Kahanna
et al., 2018

7 13~50/
M-3 F-4

100% 3~6 28% None Not Done None 28% Not
Done

40% Not
Done

Kleinschmidt
et al., 2013

13 10~69/
M-9 F-4

92% 5~82 7% 9% Not Done Deletion
(33%)
Monosomy
(33%)
Negative
(33%)

54% 33% Not
Done

Not
Done

Alexandrescu
et al., 2015

11 2~79/M-
9 F-2

93% 2~38 87% None Not Done Deletion
(12%)
Monosomy
(12%)

53% 36%
(IHC)

Not
Done

36%
(IHC)

Korshunov
et al., 2020
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