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Objectives: To explore the feasibility of predicting the World Health

Organization/International Society of Urological Pathology (WHO/ISUP) grade

and progression-free survival (PFS) of clear cell renal cell cancer (ccRCC) using

the radiomics features (RFs) based on the differential network feature selection

(FS) method using the maximum-entropy probability model (MEPM).

Methods: 175 ccRCC patients were divided into a training set (125) and a test

set (50). The non-contrast phase (NCP), cortico-medullary phase,

nephrographic phase, excretory phase phases, and all-phase WHO/ISUP

grade prediction models were constructed based on a new differential

network FS method using the MEPM. The diagnostic performance of the best

phase model was compared with the other state-of-the-art machine learning

models and the clinical models. The RFs of the best phase model were used for

survival analysis and visualized using risk scores and nomograms. The

performance of the above models was tested in both cross-validated and

independent validation and checked by the Hosmer-Lemeshow test.

Results: The NCP RFs model was the best phase model, with an AUC of 0.89 in

the test set, and performed superior to other machine learning models and the

clinical models (all p <0.05). Kaplan-Meier survival analysis, univariate and

multivariate cox regression results, and risk score analyses showed the NCP
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RFs could predict PFS well (almost all p < 0.05). The nomogram model

incorporated the best two RFs and showed good discrimination, a C-index of

0.71 and 0.69 in the training and test set, and good calibration.

Conclusion: The NCP CT-based RFs selected by differential network FS could

predict the WHO/ISUP grade and PFS of RCC.
KEYWORDS

clear cell renal carcinoma, radiomics features, differential network feature selection,
WHO/ISUP grade, progression-free survival
Introduction

The nuclear grade of clear cell renal cell carcinoma (ccRCC)

is strongly related to 5-year survival time, with higher grades

associated with shorter survival (1, 2) and higher risk for

recurrence after partial nephrectomy (3). The World Health

Organization/International Society of Urological Pathology

(WHO/ISUP) (4) grading system is a new four-level system

commonly used in clinical which has improved the interobserver

reproducibility, and is easier to apply and more clinically

relevant, as well as a better independent prognostic factor (5),

compared to the former Fuhrman grading system. However,

earlier studies have shown no significant difference in the

survival rate between grade 1 and grade 2 RCC (6, 7) and

between grade 3 and grade 4 RCC (1, 2). Therefore, some

scholars tend to simplify it into low-grade and high-grade

lesions. In terms of clinical decision-making, patients with

low-grade RCC may be treated relatively conservatively, such

as through nephron-saving surgery, radiofrequency ablation, or

active surveillance. In contrast, patients with high-grade RCC

may receive more radical interventions and closer follow-up (8).

Therefore, preoperative WHO/ISUP grading is very helpful in

guiding clinical decision-making (8, 9).

Histopathological examination is the standard method to

determine the WHO/ISUP grade of ccRCC. However, needle

biopsy accuracy remains controversial (10, 11), and tumor grade

is often underestimated (12–14). At the same time, the biopsy is

invasive, associated with complications, and may be limited by

tumor location and timely status. Therefore, a new noninvasive

method to preoperatively predict the pathological grade of

ccRCC would be of clinical merit. Studies have shown that

radiomics can be used noninvasively to predict the presence of
02
oncogenes, prognosis, and the effectiveness of different

treatments (15, 16). Accumulating evidence has shown that

radiomics features (RFs) are useful for predicting the

pathological grade of RCC (17).

In radiomics, the number of features is usually larger than

the experiment samples, which is easy to overfit and hinders the

model’s prediction. Therefore, feature selection (FS) methods are

necessary. Traditional FS methods pick up a subset of features

based on specific criteria, removing redundant, irrelevant, and

noisy data. Based on a reasonable assumption, the RFs used to

predict grade very well could also perform well on progression

free survival (PFS) prediction, as the grade is strongly related to

the prognosis. However, unfortunately, we are unsure about that,

as most studies only focus on a single experiment objective:

predicting the grade or the PFS, which causes the support for the

assumption not enough and the interpretability of RFs poor.

Therefore, designing a suitable FS method should make the

selected RFs that can not only make accurate grade predictions

but may also decipher the survival mechanisms associated with

prognosis remains a significant challenging problem (18).

Several machine learning FS methods have been used in

earlier studies to analyze image data, including Lasso regression

(LR), decision tree (DT), support vector machine (SVM),

convolution neural network (CNN), and random forest.

Although the above methods have been successfully used to

select RFs and build prediction models, they have a few

limitations. For example, some methods select at most n

variables before it saturates (19). However, the most number

‘n’ is not easy to decide. For example, the sparsity ratio l in LR

and penalty coefficient C in SVM should be chosen based on the

prior empirical knowledge of the researchers or complicated

cross-validation, which is not easy and very time-consuming.
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Moreover, suppose there is a group of features among which the

pairwise correlations are very high. In that case, they tend to

arbitrarily select only one feature from the group, which means

some important RFs will be lost. It could work to improve the

model prediction performance. However, the interpretability of

the RFs should be selected was not good enough, as choosing

only one from the redundant features and removing the rest

could lose much helpful information about the RFs. At last, most

machine learning FS methods were wrapped-based; improving

the model’s performance in the training sets was their priority.

Thus, the generalization performance of the models was easy to

overfit. In the meantime, the performance of the existing

machine learning FS methods is not stable when dealing with

small and unbalanced sample size problems. Therefore, a more

reliable FS method is urgently needed. The ideal RFs should not

only have an accurate WHO/ISUP grade classification but also

have some interpretable biological characteristics, such as PFS.

Differential network analysis based on network theory and

related methodologies has shown outstanding robustness in

analyzing various forms of large-scale data, which is evident in

its ability to identify biomarkers (20). Most of the existing

machine learning FS methods are a feature-centric analytic

approach that assesses changes in individual features to a

target. In contrast, differential network FS is a network-centric

analytical approach that focuses on detecting the changes in a

feature’s associations with other features—comparing the

difference between two different populations or groups’

networks to select features. It is especially effective in detecting

essential features that have less dramatic changes for specific

experiments and show outstanding performance in dealing with

small and unbalanced sample problems.

The correlation networks are widely used in constructing the

networks, such as Pearson correlation, Euclidean distance,

Spearman rank correlation, and so on. It should be noted that

this correlation is between features, unlike in some filter FS

methods between features and target labels. However, the biggest

problem of such network constructing methods is that they

could be misleading in reflecting the correlation of two features

as it ignores the influence of the rest ones. The maximum-

entropy probability model (MEPM) (21) is proposed to solve

such a problem. It finds that inverting the matrix of covariances

of features (Pearson correlation) could describe the correlations

that remain once the indirect effects are removed, thereby

providing a more robust description of the interactions

between features.

However, there was no literature report on its application in

the search for imaging RFs. For these reasons, this study aimed

to investigate the feasibility of predicting the WHO/ISUP grade

and PFS of ccRCC from the RFs based on the differential

network FS using the MEPM. Furthermore, this paper

expected to find evidence that the selected RFs of the WHO/

ISUP grade prediction model were related to PFS of ccRCC to
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make the radiomics prediction models with more interpretable

biological information through our new FS method.
Material and methods

Patients

This retrospective study was approved by the Ethics

Committee of Southern Medical University, and because of the

retrospective nature of the analysis, the requirement of informed

patient consent was waived.

Medical records and picture archiving and communication

systems were searched for patients with RCC treated at our

hospital from March 2011 to March 2016. The age, gender,

maximum tumor size, clinical stage, symptom, growth pattern,

histological subtype, WHO/ISUP nuclear grade, and PFS

were collected.

There were 434 patients with ccRCC confirmed by two

pathologists were preliminarily enrolled. Exclusion criteria: 1)

Patients lacking histopathological material for WHO/ISUP re-

grading (98 cases); 2) Patients who were treated for RCC before

CT examination (29 cases); 3) Patients without compete non-

contrast phase (NCP), cortico-medullary phase (CMP),

nephrographic phase (NP), and excretory phase (EP) phases

CT scan (74 cases) and patients with inadequate quality images

(38 cases); 4) Patients with 2 or more lesions in unilateral (2

cases) or bilateral (3 cases) kidneys; 5) Patients with tumors with

mixed features (8 cases) and cystic RCC (75% or more cystic

components) (7 cases). Finally, 175 Patients were enrolled and

randomly divided into a training set (125 cases) and a test set (50

cases). Patient enrollment and experimental flow charts are

shown in Figures 1A, E.

In performing survival analysis, the follow-up information is

selected based on the criteria as follows: 1) survival information

was obtained by telephone follow-up visits for all patients for at

least 5 years after surgery; 2) tumor recurrence included in situ

recurrence and distant metastasis; 3) diagnosis was mainly based

on imaging examination comparison, and the follow-up

deadline was June 2021;4) PFS was selected as the

clinical endpoint.
CT parameters

A 64 multiprobe spiral CT scanner (Siemens, Somatom

Definition CT scanner, 121 patients) and a 256 multiprobe

spiral CT scanner (Philips, Brilliance ICT, 54 patients) were

performed with patients. The range included both kidneys and

masses in the supine position and a breath-holding scan. The

scanning parameters were: tube voltage = 120 kV; tube current =

150-320 mA; slice thickness = 5 mm; layer spacing = 5 mm; field
frontiersin.org
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of view (FOV) = 360 mm; matrix = 512×512. Spiral scanning

and thin-layer reconstructions were performed for all 4 stages.

After the NCP scan, the contrast agent was injected into the

anterior cubital vein with a high-pressure syringe at a dose of 2

ml/kg and an injection rate of 2.5 ml/s. CMP, NP, and EP

scanning were started at 30-35 s, 60-70 s, and 190-200

s, respectively.
Images segmentation and radiomics
feature extraction

The tumor volume region of interest (VOI) was segmented

by 2 radiologists with 10-year and 15-year experience using ITK-

snap software (www.itk-snap.org). Four phases (NCP, CMP, NP,

and EP) VOI segmented images were obtained for each patient,

and its boundary was kept about 2 mm away from the tumor

edge to reduce interference from adjacent tissues (22). When the

boundary of the tumor was not clear, the boundary of the CMP

image was compared for segmentation. Images segmentation

examples are shown in Figure 1B.

The segmented images were first preprocessed, including

resampling, normalization, and filtering to remove noise. Then

the RFs were extracted from segmented images using the

PyRadiomics computing platform. Features extraction is

shown in Figure 1C. The initial setting of the Pyradiomics are
Frontiers in Oncology 04
as follows: binWidth = 25, label= 1, interpolato r= ‘sitkBSpline’,

resampledPixelSpacing = ‘None’, weightingNorm = ‘None’.

To assess feature robustness, we conducted a test-retest

study. Two physicians (Doctor A 10 years, and Doctor B 9

years experience) individually contoured the ROIs in the

random 30 images. Intraclass correlation coefficient (ICC) was

used to test the stability between Doctor A and Doctor B groups,

and the results showed that ICC was> 0.75 between groups. One

week later, Doctor A repeated the same procedure to assess the

reproducibility, and the results showed that ICC > 0.75 within

the group (Doctor A). The results between groups and within the

group suggest the segmentation was consistent, and the

remaining image segmentation was performed by Doctor A.
Features selection

A differential network FS using MEPM was proposed in this

study. The flow chart is shown in Figure 2. At first, five control

groups were constructed based on different phases of RFs (NCP,

CMP, EP, MP, ALL). i.e., the NCP group consists of all the

samples with only NCP RFs, and the ALL group consists of all

the samples with all 4 phase RFs. All samples in each group were

marked based on their WHO/ISUP grade (high-grade or low-

grade). Then, high-grade and low-grade networks of each group

were constructed using MEPM based on the corresponding
B C D

E

A

FGH

FIGURE 1

The experimental process of this study. (A) Patient enrollment flow charts; (B) Schematic diagram of image segmentation; (C) Schematic
diagram of feature extraction; (D) Schematic diagram of differential networks features selection method; (E) Experimental Data set. (F) WHO/
ISUP grading model construction and comparison; (G) Survival analysis by Kaplan-Meier survival, univariate, and multivariate Cox analysis;
(H) Visualization risk score and nomogram.
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samples (Figure 2A). i.e., NCP high-grade network was

constructed only using the samples in the NCP group marked

high grade. After that, each phase’s differential network of the

high-low grade was constructed after comparing the differential

topology structure between their high-grade network and low-

grade network, i.e., network2 - network1 (Figure 2B). To be

more specific, For example, features A and F were linked in both

high-grade and low-grade networks, which means the structure

of feature A to feature in these two networks was no different. So

there was no link between feature A and feature F in its high-low

differential network. At last, the RFs for each control group were

selected based on the node degree histogram in their high-low

differential network (Figure 2C), i.e., the nodes (RFs) which had

the highest degree in the network were considered the critical

RFs (marked in red in Figure 1D and Figure 2C); in this case, the

number of selected features was set to less than 15.
MEPM networks construction

Let the state vector x = (x1, …, xN) denote the expression

levels of the N features in an experiment, and a series of T
Frontiers in Oncology 05
measurements then has associated with its T distinct state

vectors. Let r(x) denote the probability that the genome is in

the arbitrary state x. We determine r(x) by maximizing the

Shannon entropy

S = −r(x)
!

ln (x)
!

(1)

subject to the r(x) is normalized

o
~x

r(x)
!

= 1 (2)

first moment, <xi>, and second moment, <xi, xj>

< xi >=o~xr xið Þ�!
xi =

1
To

T
k=1x

k
i (3)

< xi, xj >=o~xr xð Þ�!
xixj =

1
To

T
k=1x

k
i x

k
j (4)

Eq. (2) provides the normalization condition that the

probabilities of all observable states sum to 1. Eqs. (3) and (4)

ensure that the distribution r(x) preserves the mean expression

level of each gene and the correlations between genes. This

procedure leads to a Boltzmann-like distribution:
B

C D

A

FIGURE 2

The schematic diagram of differential network feature selection. (A) An example of GRN inference using maximum-entropy probability model
(MEPM); (B) An example of using differential networks analysis; (C) The differential networks using MEPM of the non-contrast phase (NCP),
cortico-medullary phase (CMP), nephrographic phase (NP), excretory phase (EP), and all phase (ALL-P), where the red nodes were the selected
RFs; (D) Correlation circle diagram of the RFs of the NCP model.
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r xð Þ e e−H

where

H  ¼  
1
2oijxiMijxj

The elements of the matrix M are the effective pairwise gene

interactions that reproduce the gene profile covariances exactly

while maximizing the entropy of the system. The matrix of M

can be obtained by inverting the matrix of their covariances C.

This makes a substantial difference. The covariance matrix C

reflects the unconditional correlation between features and,

therefore, contains indirect effects. On the other hand, its

inverse, i.e., M, describes the correlations that remain once the

indirect effects are removed and thereby provides a more robust

description of the interactions between features.

However, in the high dimensional setting where the number

of features p is larger than the number of observations n, the

empirical covariance matrix C is singular and so can’t be

inverted to yield an estimate of M. Many MEPM-based

methods have been proposed for inferring networks, including

partial-correlation-based, likelihood-based, and mutual-

information-based approaches.

In our case, we chose a multi-objective memetic algorithm to

infer the MEPM networks (23, 24) and some other method like

Glasso could get the similar results (25).
Prediction model construction and
performance comparison

The performance of all experiment models was explored and

verified by 5 times hierarchical 5-fold cross-validation in the

training set and independently valid in the test set. To be more

specific, the training set was divided into an internal training set

and validation set (4:1) in each 5-fold cross-validation. The data

split is using the python package sklearn: ‘train_test_split’ and

set the ‘stratify’ = result, which makes the classification ratio of

data in the training set and the test set will be the same.

In this study, the NCP, CMP, NP, EP, and ALL models were

constructed using Logistic regression based on the

corresponding RFs. At first, each experiment model was

constructed based on the corresponding selected RFs using the

proposed differential network FS in the internal training set. For

example, the selected RFs of the NCP model was taken in the

internal training set and then constructed using Logistic

regression. Then, the average performance of the experiment

model in 5 times cross-validation in the internal training and

validation sets was considered the final performance in the

training and validation sets. At last, the best selected RFs of

each model in cross-validation were tested in the test set.

According to the performance results in all data sets, the best

of the above five models was selected as our WHO/ISUP grade
Frontiers in Oncology 06
prediction model. After that, the LASSO, SVM, and Random

Forest models were constructed based on all four phase RFs as

control models and compared with our model on the same

dataset. More specifically, model training and performance

testing follow the same processing mentioned above

(Figure 1F). Lasso is implemented using the python package

sklearn: ‘lassocv’, which could select penalty parameter

adaptively; SVM is using the python package sklearn: ‘RFE’

and ‘SVM’; Random Forest is using the python package sklearn:

‘RandomForestClassifier’. We keep the default parameter values

for all these methods. Then, the conventional image and clinical

features mode (CICFs) is constructed using Logistic regression

based on the clinic features. The CICFs-RFs model combined

clinic features, and RFs were constructed as control models and

compared with our model following the performance mentioned

above test processing. Finally, the receiver operating

characteristic (ROC), the area under curve ROC curve (AUC),

precision, sensitivity, and accuracy were determined to estimate

the performance of the above models. At last, the best prediction

model was refit on the complete training set as the final WHO/

ISUP grade prediction model.
Survival analysis and
performance comparison

Survival analysis was performed to explore more biological

information about the selected RFs in the final WHO/ISUP

grade prediction model and find whether they were related to

PFS. At first, Kaplan-Meier analysis by converting the RFs into a

dichotomous variable (high and low group) was used to estimate

the selected RFs. Then, the univariate and multivariate Cox

proportional hazard regression models were used to investigate

the factors of RFs associated with PFS (Figure 1G). Independent

variables with p < 0.05 in univariate results and multivariate were

selected. After that, risk score analyses of ccRCC patients were

used to describe the selected RFs. Finally, the selected RFs were

used to build the final multivariate Cox regression model and

visualized using nomograms (Figure 1H). The C-index of the

final model was determined. The Hosmer-Lemeshow test was

used to check the calibration.
Statistical analysis

Continuous data were presented as mean ± standard deviation,

and categorical data were presented as numbers and percentages

(%). For comparisons of means between groups, Student’s

independent t-test or Mann-Whitney U test was used, depending

on the normality assumption. Categorical data were tested using the

chi-square test or Fisher’s exact test (if an expected value ≤ 5 was

found). In all analyses, a 2-tailed value of p < 0.05 was considered to
frontiersin.org
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indicate statistical significance. The surv_cutpoint function in the

surviminer package finds the best cutoff value for a continuous

variable and is used to predict PFS. Statistical analyses and mapping

were performed by R software (version 4.2) with the ‘rms’, ‘proc’,

‘survival’, ‘rmda’, and ‘ggplot’ package.
Result

Patient and tumor characteristics

175 patients were included in the analysis, including 125

cases in the training set and 50 cases in the test set. Table 1

summarizes the characteristics of the patients. 122 cases were

diagnosed with low-grade ccRCC (WHO/ISUP grades 1 and 2)

and 53 cases with high-grade ccRCC (WHO/ISUP grades 3 and

4). All characteristics of patients in the training set and the test

set were no statistical difference (p > 0.05).
Features extraction and selection

A total of 107 RFs were extracted from the 3D multiphase CT

images of each phase of each patient: 18 first-order statistics

features, 14 shape-based features, 24 gray level co-occurrence

matrix (GLCM) features, 16 gray level size zone matrix (GLSZM)

features, 16 gray level run length matrix (GLRLM) features, 14 gray
Frontiers in Oncology 07
level dependence matrix (GLDM) features, and 5 neighboring gray-

tone difference matrix (NGTDM) features. A total of 428 (4×107)

RFs were extracted from the 4-phase CT images.

Differences in scanner models should be verified as the

dataset collected comes from two scanners. Thus, principal

component analysis (PCA) was performed on the extracted

features to plot data in the space of reduced dimensions (26).

Visual inspection of Supplement Figure 1 suggests the absence of

batch effects. Furthermore the Kruskal–Wallis test, carried out

on both the first and second main component scores, also

confirmed the absence of clusters (PC 1 scores: p-value =

0.526 > 0.05 and PC 2 scores: p-value = 0.174 > 0.05).

Through the differential network FS, there were 10, 10, 8, 8,

and 10 RFs were selected from NCP, CMP, NP, EP, and ALL-P

in the complete training set, respectively. The differential

networks of different phases are shown in Figure 2C where the

red nodes represent the selected RFs. The designation, phase,

abbreviation, classification, and description of RFs are shown

in Table 2.
WHO/ISUP grade prediction model
construction and performance comparison

The ROC analysis of different phase models in the training

set, validation set, and test set are shown in Figures 3A–C,

respectively. DeLong test was used to compare the AUCs of the
TABLE 1 Patient’s clinical characteristics between the training set and test set.

Levels Training set (N=125) Test set (N=50) p

Age (year, mean ± SD) 52.31 ± 14.51 52.06 ± 13.19% 0.915

Gender Male 84 (67.2%) 31 (62.0%) 0.632

Female 41 (32.8%) 19 (38.0%)

Diameter (mm, median) 43.98 43.9 0.589*

WHO/ISUP low 91 (72.8%) 31 (62.0%) 0.221

high 34 (27.2%) 19 (38.0%)

T T1 97 (77.6%) 38 (76.0%) 0.541

T2 16 (12.8%) 9 (18.0%)

T3 12 (9.6%) 3 (6.0%)

N N0 115 (92.0%) 47 (94.0%) 0.891

N1 10 (8.0%) 3 (6.0%)

TNM Stage I 90 (72.0%) 37 (74.0%) 0.439

Stage II 17 (13.6%) 9 (18.0%)

Stage III 18 (14.4%) 4 (8.0%))

Symptom no 65 (52.0%) 25 (50.0%) 0.943

yes 60 (48.0%) 25 (50.0%)

Grow pattern Exophytic 40 (32.0%) 20 (40.0%) 0.241

Mixed 60 (48.0%) 17 (34.0%)

Endophytic 25 (20.0%) 13 (26.0%)

PFS (month, median) 56 66.5 0.122*
frontiers
*p values were calculated by the Kruskal-Wallis test.
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different models. The best two models were the NP and the NCP

models in the training set (AUC = 0.75 and 0.74, respectively).

They were significantly better than the rest models (p < 0.05),

and there was no subtle difference between them (p = 0.087). The
Frontiers in Oncology 08
NCP model was still the best in the validation set (AUC = 0.71),

significantly better than the other models (all p < 0.05). Finally,

the NCP model (AUC = 0.84) remained one of the best two

models in the test set; the other one was the ALL-P model
TABLE 2 The name and the abbreviation of the RFs of different phases using the differential network feature selection.

NCP (P) CMP (A) NP (V) EP (D) ALL-P

X107-Strength X7-
Maximum2D_DiameterSlice

X1-Elongation X11-Sphericity VX11-Sphericity

X77-Long Run Low Gray Level
Emphasis

X8-Maximum3D_Diameter X107-Strength X1-Elongation AX11- Sphericity

X59-Dependence Non-Uniformity
Normalized

X11-Sphericity X11-Sphericity X45-Idn VX70- Small Dependence Low Gray
Level Emphasis

X74-High Gray Level Run
Emphasis

X34-Cluster Shade X21-Maximum X35-Cluster Shade AX70- Small Dependence Low Gray
Level Emphasis

X2-Flatness X35-Cluster Shade X2-Flatness X54-Sum Average PX11-Sphericity

X11-Sphericity X2-Flatness X94-Low Gray Level Zone
Emphasis

X90-High Gray Level Zone
Emphasis

AX44- Idmn

X90-High Gray Level Zone
Emphasis

X21-Maximum X99-Small Area Low Gray
Level Emphasis

X95-Size Zone Non-
Uniformity

AX45- Idn

PX38-Correlation X45-Idn X48-Inverse Variance X103-Busyness DX104- Coarseness

X33-Autocorrelation X26-Range VX1- Elongation

PX32-Variance AX29-Skewness VX96- Size Zone Non-Uniformity
Normalized
B C

D E F

G H I

A

FIGURE 3

The ROC curves of various models on all data sets: comparing with different phases models in the training set (A), validation set (B), and test set
(C); comparing with the machine learning control models in the training set (D), validation set (E), and test set (F); comparing with the clinic
control models in the training set (G), validation set (H), and test set (I).
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(AUC = 0.89). Their performance was significantly better than

the rest models (all p < 0.05), and no significant difference (p =

0.062) was found between them. Taking all the results together,

the NCP model performed robustly and showed a good

capability of predicting WHO/ISUP grade.

This result indicated that the NCP features selected

by our method contain more helpful information than

the enhanced scan features in terms of ccRCC grading

prediction. This could provide a new basis for reducing the use

of contrast media and reducing patients’ radiation in the future.

The model formula constructed in the training set (125 cases) is

NCP_Y = 0 . 5 6×PX10 7+0 . 4 0×PX77 - 0 . 3 5×PX59+

0 . 1 1×PX74 +0 . 2 5×PX2+0 . 8 4×PX11+0 . 1 1×PX90 -

0.33×PX32 +0.11×PX33-0.37×PX38. The performance of the

NCP model is shown in Table 3.

After that, the NCP model was compared with the machine

learning control models (LASSO, SVM, and the Random Forest

model). The ROC analysis of the above models in the training

set, validation set, and test set are shown in Figures 3D–F,

respectively. The control models performed significantly better

(all p < 0.05) than the NCP model (AUC = 0.74) in the training

set. However, their performance sharply deteriorated in the

validation set, which made the NCP model become the best

(AUC = 0.71), and no significant difference was found among

them (all p >0.05). What’s more, the NCP model (AUC = 0.84)

significantly outperformed other models (all p <0.05) in the test

set. Compared with the traditional FS methods, experimental

results show that our FS method was more effective. Moreover,

unlike the other methods, i.e., the validation and test set

performance sharply deteriorated from the training set, our

approach performed stably in all data sets with good

prediction capability and outstanding robustness.

Finally, the NCPmodel was compared with the clinic control

models (CICFs and CICFs-NCP model), The ROC analysis of

the above models in the training set, validation set, and test set

are shown in Figures 3G–I, respectively. The performance of the

NCP-model (AUC = 0.74, 0.71, and 0.84) was significantly better

than the CICFs (p < 0.001) and the CICFs-NCP model (p <

0.001) in all data sets.
Kaplan-Meier survival analysis

The Kaplan-Meier survival analysis results of the RFs of the

NCP model in the training set are shown in Figure 4. All RFs
Frontiers in Oncology 09
were significant differences between their high and low groups

(all p < 0.05), except PX32 (p = 0.091). The correlation circle

diagram of the RFs of the NCP model is shown in Figure 2D.
Univariate and multivariate Cox
regression analyses

The univariate and multivariate Cox regression analyses

results of the relations of independent variables of the RFs to

PFS in the training set are shown in Table 4. Univariate results

showed that PX2, PX11, PX38, and PX107 were significant (p <

0.05), and were entered into the multivariate model. Similarly,

RFs were substantial in the multivariate model: PX2 and PX11

(p < 0.05) were established as the final NCP model for PFS.
Risk score analyses

Risk score analyses of ccRCC patients in the training set

based on the NCP model are shown in Figure 5. The risk scores

of the NCP model where the rank of patients was set into the

high-low risk group are shown in Figure 5.

Risk scores ranked the relationships between survival status

and survival times of RCC patients are shown in Figure 5B. In

addition, the heatmap of the two RFs of the final NCP model is

shown in Figure 5C. The PX2 was a risk factor as its expression

distribution was like to the risk scores; conversely, PX11 was a

protective factor. Thus, these two NCP RFs could accurately

predict patient prognosis and potentially impact the occurrence

and development of tumors.
Nomogram

The nomogram of the final NCP model for clinical

visualization was established in Figure 6A. The final NCP

model for PFS was established using the PX2 and PX11,

including risk estimations of PFS and 1-, 3-, and 5-year

survival. It was found that the C-index of the final NCP model

was 0.71 (p = 0.038) and 0.69 (p = 0.066) in 3the training set and

test set. The calibration curve of the nomogram of 60 months is

shown in Figure 6B, indicating that the final model fits the real

predicted value.
TABLE 3 The performance of the NCP model of predicting WHO/ISUP grading in the training set, validation set, and test set.

NCP - Model AUC Precision Sensitivity Accuracy

Training set 0.74 0.71 0.66 0.67

Validation set 0.71 0.70 0.64 0.66

Test set 0.89 0.79 0.76 0.76
fro
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FIGURE 4

Kaplan-Meier analysis of the RFs of the NCP model.
TABLE 4 The univariate and multivariate Cox regression analysis of the independent RFS of the NCP model to PFS in the training set.

RFS Levels HR (univariable) HR (multivariable)

PX2 0.7 ± 0.1 299.26 (6.08-14724.37, p = .004) 3828.42 (39.13.00-37458.02, p <.001)

PX11 0.7 ± 0.0 0.00 (0.00-0.06, p = .006) 0.00 (0.00-0.00, p <.001)

PX32 41.0 ± 160.1 1.00 (1.00-1.00, p = .687)

PX33 287.0 ± 618.4 1.00 (1.00-1.00, p = .598)

PX38 0.3 ± 0.1 19.94.00 (1.02-389.01, p =. 046) 13.32 (0.65-272.58, p = .093)

PX59 0.1 ± 0.0 0.00 (0.00-5764.93, p = .097)

PX74 40.2 ± 158.8 1.00 (1.00-1.00, p = .687)

PX77 0.7 ± 0.7 0.68 (0.36-1.28, p =. 228)

PX90 38.6 ± 156.5 1.00 (1.00-1.00, p = .695)

PX107 0.0 ± 0.2 0.00 (1.00-0.18, p = .027) 0.00 (0.00-1202.86, p = .402)
Frontiers in Oncology
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Discussion

In this retrospective analysis, we developed a new RFs FS

method based on differential network analysis using MEPM.

According to the Radiomics Quality Score (RQS) (27), this paper

received 22 points for self-evaluation, with a total score of 36

points, indicating the high quality of this paper. Five WHO/

ISUP grade prediction models with different phase RFs were
Frontiers in Oncology 11
constructed based on this method. According to their

performance in all data sets, the NCP model was set as the

final WHO/ISUP grade prediction model. This model was very

competitive with three classical machine learning models and

the clinical models in terms of good prediction capability and

outstanding robustness. Survival analysis was performed to

further explore the biology of the selected RFs. The results

showed that almost all selected RFs could effectively
BA

FIGURE 6

(A) The nomogram of the final NCP model; (B) The calibration curve of the nomogram of the final NCP model.
B

C

A

FIGURE 5

Risk score analysis of RCC patients in the training set based on the RFs of the NCP model. (A) Distribution of risk scores per patient;
(B) Relationships between survival status and survival times of ccRCC patients ranked by risk score; (C) Heatmap of the RFS. Colors from blue to
red indicate decreasing levels from high to low.
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distinguish PFS. In the meantime, PX2 (NCP-Flatness) was a

risk factor, and PX11 (NCP-Sphericity) was a protective factor

for PFS. The results showed that the newly selected NCP RFs

were significant for WHO/ISUP classification and survival

prediction. Thus, the competitiveness and the interpretability

of our new FS method were verified.

The one main difference between this study and prior similar

studies is that we first used a new FS method based on

differential network analysis using MEPM to select RFs. It

focused on the inherent topology of the network of RFs that

could reflect the high-low WHO/ISUP grades of RCC very well.

It should be noticed that different network inference methods

could lead to vastly different results in differential network

analysis. The most common association measure was the well-

known Pearson correlation coefficient. However, the Pearson

correlation could be misleading in reflecting the correlation of

two features as it ignores the influence of the rest ones (28). The

MEPMs were proposed to solve this problem which relied on

Boltzmann’s concept of entropy maximization to support

statistical inference with minimal reliance on the form of

missing information (21). An example of applications of

MEPM to infer gene networks is shown in Figure 2A. The

elements of the matrix Mi jreflect the pairwise gene interactions

between gene i and gene j. The matrix M can be obtained by

inverting the matrix of their covariances C by using Pearson

correlation (21). The covariance matrix C reflects the

unconditional correlation between features and contains

indirect effects. On the other hand, its inverse, i.e., M,

describes the correlations that remain once the indirect effects

are removed, thereby providing a more robust description of the

interactions between genes. For the above reasons, MEPM was

used to construct the high-low WHO/ISUP grade networks.

In our study, the NCP model performed better than the

other phase model based on our FS method. It is a promising

noninvasive rediomics model even without a tri-phase

enhancement scan for predicting the grade of ccRCC. It can

preoperatively predict the tumor’s aggressiveness and provide a

reference for predicting the prognosis. What’s more, it can also

provide a reference for selecting surgical plans and follow-up

plans and can help guide to make more accurate treatment

decisions for ccRCC. Our conclusion is consistent with the study

of Kocak et al. (29) who reported that using an artificial neural

network is a promising noninvasive method for predicting the

grade of ccRCC. Using the traditional machine learning

methods, most other research groups suggested that RFs from

the CMP or NP, or combined phases, produced more accurate

results. For example, Shu et al. (30) found that a combined CMP

and NP model provided a diagnostic accuracy. Our method is

different from the traditional machine learning method, and it

could have advantages in exploring more potential significant

information of NCP RFs in predicting WHO/ISUP grade.
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The existing machine learning FS methods can generally be

classified into two categories: 1) filter-based and 2) wrapper-

based methods. Filter-based FS methods use feature relevance

criteria, such as mutual information or the Pearson correlation

coefficient, to select the feature subset. Wrapper-based methods

utilize a classification algorithm to estimate the importance of

the selected features. Although the filter-based methods are

computationally less expensive than the wrapper ones, they

ignore the performance of the selected features on the

prediction performancethus, the selected features by the filter

methods are often worse than those achieved by the wrapper-

based FS methods (31). Therefore, this study mainly focuses on

comparing wrapper-based FS methods. However, it should be

noted that it does not mean the filter-based FS method does not

work for the radiomics study. Parmar C et al. (32) mRMR

showed the highest prognostic performance in head and neck

cancer. Stefano Barone et al. (33) showed promising results on

prostate cancer radiomics.

In the meantime, unlike the other FS methods, i.e., the

validation and test set performance sharply deteriorated from

the training set, our approach performed stably in all data sets

with good prediction capability and outstanding robustness.

One reason for that could be our FS method paid more

attention to the differences topological of high-low grade

network of the RFs, rather than the prediction performance

in the training set, avoiding the overfitting of the model. On

the other hand, our method used MEPM to construct the

GRN, which could remove the variational effect due to the

influence of the remaining RFs to ensure the selected RFs were

more robust with good generalization performance. Finally,

the differential network analyses have proved to have

strong and stable performance in finding biomarkers in

bioinformatics studies nowadays when the dataset is small

and unbalanced (34), and the results in our study confirm

these advantages.

Another contribution of this paper is that we first explore the

relationship between the RFs of the WHO/ISUP grade

prediction model and the PFS of the ccRCC. According to

survival analysis, the biological association of the selected RFs

with the PFS of ccRCC was proved. The results showed that

almost all the selected NCP RFs of the WHO/ISUP grade

prediction model could effectively distinguish PFS. This could

suggest that the RFs may be related to some intrinsic biologic

behavior. Most previous studies had either explored the grading

or survival prediction abilities of RFs alone rather than

combining them. Feng et al. (35) reported that entropy was

the most critical imaging marker for predicting the Fuhrman

grade of ccRCC. Bektas et al. (36) reported that the SVMmethod

provided the best model for predicting Fuhrman low-grade or

high-grade ccRCCs using ML-based portal-phase contrast-

enhanced CT texture data. In another study, Shu et al. (37)
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reported that a model combined k-nearest neighbor, logistic

regression, multilayer perceptron, random forest, and SVM

methods exhibited better performance than a CMP or NP

model. Beyond an accurate classification, learning an

interpretable model with features biologically relevant to the

target could be more meaningful in understanding the

mechanism of a radiomics model. This study further explored

the underlying molecular basis of the identified RFs of the

WHO/ISUP grade prediction model by assessing the possible

biological association with the PFS. The results showed that our

differential network FS method is applicable.

In this experiment, the image segmentation method is

manual, unlike the other semi-automatic or automatic

segmentation methods, which are most widely used in the

lung and brain. However, the existing general semi-automatic

segmentation method seems to have low accuracy in renal

tumors. For example, separating tumors from normal tissues

during the NCP is impossible because most tumors are of equal

or slightly low density. In the EP, due to the highly enhanced

tumor, which may infiltrate the renal pelvis and encroach renal

veins, it is difficult to exclude these non-tumor normal tissues

using semi-automatic segmentation of regional growth. Though

it could cause problems with repetition and consistency (38, 39),

manual segmentation is still used in most renal radiomics studies

(40, 41). In response to the lack of automated segmentation, the

Medical Imaging Computing and Computer Assisted

Intervention (MICCAI) society developed the KiTS19 (Kidney

Tumor Segmentation) Grand Challenge, where scientists

compete using algorithms to automate the segmentation of

kidney tumors. Although the effect is good in the arterial

phase, there is still a lack of studies on the effectiveness of the

NCP. To make the experiment more rigorous, we selected senior

doctors for image segmentation and trained two doctors to

standardize the segmentation process. In addition, our

experiments aim to propose a new FS method, and we prefer

to let the feature selection part mainly decide which RFs should

be retained to test the performance of FS methods. Thereby we

are relatively relaxed in RFs estimation before the feature

selection, choosing ICC >0.75 instead of ICC >0.8 or 0.9 to

ensure more features could be involved in the feature selection

while avoiding eliminating potentially valuable features to

improve the repeatability (30). Fortunately, all features

were retained.

There are still some limitations to this study. First, as our

work was a single-center and retrospective study, the dataset was

relatively small. In the meantime, comparing with the other

network construction methods and filter-based FS methods are

necessary to verify the effectiveness of the model developed in

this study. Furthermore, we know that only using the protective

or risk factor for PFS to prove the biological meaning of the RFs

is not enough. Therefore, future research will study the

relationship between the RFs and the genomic or pathology

information in the RCC pattern (42).
Frontiers in Oncology 13
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material. Further

inquiries can be directed to the corresponding authors.
Ethics statement

The studies involving human participants were reviewed and

approved by Ethics Committee of Southern Medical University.

Written informed consent for participation was not required for

this study in accordance with the national legislation and the

institutional requirements.
Author contributions

FY: Conceptualization, Writing - Original Draft, Software,

Validation. HZ: Conceptualization, Writing - Original Draft,

Methodology, Statistics. AQ: Investigation, Formal analysis. ZZ:

Investigation, Formal analysis. LY:Investigation. WX:

Conceptualization. GW: Conceptualization, Writing - Review

and Editing. All authors contributed to the article and approved

the submitted version.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fonc.2022.979613/full#supplementary-material

SUPPLEMENTARY FIGURE 1

PCA results, PC 1: First Principal Component, PC 2: Second

Principal Component.
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2022.979613/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.979613/full#supplementary-material
https://doi.org/10.3389/fonc.2022.979613
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yin et al. 10.3389/fonc.2022.979613
References
1. Delahunt B, Mckenney JK, Lohse CM, Leibovich BC, Thompson RH,
Boorjian SA, et al. A novel grading system for clear cell renal cell carcinoma
incorporating tumor necrosis. Am J Surg Pathol (2013) 37(3):311–22. doi: 10.1097/
PAS.0b013e318270f71c

2. Kuthi L, Jenei A, Hajdu A, Németh I, Varga Z, Bajory Z, et al. Prognostic
factors for renal cell carcinoma subtypes diagnosed according to the 2016 WHO
renal tumor classification: a study involving 928 patients. Pathol Oncol Res (2017)
23(3):689–98. doi: 10.1007/s12253-016-0179-x

3. Mouracade P, Kara O, Maurice MJ, Dagenais J, Malkoc E, Nelson RJ, et al.
Patterns and predictors of recurrence after partial nephrectomy for kidney tumors.
J Urol (2017) 197(6):1403–9. doi: 10.1016/j.juro.2016.12.046

4. Perrino CM, Cramer HM, Chen S, Idrees MT, Wu HH. World health
organization (WHO)/International society of urological pathology (ISUP)
grading in fine-needle aspiration biopsies of renal masses. Diagn Cytopathol
(2018) 46(11):895–900. doi: 10.1002/dc.23979

5. Dagher J, Delahunt B, Rioux-Leclercq N, Egevad L, Srigley JR, Coughlin G,
et al. Clear cell renal cell carcinoma: validation of world health Organization/
International society of urological pathology grading. Histopathology (2017) 71
(6):918–25. doi: 10.1111/his.13311

6. Robila V, Kraft AO, Smith SC. New entities, new technologies, new findings:
A review of the cytologic features of recently established subtypes of renal cell
carcinoma. Cancer Cytopathol (2019) 127(2):79–97. doi: 10.1002/cncy.22093

7. Siegel RL, Miller KD, Jemal A. Cancer statistics 2018. CA Cancer J Clin (2018)
68(1):7–30. doi: 10.3322/caac.21442

8. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics
in China 2015. CA Cancer J Clin (2016) 66(2):115–32. doi: 10.3322/caac.21338

9. Yan Y, Liu L, Zhou J, Li L, Li Y, Chen M, et al. Clinicopathologic
characteristics and prognostic factors of sarcomatoid renal cell carcinoma. J
Cancer Res Clin Oncol (2015) 141(2):345–52. doi: 10.1007/s00432-014-1740-1

10. Kutikov A, Smaldone MC, Uzzo RG, Haifler M, Bratslavsky G, Leibovich
BC. Renal mass biopsy: Always, sometimes, or never? Eur Urol (2016) 70(3):403–6.
doi: 10.1016/j.eururo.2016.04.001

11. Millet I, Curros F, Serre I, Taourel P, Thuret R. Can renal biopsy accurately
predict histological subtype and fuhrman grade of renal cell carcinoma? J Urol
(2012) 188(5):1690–4. doi: 10.1016/j.juro.2012.07.038

12. Blumenfeld AJ, Guru K, Fuchs GJ, Kim HL. Percutaneous biopsy of renal
cell carcinoma underestimates nuclear grade. Urology (2010) 76(3):610–3. doi:
10.1016/j.urology.2009.09.095

13. Ficarra V, Brunelli M, Novara G, D'elia C, Segala D, Gardiman M, et al.
Accuracy of on-bench biopsies in the evaluation of the histological subtype, grade,
and necrosis of renal tumours. Pathology (2011) 43(2):149–55. doi: 10.1097/
PAT.0b013e32834317a4

14. Jeldres C, Sun M, Liberman D, Lughezzani G, De La Taille A, Tostain J, et al.
Can renal mass biopsy assessment of tumor grade be safely substituted for by a
predictive model? J Urol (2009) 182(6):2585–9. doi: 10.1016/j.juro.2009.08.053

15. Lambin P, Rios-Velazquez E, Leijenaar R. Radiomics: extracting more
information from medical images using advanced feature analysis. Eur J Cancer
(2012) 48:441. doi: 10.1016/j.ejca.2011.11.036

16. Pinker K, Shitano F, Sala E, Do RK, Young RJ, Wibmer AG, et al.
Background, current role, and potential applications of radiogenomics. J Magn
Reson Imaging (2017) 7:604–20. doi: 10.1002/jmri.25870

17. Zhou H, Mao H, Dong D, Fang M, Gu D, Liu X, et al. Development and
external validation of radiomics approach for nuclear grading in clear cell renal cell
carcinoma. Ann Surg Oncol (2020) 27(10):4057–65. doi: 10.1245/s10434-020-
08255-6

18. Li ZC, Zhai G, Zhang J, Wang Z, Liu G,Wu GY, et al. Differentiation of clear
cell and non-clear cell renal cell carcinomas by all-relevant radiomics features from
multiphase CT: a VHL mutation perspective. Eur Radiol (2019) 29(8):3996–4007.
doi: 10.1007/s00330-018-5872-6

19. Al-Kasassbeh M, Mohammed S, Alauthman M, Almomani A. Feature
selection using a machine learning to classify a malware. In: Gupta BB, Perez
GM, Agrawal DP, Gupta D, editors. Handbook of computer networks and cyber
security: Principles and paradigms. Cham: Springer International Publishing
(2020). p. 889–904.

20. Grimes T, Potter SS, Datta S. Integrating gene regulatory pathways into
differential network analysis of gene expression data. Sci Rep (2019) 9(1):5479. doi:
10.1038/s41598-019-41918-3

21. De Martino A, De Martino D. An introduction to the maximum entropy
approach and its application to inference problems in biology. Heliyon (2018) 4(4):
e00596. doi: 10.1016/j.heliyon.2018.e00596
Frontiers in Oncology 14
22. Kocak B, Ates E, Durmaz ES, Ulusan MB, Kilickesmez O. Influence of
segmentation margin on machine learning-based high-dimensional quantitative
CT texture analysis: a reproducibility study on renal clear cell carcinomas. Eur
Radiol (2019) 29(9):4765–75. doi: 10.1007/s00330-019-6003-8

23. Tian Y, Lu C, Zhang X, Cheng F, Jin Y. A pattern mining-based evolutionary
algorithm for Large-scale sparse multiobjective optimization problems. IEEE Trans
Cybern (2021) 52(7):6784–97. doi: 10.1109/TCYB.2020.3041325

24. Yin F, Zhou J, Zhu Z, Ma X, Xie W. Inferring small-scale maximum-entropy
genetic regulatory networks by using DE algorithm. Springer International
PublishingCham (2021) 347–57.

25. Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation
with the graphical lasso. Biostatistics (2008) 9(3):432–41. doi: 10.1093/biostatistics/
kxm045

26. Pasini G, Bini F, Russo G, Comelli A, Marinozzi F, Stefano A.
matRadiomics: A novel and complete radiomics framework, from image
visualization to predictive model. J Imaging (2022) 8(8):221. doi: 10.3390/
jimaging8080221

27. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, De Jong EEC, Van
Timmeren J, et al. Radiomics: the bridge between medical imaging and
personalized medicine. Nat Rev Clin Oncol (2017) 14(12):749–62. doi: 10.1038/
nrclinonc.2017.141

28. Chanda P, Costa E, Hu J, Sukumar S, Van Hemert J, Walia R. Information
theory in computational biology: Where we stand today. Entropy (Basel) (2020) 22
(6):627. doi: 10.3390/e22060627

29. Kocak B, Durmaz ES, Ates E, Kaya OK, Kilickesmez O. Unenhanced CT
texture analysis of clear cell renal cell carcinomas: A machine learning-based study
for predicting histopathologic nuclear grade. AJR Am J Roentgenol (2019) 11:W1–8.
doi: 10.2214/AJR.18.20742

30. Shu J, Tang Y, Cui J, Yang R, Meng X, Cai Z, et al. Clear cell renal cell
carcinoma: CT-based radiomics features for the prediction of fuhrman grade. Eur J
Radiol (2018) 109:8–12. doi: 10.1016/j.ejrad.2018.10.005

31. Chandrashekar G, Sahin F. A survey on feature selection methods. Comput
Electrical Eng (2014) 40(1):16–28. doi: 10.1016/j.compeleceng.2013.11.024

32. Parmar C, Grossmann P, Rietveld D, Rietbergen MM, Aerts H. Radiomic
machine learning classifiers for prognostic biomarkers of head & neck cancer.
Front Oncol (2015) 5(4). doi: 10.3389/fonc.2015.00272

33. Barone S, Cannella R, Comelli A, Pellegrino A, Salvaggio G, Stefano A, et al.
Hybrid descriptive-inferential method for key feature selection in prostate cancer
radiomics. Appl Stochastic Models Business Industry (2021) 37(5):961–72. doi:
10.1002/asmb.2642

34. Wu N, Huang J, Zhang XF, Ou-Yang L, He S, Zhu Z, et al. Weighted fused
pathway graphical lasso for joint estimation of multiple gene networks. Front Genet
(2019) 10:623. doi: 10.3389/fgene.2019.00623

35. Feng Z, Shen Q, Li Y, Hu Z. CT texture analysis: a potential tool for
predicting the fuhrman grade of clear-cell renal carcinoma. Cancer Imaging (2019)
19(1):6. doi: 10.1186/s40644-019-0195-7

36. Bektas CT, Kocak B, Yardimci AH, Turkcanoglu MH, Yucetas U, Koca SB,
et al. Clear cell renal cell carcinoma: Machine learning-based quantitative
computed tomography texture analysis for prediction of fuhrman nuclear grade.
Eur Radiol (2019) 29(3):1153–63. doi: 10.1007/s00330-018-5698-2

37. Shu J, Wen D, Xi Y, Xia Y, Cai Z, XuW, et al. Clear cell renal cell carcinoma:
Machine learning-based computed tomography radiomics analysis for the
prediction of WHO/ISUP grade. Eur J Radiol (2019) 121:108738. doi: 10.1016/
j.ejrad.2019.108738

38. Timmeren J, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radiomics
in medical imaging—"how-to" guide and critical reflection. Insights into Imaging
(2020) 11(1):91–107. doi: 10.1186/s13244-020-00887-2

39. Sharma N, Aggarwal LM Automated medical image segmentation
techniques. Journal of Medical Physics (2010) 35(1):3–14. doi: 10.4103/0971-
6203.58777

40. Suarez-Ibarrola R, Basulto-Martinez M, Heinze A, Gratzke C, Miernik A
Radiomics Applications in Renal Tumor Assessment: A Comprehensive Review of
the Literature. Cancers (Basel) (2020) 12(6):1387. doi: 10.3390/cancers12061387

41. Bhandari A, Ibrahim M, Sharma C, Liong R, Gustafson S Prior M.CT-based
radiomics for differentiating renal tumours: a systematic review. Abdom Radiol
(2020) 46(5):2052–63. doi: 10.1007/s00261-020-02832-9

42. Algohary A, Shiradkar R, Pahwa S, Purysko A, Verma S, Moses D, et al.
Combination of peri-tumoral and intra-tumoral radiomic features on bi-
parametric MRI accurately stratifies prostate cancer risk: A multi-site study.
Cancers (Basel) (2020) 12(8):2200. doi: 10.3390/cancers12082200
frontiersin.org

https://doi.org/10.1097/PAS.0b013e318270f71c
https://doi.org/10.1097/PAS.0b013e318270f71c
https://doi.org/10.1007/s12253-016-0179-x
https://doi.org/10.1016/j.juro.2016.12.046
https://doi.org/10.1002/dc.23979
https://doi.org/10.1111/his.13311
https://doi.org/10.1002/cncy.22093
https://doi.org/10.3322/caac.21442
https://doi.org/10.3322/caac.21338
https://doi.org/10.1007/s00432-014-1740-1
https://doi.org/10.1016/j.eururo.2016.04.001
https://doi.org/10.1016/j.juro.2012.07.038
https://doi.org/10.1016/j.urology.2009.09.095
https://doi.org/10.1097/PAT.0b013e32834317a4
https://doi.org/10.1097/PAT.0b013e32834317a4
https://doi.org/10.1016/j.juro.2009.08.053
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1002/jmri.25870
https://doi.org/10.1245/s10434-020-08255-6
https://doi.org/10.1245/s10434-020-08255-6
https://doi.org/10.1007/s00330-018-5872-6
https://doi.org/10.1038/s41598-019-41918-3
https://doi.org/10.1016/j.heliyon.2018.e00596
https://doi.org/10.1007/s00330-019-6003-8
https://doi.org/10.1109/TCYB.2020.3041325
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.3390/jimaging8080221
https://doi.org/10.3390/jimaging8080221
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.3390/e22060627
https://doi.org/10.2214/AJR.18.20742
https://doi.org/10.1016/j.ejrad.2018.10.005
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.3389/fonc.2015.00272
https://doi.org/10.1002/asmb.2642
https://doi.org/10.3389/fgene.2019.00623
https://doi.org/10.1186/s40644-019-0195-7
https://doi.org/10.1007/s00330-018-5698-2
https://doi.org/10.1016/j.ejrad.2019.108738
https://doi.org/10.1016/j.ejrad.2019.108738
https://doi.org/10.1186/s13244-020-00887-2
https://doi.org/10.4103/0971-6203.58777
https://doi.org/10.4103/0971-6203.58777
https://doi.org/10.3390/cancers12061387
https://doi.org/10.1007/s00261-020-02832-9
https://doi.org/10.3390/cancers12082200
https://doi.org/10.3389/fonc.2022.979613
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	An exploratory study of CT radiomics using differential network feature selection for WHO/ISUP grading and progression-free survival prediction of clear cell renal cell carcinoma
	Introduction
	Material and methods
	Patients
	CT parameters
	Images segmentation and radiomics feature extraction
	Features selection
	MEPM networks construction
	Prediction model construction and performance comparison
	Survival analysis and performance comparison
	Statistical analysis

	Result
	Patient and tumor characteristics
	Features extraction and selection
	WHO/ISUP grade prediction model construction and performance comparison
	Kaplan-Meier survival analysis
	Univariate and multivariate Cox regression analyses
	Risk score analyses
	Nomogram

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


