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Background: Cholangiocarcinoma (CCA) is a highly aggressive malignant

tumor for which limited treatment methods and prognostic signatures are

available. This study aims to identify potential therapeutic targets and

prognostic biomarkers for CCA.

Methods: Based on differentially expressed genes (DEGs) identified from The

Cancer Genome Atlas (TCGA) data, our study identified key gene modules

correlated with CCA patient survival by weighted gene coexpression network

analysis (WGCNA). Cox regression analysis identified survival-related genes in

the key gene modules. The biological properties of the survival-related genes

were evaluated by CCK-8 and transwell assays. Then, these genes were used to

construct a prognostic signature that was internally and externally validated.

Additionally, by combining clinical characteristics with the gene−based

prognostic signature, a nomogram for survival prediction was built.

Results:WGCNA divided the 1531 DEGs into four genemodules, and the yellow

gene module was significantly associated with overall survival (OS) and

histologic neoplasm grade. Our study identified the lncRNA AGAP2−AS1 and

a novel gene, GOLGA7B, that are closely related to survival. GOLGA7B

downregulation promoted the invasion, migration and proliferation of CCA

cells, but AGAP2−AS1 had the opposite effect. AGAP2−AS1 and GOLGA7B were

integrated into a gene−based prognostic signature, and both internal and

external validation studies confirmed that this two-gene prognostic signature

and nomogram could accurately predict CCA patient prognosis.
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Conclusion: AGAP2−AS1 and GOLGA7B are potential therapeutic targets and

prognostic biomarkers for CCA.
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Introduction

Cholangiocarcinoma (CCA) is a highly aggressive

malignancy of the biliary duct tree. It can be classified into

distal CCA (dCCA), perihilar CCA (pCCA), and intrahepatic

CCA (iCCA) (1, 2). CCA is the second most common primary

hepatic carcinoma, comprising approximately 15% of all

primary liver tumors and 3% of gastrointestinal carcinomas

(1, 3, 4). Although CCA is rare, its morbidity rate (0.3-6 per

100,000 people) and mortality rate (1–6 per 100,000 people)

have increased in recent decades (4–6). In addition, due to the

lack of symptoms of early-stage disease and the scarcity of

efficient early diagnostic methods, CCA patients are usually

diagnosed in advanced stages (7). Less than one-third of CCA

patients are eligible to undergo radical surgery (8). Even in cases

that receive radical surgery, chemotherapy, and radiation

therapy, the risk of recurrence and metastasis is high, so the 5-

year survival rate is low, and the prognosis is dismal (8, 9). Thus,

it is imperative to conduct an in-depth investigation of the

molecular mechanism of CCA development and identify novel

biomarkers for early diagnosis and prognosis prediction.

Over the past two decades, RNA sequencing has undergone

significant progress and has become an indispensable tool for

carcinoma research, contributing to biomarker discovery and

the development of cancer mRNA vaccines, targeted therapy,

and immunotherapy; moreover, it has significantly improved the

understanding of therapeutic and prognostic strategies for some

malignancies, such as non-small cell lung carcinoma, leukemia

and melanoma (10–13). Based on RNA sequencing, various

studies have identified differentially expressed genes (DEGs),

including prognostic biomarkers and signal transduction

pathways, involved in CCA progression (12, 14). However, the

application of relevant research to clinical practice guidelines is

still very limited. In addition, although some novel treatments,
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such as targeted therapy and immunotherapy, have been

explored in clinical trials, those trials were limited and

presented some unsatisfactory results (1, 15, 16). Thus, it is

still necessary to elucidate the precise molecular processes of

CCA and identify effective treatment targets and putative

prognostic biomarkers.

In this study, the mRNA expression profiles of CCA patients

were downloaded from The Cancer Genome Atlas (TCGA) and

analyzed to identify DEGs. Weighted gene coexpression network

analysis (WGCNA) was used to identify key gene modules

associated with CCA prognosis based on the DEGs. Then,

univariate and multivariate Cox regression analyses identified

GOLGA7B and AGAP2-AS1, which are related to survival,

from the key gene module. We confirmed that GOLGA7B and

AGAP2−AS1 are closely related to CCA progression in vitro

and are potential therapeutic targets. Moreover, GOLGA7B and

AGAP2−AS1 were used to create a two-gene prognostic

signature for CCA prognosis prediction. Both internal and

external validation confirmed that the two-gene prognostic

signature could accurately predict CCA patient prognosis.

Finally, a nomogram combining the two-gene signature with

certain clinical characteristics was built and verified to improve

the prognostic prediction capacity for CCA patients.
Materials and methods

Dataset collection

The mRNA expression patterns (level 3) and corresponding

clinical features of 36 CCA patients in the training group were

obtained from the TCGA database and downloaded from UCSC

Xena. In addition, the mRNA expression profiles and clinical

traits of 30 CCA patients in the testing group were collected

from the Gene Expression Omnibus (GEO) database (accession:

GSE107943) (17).
Differential gene expression analysis

DEGs between tumor and normal tissues were determined

from the mRNA expression profiles through the “edgeR” R
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package (version 3.36.0) (18). Benjamini-Hochberg multiple

testing correction was performed to determine the false

discovery rate (FDR). We set FDR<0.05 and |log2-fold change

(FC)|>1 as the thresholds for DEG identification.
Coexpression module construction

The DEGs in the training group were employed to build the

gene coexpression modules, which were established by the

WGCNA method based on the “WGCNA” R package (version:

1.70-3) (19, 20). Compared to similar methods, WGCNA is

superior for analyzing gene association patterns and correlating

gene coexpression modules with clinical features. The

construction of coexpression modules based on the WGCNA

method included the following main steps. First, a correlation

coefficient matrix between genes, called an adjacency matrix, was

built. To ensure a scale-free network within the adjacency matrix,

an appropriate soft thresholding power b (range of 0–30) and

correlation coefficient threshold were chosen. Second, a

topological overlap matrix (TOM) was constructed based on the

adjacency matrix. Third, hierarchical clustering for TOM-based

dissimilarity (dissTOM) was executed to obtain the hierarchical

clustering tree from which the dynamic tree cut method identified

the gene coexpression modules. The minimum number of genes

in each gene coexpression module was set as 30, and the cut height

threshold for merging similar gene modules was set as 0.25.

Finally, Pearson’s correlation analysis was performed to verify

the correlation between gene coexpression modules and clinical

parameters; thus, the key gene module most significantly

associated with clinical parameters was determined for

subsequent analysis.
Functional enrichment analyses

Kyoto Encyclopedia of Genes and Genomes (KEGG) and

Gene Ontology (GO) enrichment analyses were performed to

evaluate the biological activities and signaling pathways of genes

in the gene coexpression modules based on the “clusterProfiler”

(version 4.2.2), “org.Hs.eg.db” (version 3.14.0), “enrichplot”

(version 1.14.2) and “ggplot2” (version 3.3.5) packages.
Prognostic signature construction

With the “survival” R package (version: 3.3-1), univariate

and multivariate Cox regression analyses were performed to

identify the independent prognostic genes significantly related to

patient survival from the key gene modules. Then, these

survival-related genes were used to construct a prognostic

signature for CCA patients, and each CCA patient was

assigned a risk score (RS), which was calculated by the
Frontiers in Oncology 03
following formula:

RS = o
n

k=1

Coefk � expk

In the formula, “n” indicates the number of independent

prognostic genes, “Coefk” signifies the multivariate Cox

regression coefficient index of gene k, and “expk” symbolizes

the mRNA expression level of gene k in the prognostic signature.

The RS was calculated for each patient in the training group.

CCA patients were categorized as high- and low-risk groups

with the median RS as the cutoff, with patients in the high-risk

group having an RS above the median value.
Gene−based prognostic
signature validation

Further, we internally validated the predictive value of the

gene−based prognostic signature in the training group from

TCGA and externally validated it in a testing group from GEO.

First, Kaplan-Meier survival curves were generated to compare the

survival rates between the high- and low-risk groups based on the

“survival” (version: 3.3-1) and “survminer” (version: 0.4.9) R

packages. Second, the area under the receiver operating

characteristic (ROC) curve (AUC) for survival prediction was

calculated by the “survivalROC” R package (version: 1.0.3). Third,

the risk plot was used to visualize the differences in survival

between the high- and low-risk groups and was displayed by the

“heatmap” R package (version: 1.0.12). Finally, the predictive

prognostic value of the gene−based prognostic signature was

estimated by the concordance index (C-index) based on the

“survcomp” R package (version: 1.44.1) (21).
Nomogram construction and validation

Nomograms are widely used and are convenient devices for

survival prediction in cancer patients in oncology research (22, 23).

By combining the gene−based prognostic signature with relevant

clinical characteristics, our study constructed a nomogram with the

“rms” (version: 6.3-0), “foreign” (version: 0.8-82) and “survival”

(version: 3.3-1) R packages. The C-index and the AUC of the time-

dependent ROC curve were calculated to estimate the predictive

prognostic value of the nomogram. In addition, calibration curves

for 1-, 3- and 5-year overall survival (OS) were generated to assess

the accuracy of the predicted probability.
Patients and clinical sample collection

Paired CCA tumor and normal tissues were collected from 9

patients who did not receive chemotherapy or radiation at Tongji

Hospital, Tongji Medical College, Huazhong University of Science
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https://doi.org/10.3389/fonc.2022.977992
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2022.977992
and Technology, China, between March 2019 and January 2022.

The clinical information of the nine patients is shown in Table S1.

This study was authorized by the Tongji Hospital Research Ethics

Committee and the Institutional Review Board.
Cell culture and transfection

CCA cell lines were cultured in RPMI-1640 medium (Gibco,

CA) containing 10% fetal bovine serum (FBS) at 37°C in a 5%

CO2 atmosphere. GOLGA7B and AGAP2−AS1 were knocked

down by small interfering RNAs (siRNAs) using siRNA

transfection reagent (Santa Cruz Biotechnology Inc., USA).

The sequences of the siRNAs are shown in Table 1.
Western blotting and quantitative
real-time PCR

The protein expression ofGOLGA7Bwas detected byWestern

blotting analysis according to the standard protocol, and the

primary and secondary antibodies are listed in Table 2.

Quantitative real-time PCR (qRT-PCR) was employed to detect

RNAexpression levels. TRIzol reagent (Life Technologies, CA)was

used to separate total RNA from tissue samples or cell lines, and a

reverse transcriptase kit (Takara Bio Inc., Dalian, China) was used

to convert thatRNA into complementaryDNA(cDNA). qRT-PCR

was conductedusing theSYBRPremixEXTaqKit (TakaraBio Inc.)

according to the standard protocol. The primers for qRT-PCR

listed in Table 2 were acquired from Primer Bank. The protein

expressionofGOLGA7Bwas detected byWestern blotting analysis

according to the standard protocol, and the primary and secondary

antibodies are listed in Table 3.
Transwell invasion and cell
proliferation assays

Cell invasion was evaluated by a transwell invasion assay.

In brief, 1 × 105 cells/well were seeded in the upper transwell
Frontiers in Oncology 04
chamber containing 200 ml of serum-free RPMI-1640 culture

medium. The lower chamber was supplied with 500 µl of

RPMI-1640 culture medium containing 20% FBS. After 24 h of

culture, the cells that had migrated through the membranes

were fixed with methanol, stained with 1% crystal violet and

counted by Image-Pro Plus version 6.0 (Media Cybernetics

Inc., MD, USA). Cell proliferation was evaluated by CCK-8

(Dojindo Laboratories Co., Ltd., Kumamoto, Japan). In brief,

5× 103 cells/well were plated in 96-well plates and cultured at

37°C for 24 h, 48 h, 72 h and 96 h. After CCK-8 solution was

added to each well and incubated for 2 h, the cell proliferation

was assessed according to the OD value at 450 nm, as

measured by a Quant ELISA Reader (BioTek Instruments,

VT, USA).
Results

Identification of DEGs and gene
coexpression modules

A total of 36 CCA patients from the TCGA dataset were used

as the training group. DEG analysis between normal (n = 9) and

tumor (n = 36) tissues was conducted, and a total of 1531 DEGs

were identified (|log2 FC|>1 and FDR<0.05) (Figure 1A and

Table S2). Tumor tissues overexpressed 682 genes and

downregulated 849 genes compared with normal tissues

(Figure 1B). Then, we used the 1531 DEGs to construct gene

coexpression modules based on the WGCNA method. After 3

was chosen as the optimal soft thresholding power b to ensure

that the network was scale-free (Figure 1C), the hierarchical

clustering tree showed four gene coexpression modules and 323

oligogenes (Figure 1D). The four gene coexpression modules

were the turquoise module with 637 genes, the brown module

with 149 genes, the blue module with 294 genes, and the yellow

module with 128 genes; the gray module included 323 oligogenes

that were not classified into any module (Figure 1D). The

correlations between the DEGs and each of the four modules

were visualized with dissTOM (Figure 1E). The correlations

among the 4 modules are shown in Figure 1F.
TABLE 1 The siRNA for target genes.

Gene Name SS sequence AS sequence

GOLGA7B siRNA-GOLGA7B -1 GGUAAGUGUUCCUGAUCAACA UUGAUCAGGAACACUUACCUG

siRNA-GOLGA7B -2 GGUGUUUAAGCAAGUUUAAGU UUAAACUUGCUUAAACACCGG

siRNA-GOLGA7B -3 GGUUCCUAGUAGAUAUCAAGG UUGAUAUCUACUAGGAACCUA

AGAP2-AS1 siRNA-AGAP2-AS1 -1 GAGCAAUCCGAGUGUGGAAAC UUCCACACUCGGAUUGCUCUG

siRNA-AGAP2-AS1 -2 GACACGAUCAGGAACUCAAAG UUGAGUUCCUGAUCGUGUCCA

siRNA-AGAP2-AS1 -3 CCACUUGUUACCUGCUUUAUA UAAAGCAGGUAACAAGUGGGG
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Determination of key modules related to
clinical features

The correlations between the gene coexpression modules

and clinical features in the training group were calculated and

are shown in Figure 2A. As a result, the yellow module was

significantly related to survival (R = 0.42, P = 0.01) and

neoplasm histologic grade (R = 0.41, P = 0.01) (Figure 2A).

The genes in the yellow module had a highly positive

relationship with OS (Figure 2B, R = 0.67, P = 5.2e-18) and

neoplasm histologic grade (Figure 2C, R = 0.74, P =1.9e-23). The

128 genes from the yellow module were used to construct the

gene interaction network shown in Figure 2D. Then, KEGG and

GO enrichment analyses were performed for the 128 genes to

investigate the biological processes involved. KEGG pathway

enrichment analyses indicated that the cell cycle, oocyte meiosis,

the p53 signaling pathway, cellular senescence, progesterone-

mediated oocyte maturation, human T-cell leukemia virus 1

infection, and the Fanconi anemia pathway were enriched in the

yellow module (Figure 2E). GO enrichment analyses indicated

that chromosome segregation, nuclear division, sister chromatid

segregation, mitotic unclear division and organelle fission were

the top 5 biological processes; chromosomal region,

chromosome (centromeric region), condensed chromosome

(centromeric region), condensed chromosome, and

kinetochore were the top 5 cellular components; microtubule

binding, tubulin binding, microtubule motor activity, DNA

replication origin binding, and cytoskeletal motor activity were

the top 5 molecular functions (Figure 2F).
Identification of key genes related
to survival

Univariate Cox regression analysis was performed and

verified that GOLGA7B, AGAP2−AS1, PBK, PRC1, PLK1 and
Frontiers in Oncology 05
GGH were significantly related to survival (Figure 3A). Then,

multivariate Cox regression analysis was performed and

identified the genes GOLGA7B and AGAP2−AS1 as

significantly associated with survival (Figure 3B). High

expression of GOLGA7B was associated with increased survival

probability, while high expression of AGAP2−AS1 was

associated with decreased survival probability (Figure 3C).

Compared with normal tissues, both GOLGA7B and AGAP2

−AS1 RNA were highly expressed in tumor tissues (Figure 3D).

In addition, the Human Protein Atlas database confirmed that

the protein expression of GOLGA7B was significantly higher in

CCA tumor tissues (Figure 3E). Moreover, Western blotting and

qRT-PCR experiments were performed on nine pairs of matched

CCA normal and tumor tissues and indicated that the protein

and mRNA expression levels of GOLGA7B were significantly

higher in tumor tissues than in normal tissues (Figure 3F, G) and

that the lncRNA AGAP2−AS1 was substantially expressed at

lower levels in normal tissues than in tumor tissues (Figure 3F).
Identification of the biological functions
of GOLGA7B and AGAP2−AS1

As the functional enrichment analyses above showed that the

genes in the yellow module were mainly enriched in cell

proliferation, we further confirmed the biological functions of

GOLGA7B and AGAP2−AS1 in vitro. GOLGA7B and AGAP2

−AS1 were knocked down in both RBE and HuCCT-1 cells by

GOLGA7B and AGAP2−AS1 siRNAs, respectively, as confirmed

by qRT-PCR (Figure 4A) and Western blotting experiments

(Figure 4B). The CCK-8 assay confirmed that GOLGA7B

downregulation increased proliferation (Figure 4C), and the

transwell assay confirmed that GOLGA7B downregulation

promoted cell migration and invasion (Figure 4D), while

AGAP2−AS1 downregulation had the opposite effect on cell

growth, migration, and invasion (Figure 4C, D).
Construction and internal validation of
the two-gene prognostic signature

In our study, we further constructed a prognostic gene

signature based on GOLGA7B and AGAP2−AS1, and each

patient was assigned an RS that was calculated based on the

expression values of these two genes and their corresponding
TABLE 2 The primers for target genes.

Gene Forward primer Reverse primer

GOLGA7B TCCTGCTGTCTTCGCTACCTGAG GGGCATCATTGGCTGGACATCTC

AGAP2-AS1 TCTGCTCTCCTCTCACACGACTTC CCACCCTCTGCTTTCCCTACCC

B-ACTIN CAGATGTGGATCAGCAAGCAGGAG AAGCCATGCCAATGAGACTGAGAAG
TABLE 3 The antibody information of the target gene.

Gene Primary anti-
body

Secondary antibody

GOLGA7B NBP1-56754
(Novus)

Goat anti-rabbit IgG H&L (HRP) (abs20002),
1/3000 dilution

B-ACTIN Abs119600
(Absin)

Goat anti-rabbit IgG H&L (HRP) (abs20002),
1/3000 dilution
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multivariate Cox regression analysis coefficients (Table S3). The

formula used to calculate the RS is presented above in the

Materials and Methods section. We further conducted internal

validation to verify the predictive value of the RS based on the

training cohort’s two-gene signature. The median RS was used to

categorize all CCA patients into high- and low-risk groups, with

patients in the high-risk group having an RS above the median

value (Table S3). The RSs of all 36 patients were presented in a

risk plot (Figure 5A). The expression of AGAP2−AS1 increased

gradually with increasing RS, while the expression of GOLGA7B

decreased with increasing RS (Figure 5B). The high-risk group

mainly comprised nonsurviving patients (Figure 5B). Kaplan-

Meier survival analysis verified that CCA patients with a high RS

had a worse OS than those with a low RS (Figure 5C). In

addition, the AUC of the ROC curve was calculated to verify the

diagnostic competence of the two-gene prognostic signature,

and the AUCs of the two-gene prognostic signature for the 1-

year, 3-year, and 5-year survival predictions were 0.85, 0.739,

and 0.811, respectively (Figure 5D). The C-index for the internal

validation group was 0.734.
External validation of the two-gene
prognostic signature

To determine whether the two-gene prognostic signature

could reliably predict prognosis in various populations, a total of
Frontiers in Oncology 06
30 CCA patients from the GEO database were designated as the

testing group. GOLGA7B and AGAP2−AS1 were highly

expressed in tumor tissues from the testing group, similar to

the case in the training group (Figure 6A). On the basis of the

Cox proportional hazards model, the RS of each patient was also

calculated according to the RNA expression level of each gene

and its regression coefficient, as described above. Thirty CCA

patients were then classified into high- and low-risk groups with

the median RS value as the cutoff (Table S4). A risk plot showing

the RSs of the 30 patients was constructed (Figure 6B). The risk

plot showed that the expression of GOLGA7B decreased with

increasing RS (Figure 6C). The surviving patients were mainly

assigned to the low-risk group, and the nonsurviving patients

were mainly assigned to the high-risk group (Figure 6C).

Kaplan-Meier survival analysis verified that CCA patients with

a low RS had a better probability of OS (Figure 6D). In addition,

the AUCs of the ROC curves for the 1-year, 3-year, and 5-year

survival predictions were 0.81, 0.75, and 0.716, respectively

(Figure 6E). The C-index for the external validation group

was 0.714.
The landscape of tumor-infiltrating
immunocytes in CCA

As the presence of tumor-infiltrating immunocytes is

closely related to tumor prognosis (24), we performed
B

C

D

E

F

A

FIGURE 1

Identification of DEGs and coexpression modules. (A) The heatmap plot shows DEGs between tumor and normal tissues in CCA. (B) The
volcano plot shows 849 genes downregulated and 682 genes upregulated in tumor tissues. (C) Determination of the soft thresholding power (b)
for a correlation coefficient of 0.9, as shown by the red line in the left panel. (D) Clustering dendrograms show that four coexpression modules
could be constructed based on all DEGs. (E) Network heatmap plot of the four modules; light red indicates a more significant correlation
between genes, whereas darker red indicates a weaker correlation. (F) The eigengene adjacency heatmap shows the correlations between the 4
modules.DEGs: differentially expressed genes.
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CIBERSORT analysis to calculate the proportions of 22 types

of tumor-infiltrating immunocytes for each CCA patient in

the training group (Figure 7A) (25–27). Our research

demonstrated that patients in the high-risk group had
Frontiers in Oncology 07
significantly lower levels of activated dendritic cells

(P=0.035) and resting memory CD4 T cells (P=0.031) than

those in the low-risk group but significantly higher levels of

M0 macrophages (P=0.05) (Figure 7B).
B
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A

FIGURE 2

Determination of key modules related to clinical features. (A) Heatmap displaying the correlation between the coexpression modules and
clinical traits and highlighting the yellow module as significantly related to survival and histologic neoplasm grade. (B) Scatter plot showing the
correlation between gene significance and survival in the yellow module. (C) Scatter plot showing the correction between the gene significance
and histologic neoplasm grade in the yellow module. (D) Gene interaction network of the 128 genes in the yellow module. (E) KEGG pathway
enrichment results for genes from the yellow module. (F) GO-BP, GO-CC and GO-MF enrichment analyses of genes from the yellow module.
BP, biological process; CC, cellular component; MF, molecular function.
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Construction of the prognostic signature
combining clinical parameters with the
gene signature

Using the training group, we combined the RS with

clinical information including sex, age, grade, TNM stage

and perineural invasion to construct a prognost ic

nomogram. Three patients without perineural invasion

information were excluded. The Cox proportional hazards

model was applied to evaluate the independent prognostic

ability of the signature. Then, age (P = 0.0139), N stage

(P=0.0231), RS (P=0.0243) and M stage (P=0.0799), which
Frontiers in Oncology 08
have prognostic value for OS in the training group, were

incorporated into the nomogram (Figure 8A). The AUCs of

the ROC curves for the 1-year, 3-year, and 5-year survival

predictions of the nomogram were 0.943, 0.864 and 0.855,

respectively, indicating a powerful capacity to differentiate

patients with a favorable prognosis from patients with a poor

prognosis (Figure 8B). In addition, the calibration curve

showed excellent consistency between the predicted and

observed survival probabil it ies at 1, 3 and 5 years

(Figure 8C). Moreover, the C-index for the training group

was 0.8597. These results revealed that the nomogram could

accurately predict CCA patient survival.
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FIGURE 3

Identification of key genes related to CCA patient survival. (A) The forest plot shows the six survival-related genes in the yellow module identified by
univariate Cox regression analysis. (B) Forest plot showing that GOLGA7B and AGAP2−AS1 were independent survival-related genes determined through
multivariate Cox regression analysis. (C) Kaplan–Meier curves showing that CCA patients with higher expression of GOLGA7B had a high survival
probability, and those with a higher expression of AGAP2−AS1 had a lower survival probability. (D) mRNA expression of GOLGA7B and AGAP2−AS1
between tumor and normal tissues in CCA patients in the training group. (E) Analysis of Human Protein Atlas database indicated that GOLGA7B protein
expression was significantly upregulated in CCA tumor tissues compared with cholangiocytes. The CCA tumor tissue came from a 67-year-old man
(patient ID: 3334; staining: medium; quantity: 25%-75%; intensity: moderate). The normal tissue came from a 55-year-old man (patient ID: 2399;
staining: not detected; quantity:<25%; intensity: weak). (F) qRT-PCR confirmed that GOLGA7B and AGAP2−AS1 were overexpressed in tumor samples
compared to normal tissue samples. (G) Western blotting confirmed that the protein expression of GOLGA7B was significantly upregulated in tumor
samples compared with normal tissue samples. * P<0.05; *** P<0.001; **** P<0.0001.
frontiersin.org

https://doi.org/10.3389/fonc.2022.977992
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2022.977992
Discussion

CCA is a highly lethal and challenging to treat malignancy

that is characterized by late diagnosis, early recurrence and

metastasis, low resectability, frequent development of drug

resistance and poor prognosis (2, 15, 28). In clinical practice,

novel therapies such as immunotherapy and targeted therapy

improve prognosis and significantly benefit patients with some

cancers, including lung carcinoma, leukemia, melanoma and
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hepatocellular carcinoma (29–32). The use of these novel

therapies for CCA was tested in clinical trials and showed

some promising results, but the improvement of long-term

prognosis was limited (2, 33, 34). To identify more useful

therapeutic targets and potential biomarkers for the treatment

and prognosis prediction of CCA patients, deeper and more

thorough insights into the molecular processes of CCA

progression are still needed (35, 36). RNA sequencing is a

powerful tool for carcinoma research, significantly improving
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FIGURE 4

Identification of the biological functions of GOLGA7B and AGAP2−AS1 in CCA. (A) Knockdown of GOLGA7B and AGAP2−AS1 in RBE and
HuCCT-1 cells was confirmed at the mRNA level by qRT-PCR. (B) Knockdown of GOLGA7B in RBE and HuCCT-1 cells was confirmed at the
protein level by Western blotting. (C) The CCK-8 assay verified the proliferation of RBE and HuCCT-1 cells after GOLGA7B and AGAP2−AS1
depletion. (D) Transwell assays were performed to measure the migration and invasion capabilities of RBE and HuCCT-1 cells after GOLGA7B
and AGAP2−AS1 depletion. ** P<0.01; *** P<0.001.
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the understanding of the transcriptome characteristics of

malignancies and providing potential prognostic biomarkers

and therapeutic targets (10, 11, 37). Our study aimed to

uncover novel predictive biomarkers and therapeutic targets

for CCA by bioinformatic analysis based on the CCA mRNA

transcriptome and related clinical data.

We identified 1531 DEGs in 36 CCA patients from the

TCGA dataset. Then, we used theWGCNAmethod to divide the

DEGs into four gene coexpression modules (the turquoise

module with 637 genes, the brown module with 149 genes, the

blue module with 294 genes, and the yellow module with 128

genes) and confirmed that the yellow module was significantly

associated with CCA patient survival. WGCNA is an algorithm

that can obtain gene coexpression modules from mRNA

expression profiles, and genes within the same module are

considered functionally related. In addition, WGCNA can

identify the key modules that are significantly associated with

clinical characteristics (19, 38).

In our study, WGCNA confirmed that the yellow module

was significantly related to histologic neoplasm grade, in

addition to survival. Cancers with high histologic grade are

characterized by poor differentiation, rapid division and

proliferation, and increased invasion and metastasis (39).

Moreover, GO and KEGG pathway enrichment analyses
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indicated that the genes in the yellow module were mainly

enriched in the biological processes chromosome segregation

and nuclear division and the cell cycle pathway. In summary,

enrichment analyses revealed that the genes in the yellow

module were closely associated with cell division and

proliferation. Thus, the key gene module defined and

confirmed by WGCNA was reliably associated with clinical

characteristics, and the results of WGCNA have biological

significance and could be used for further analysis (14).

To detect the key genes that could serve as prognostic

biomarkers and therapeutic targets, we performed univariate

and multivariate Cox regression analyses to identify survival-

related genes in the yellow module. We verified that the

GOLGA7B and AGAP2−AS1 genes were significantly related to

the survival of CCA patients. Upregulated GOLGA7B was a

protective factor related to good prognosis, while AGAP2−AS1

was a risk factor associated with poor prognosis.

GOLGA7B is a novel accessory protein that has rarely been

studied in the context of carcinoma. Woodley et al. showed that S-

acylated GOLGA7B could interact with and stabilize DHHC5 at

the plasma membrane to enhance cell adhesion and restrain cell

scatter (40). Loss of cell adhesion causes loss of contact inhibition,

which results in increased cell migration, cell proliferation and

cancer progression (41, 42). We also found that downregulated
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FIGURE 5

Construction and validation of the gene prognostic signature in the training group. (A) The risk plot shows the RS of each CCA patient. (B) The
risk plot shows that CCA patients with higher RS values exhibited lower expression of GOLGA7B, higher expression of AGAP2−AS1, and a better
survival rate. (C) Kaplan–Meier curves confirmed that CCA patients in the high-risk group had a poorer survival probability. (D) ROC curve to
evaluate the diagnostic competence of the two-gene prognostic predictive signature based on the expression of GOLGA7B and AGAP2−AS1.
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GOLGA7B led to enhanced proliferation, invasion and metastasis

of CCA cells. Meanwhile, AGAP2−AS1 is a lncRNA and was

recognized as an oncogene in several types of cancer, such as

adenocarcinoma, laryngeal squamous cell carcinoma, breast
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cancer and lung cancer (43–45). Some studies have elucidated

the molecular process by which AGAP2−AS1 promotes cancer

progression. Pengyu et al. reported that AGAP2-AS1 promoted

cell invasion and proliferation by upregulating the miR-193a-3p/
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FIGURE 6

External validation of the prognostic gene signature in the testing group. (A) The RNA expression of GOLGA7B and AGAP2−AS1 in tumor tissues
was higher than that in normal tissues of CCA patients in the testing group. (B) The risk plot shows the RS of each CCA patient in the testing
group. (C) The risk plot shows that CCA patients with higher RSs were associated with lower GOLGA7B expression and a better survival rate.
(D) Kaplan–Meier curves confirmed that in the testing group, CCA patients in the high-risk group had a lower survival probability. (E) ROC curve
and AUC values for validating the predictive competence of the two-gene prognostic prediction signature. **** P<0.0001.
BA

FIGURE 7

Characteristics of immunocytes in CCA. (A) CIBERSORT was used to calculate the relative percentages of 22 types of immunocytes for each
CCA patient in the training cohort. (B) The mean relative proportions of the high- and low-risk groups. *P<0.05.
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LOXL4 pathway in laryngeal squamous cell carcinoma (45). Yan

et al. confirmed that AGAP2-AS1 regulated the migration,

invasion, proliferation and apoptosis of glioma cells via the

miR-628-5p/PTN axis (46). We found that AGAP2-AS1

modulated the proliferation, migration and invasion of CCA,

and Ji et al. confirmed that SP1-induced AGAP2-AS1 promoted

CCA proliferation by silencing CDKN1A (47). Therefore, both

GOLGA7B and AGAP2−AS1 regulate CCA progression and are

potential therapeutic targets for CCA. GOLGA7B is a novel and

promising target, and further study is required to illustrate the

molecular mechanisms by which it inhibits cancer progression.

Our study also verified that GOLGA7B and AGAP2−AS1

could be prognostic biomarkers for CCA patients. We calculated

an RS for each CCA patient in the training and testing groups

based on the RNA expression of GOLGA7B and AGAP2−AS1

and related regression coefficients. The CCA patients were

categorized into low- and high-risk groups according to the RS

value, and the high-risk group generally exhibited a poor

prognosis. Both internal and external validation experiments

verified that the two-gene prognostic signature could precisely

predict CCA patient prognosis.

Recently, several prognostic gene signatures have been

constructed for CCA (48). Wang et al. identified a signature

consisting of five ferroptosis-related genes for predicting the

prognosis of cholangiocarcinoma (49). Wang et al. created a

thirteen-lncRNA prognostic signature for iCCA (50). Zou et al.

built a metabolism-related 4-lncRNA prognostic model for iCCA
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(51). However, compared with these previous signatures, the two-

gene prognostic signature defined in our study has some

advantages. First, with confirmation by internal and external

validation, our study indicated that the two-gene prognostic

signature could precisely predict CCA patient prognosis and can

be widely used. Second, GOLGA7B and AGAP2−AS1 were filtered

out from all DEGs and were significantly associated with clinical

characteristics. Thus, these survival-related genes represented the

genome-wide transcription profile, had high biological significance

and could be used to construct reliable prognostic signatures.

Third, only two genes were included in the construction of the

prognostic signature in our study, making it much smaller than the

signatures in previous studies. Therefore, this two-gene prognostic

signature is more suitable for future clinical translation or the

development of a detection kit for clinical applications.

Nevertheless, several limitations to our study should also be

noted. Our study was a retrospective study, and all the data were

acquired from public databases. In addition, the number of

samples in both the training and testing groups may be

insufficient. Thus, selection bias and information bias are

inevitable, and further extensive prospective studies must be

implemented to verify the results of our study. Moreover, our

study preliminarily explored the biological properties of

GOLGA7B and AGAP2−AS1. Nevertheless, clarifying the

molecular pathways by which GOLGA7B and AGAP2-AS1

regulate cancer development and alter prognosis will require

more in vivo and in vitro research.
B

C

A

FIGURE 8

Nomogram for survival prediction. (A) A nomogram was built by combining the RS and clinical characteristics. (B) AUCs of ROC curves for 1-, 3-, and 5-
year survival predictions were used to estimate the predictive accuracy of the nomogram. (C) Calibration plots predicting the 1-, 3- and 5-year survival
probabilities of CCA patients. The predicted survival probability is displayed on the x-axis, and the actual survival probability is presented on the y-axis.
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Conclusion

A prognostic signature comprising AGAP2−AS1 and

GOLGA7B could accurately predict the prognosis of CCA

patients. AGAP2−AS1 and GOLGA7B were associated with

the proliferation, invasion and metastasis of CCA cells. Both

AGAP2−AS1 and GOLGA7B are potential therapeutic targets

and prognostic biomarkers for CCA.
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material. Further

inquiries can be directed to the corresponding author.
Ethics statement

The studies involving human participants were reviewed and

approved by Tongji Hospital Research Ethics Committee. The

patients/participants provided their written informed consent to

participate in this study. Written informed consent was obtained

from the individual(s) for the publication of any potentially

identifiable images or data included in this article.
Author contributions

LX conceived the idea, designed the study, analyzed data,

performed most of the experiment, and wrote the manuscript.

LX and TX provided help with analyzing data. WY supervised

the entire project. All authors contributed to the article and

approved the submitted version.
Frontiers in Oncology 13
Funding

The study was supported by the Youth Program of the

National Natural Science Foundation of China (No.81902439).
Acknowledgments

The authors sincerely appreciate the study participants who

donated the CCA samples.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fonc.2022.977992/full#supplementary-material
References
1. Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR,
et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and
management. Nat Rev Gastroenterol Hepatol (2020) 17:557–88. doi: 10.1038/
s41575-020-0310-z

2. Brindley PJ, Bachini M, Ilyas SI, Khan SA, Loukas A, Sirica AE, et al.
Cholangiocarcinoma. Nat Rev Dis Primers (2021) 7:65. doi: 10.1038/s41572-021-
00300-2

3. Global Burden of Disease Cancer C, Fitzmaurice C, Dicker D, Pain A,
Hamavid H, Moradi-Lakeh M, et al. The global burden of cancer 2013. JAMA
Oncol (2015) 1:505–27. doi: 10.1001/jamaoncol.2015.0735

4. Banales JM, Cardinale V, Carpino G, Marzioni M, Andersen JB, Invernizzi P,
et al. Expert consensus document: Cholangiocarcinoma: current knowledge and
future perspectives consensus statement from the European network for the study
of cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol (2016) 13:261–
80. doi: 10.1038/nrgastro.2016.51

5. Bertuccio P, Malvezzi M, Carioli G, Hashim D, Boffetta P, El-Serag HB,
et al. Global trends in mortality from intrahepatic and extrahepatic
cholangiocarc inoma . J Hepato l (2019) 71 :104–14. do i : 10 .1016/
j.jhep.2019.03.013

6. Khan SA, Tavolari S, Brandi G. Cholangiocarcinoma: Epidemiology and risk
factors. Liver Int (2019) 39 Suppl 1:19–31. doi: 10.1111/liv.14095

7. Izquierdo-Sanchez L, Lamarca A, La Casta A, Buettner S, Utpatel K, Klumpen
HJ, et al. Cholangiocarcinoma landscape in Europe: Diagnostic, prognostic and
therapeutic insights from the ENSCCA registry. J Hepatol (2022) 76:1109–21. doi:
10.1016/j.jhep.2021.12.010

8. Khan SA, Davidson BR, Goldin RD, Heaton N, Karani J, Pereira SP, et al.
Guidelines for the diagnosis and treatment of cholangiocarcinoma: an update. Gut
(2012) 61:1657–69. doi: 10.1136/gutjnl-2011-301748

9. Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet (2014) 383:2168–79.
doi: 10.1016/S0140-6736(13)61903-0

10. Hong M, Tao S, Zhang L, Diao L-T, Huang X, Huang S, et al. RNA
Sequencing: New technologies and applications in cancer research. J Hematol
Oncol (2020) 13(1):166. doi: 10.1186/s13045-020-01005-x
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2022.977992/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.977992/full#supplementary-material
https://doi.org/10.1038/s41575-020-0310-z
https://doi.org/10.1038/s41575-020-0310-z
https://doi.org/10.1038/s41572-021-00300-2
https://doi.org/10.1038/s41572-021-00300-2
https://doi.org/10.1001/jamaoncol.2015.0735
https://doi.org/10.1038/nrgastro.2016.51
https://doi.org/10.1016/j.jhep.2019.03.013
https://doi.org/10.1016/j.jhep.2019.03.013
https://doi.org/10.1111/liv.14095
https://doi.org/10.1016/j.jhep.2021.12.010
https://doi.org/10.1136/gutjnl-2011-301748
https://doi.org/10.1016/S0140-6736(13)61903-0
https://doi.org/10.1186/s13045-020-01005-x
https://doi.org/10.3389/fonc.2022.977992
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2022.977992
11. Stark R, Grzelak M, Hadfield J. RNA Sequencing: The teenage years.Nat Rev
Genet (2019) 20:631–56. doi: 10.1038/s41576-019-0150-2

12. Huang X, Tang T, Zhang G, Liang T. Identification of tumor antigens and
immune subtypes of cholangiocarcinoma for mRNA vaccine development. Mol
Cancer (2021) 20:50. doi: 10.1186/s12943-021-01342-6

13. Szeto GL, Finley SD. Integrative approaches to cancer immunotherapy.
Trends Cancer (2019) 5:400–10. doi: 10.1016/j.trecan.2019.05.010

14. Long J, Huang S, Bai Y, Mao J, Wang A, Lin Y, et al. Transcriptional
landscape of cholangiocarcinoma revealed by weighted gene coexpression network
analysis. Brief Bioinform (2021) 22(4):bbaa224. doi: 10.1093/bib/bbaa224

15. Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma
- evolving concepts and therapeutic strategies. Nat Rev Clin Oncol (2018) 15:95–
111. doi: 10.1038/nrclinonc.2017.157

16. Charalampakis N, Papageorgiou G, Tsakatikas S, Fioretzaki R, Kole C,
Kykalos S, et al. Immunotherapy for cholangiocarcinoma: a 2021 update.
Immunotherapy (2021) 13:1113–34. doi: 10.2217/imt-2021-0126

17. Montal R, Sia D, Montironi C, Leow WQ, Esteban-Fabro R, Pinyol R, et al.
Molecular c lass ificat ion and therapeut ic targets in extrahepat ic
cholangiocarcinoma. J Hepatol (2020) 73:315–27. doi: 10.1016/j.jhep.2020.03.008

18. Chen Y, Pal B, Visvader JE, Smyth GK. Differential methylation analysis of
reduced representation bisulfite sequencing experiments using edgeR.
F1000Research (2017) 6:2055. doi: 10.12688/f1000research.13196.1

19. Langfelder P, Horvath S. WGCNA: an r package for weighted correlation
network analysis. BMC Bioinf (2008) 9:559. doi: 10.1186/1471-2105-9-559

20. Zhang B, Horvath S. A general framework for weighted gene co-expression
network analysis. Stat Appl Genet Mol Biol (2005) 4:Article17. doi: 10.2202/1544-
6115.1128

21. Longato E, Vettoretti M, Di Camillo B. A practical perspective on the
concordance index for the evaluation and selection of prognostic time-to-event
models. J BioMed Inform (2020) 108:103496. doi: 10.1016/j.jbi.2020.103496

22. Balachandran VP, Gonen M, Smith JJ, DeMatteo RP. Nomograms in
oncology: more than meets the eye. Lancet Oncol (2015) 16:e173–80.
doi: 10.1016/S1470-2045(14)71116-7

23. Iasonos A, Schrag D, Raj GV, Panageas KS. How to build and interpret a
nomogram for cancer prognosis. J Clin Oncol (2008) 26:1364–70. doi: 10.1200/
JCO.2007.12.9791

24. Goeppert B, Frauenschuh L, Zucknick M, Stenzinger A, Andrulis M,
Klauschen F, et al. Prognostic impact of tumour-infiltrating immune cells on
biliary tract cancer. Br J Cancer (2013) 109:2665–74. doi: 10.1038/bjc.2013.610

25. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling
tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol (2018)
1711:243–59. doi: 10.1007/978-1-4939-7493-1_12

26. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods (2015)
12:453–7. doi: 10.1038/nmeth.3337

27. Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, et al.
Molecular and pharmacological modulators of the tumor immune contexture
revealed by deconvolution of RNA-seq data. Genome Med (2019) 11:34.
doi: 10.1186/s13073-019-0638-6

28. Rodrigues PM, Olaizola P, Paiva NA, Olaizola I, Agirre-Lizaso A, Landa A,
et al. Pathogenesis of cholangiocarcinoma. Annu Rev Pathol (2021) 16:433–63.
doi: 10.1146/annurev-pathol-030220-020455

29. Sangro B, Sarobe P, Hervas-Stubbs S, Melero I. Advances in immunotherapy
for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol (2021) 18:525–43.
doi: 10.1038/s41575-021-00438-0

30. Llovet JM, Castet F, Heikenwalder M, Maini MK, Mazzaferro V, Pinato DJ,
et al. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol (2022)
19:151–72. doi: 10.1038/s41571-021-00573-2

31. Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and
immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol
(2017) 14:463–82. doi: 10.1038/nrclinonc.2017.43

32. Devine SM, Larson RA. Acute leukemia in adults: recent developments in
diagnosis and treatment. CA Cancer J Clin (1994) 44:326–52. doi: 10.3322/
canjclin.44.6.326
Frontiers in Oncology 14
33. Piha-Paul SA, Oh DY, Ueno M, Malka D, Chung HC, Nagrial A, et al.
Efficacy and safety of pembrolizumab for the treatment of advanced biliary cancer:
Results from the KEYNOTE-158 and KEYNOTE-028 studies. Int J Cancer (2020)
147:2190–8. doi: 10.1002/ijc.33013

34. Abou-Alfa GK, Macarulla T, Javle MM, Kelley RK, Lubner SJ, Adeva J, et al.
Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma
(ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase
3 study. Lancet Oncol (2020) 21:796–807. doi: 10.1016/S1470-2045(20)30157-1

35. Sirica AE, Gores GJ, Groopman JD, Selaru FM, Strazzabosco M, Wei Wang
X, et al. Intrahepatic cholangiocarcinoma: Continuing challenges and translational
advances. Hepatology (2019) 69:1803–15. doi: 10.1002/hep.30289

36. Macias RIR, Kornek M, Rodrigues PM, Paiva NA, Castro RE, Urban S, et al.
Diagnostic and prognostic biomarkers in cholangiocarcinoma. Liver Int (2019) 39
Suppl 1:108–22. doi: 10.1111/liv.14090

37. Kuksin M, Morel D, Aglave M, Danlos FX, Marabelle A, Zinovyev A, et al.
Applications of single-cell and bulk RNA sequencing in onco-immunology. Eur J
Cancer (2021) 149:193–210. doi: 10.1016/j.ejca.2021.03.005

38. Kakati T, Bhattacharyya DK, Barah P, Kalita JK. Comparison of methods for
differential Co-expression analysis for disease biomarker prediction. Comput Biol
Med (2019) 113:103380. doi: 10.1016/j.compbiomed.2019.103380

39. Nagtegaal ID, Odze RD, Klimstra D, Paradis V, Rugge M, Schirmacher P,
et al. The 2019 WHO classification of tumours of the digestive system.
Histopathology (2020) 76:182–8. doi: 10.1111/his.13975

40. Say YH, Sio YY, Heng AHS, Ng YT, Matta SA, Pang SL, et al. Golgin A7
family member b (GOLGA7B) is a plausible novel gene associating high glycaemic
index diet with acne vulgaris. Exp Dermatol (2022) 31(8):1208–19. doi: 10.1111/
exd.14575

41. Mendonsa AM, Na TY, Gumbiner BM. E-cadherin in contact inhibition and
cancer. Oncogene (2018) 37:4769–80. doi: 10.1038/s41388-018-0304-2

42. Pavel M, Renna M, Park SJ, Menzies FM, Ricketts T, Fullgrabe J, et al.
Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy
axis. Nat Commun (2018) 9:2961. doi: 10.1038/s41467-018-05388-x

43. Qian X, Qu H, Zhang F, Peng S, Dou D, Yang Y, et al. Exosomal long
noncoding RNA AGAP2-AS1 regulates trastuzumab resistance via inducing
autophagy in breast cancer. Am J Cancer Res (2021) 11:1962–81. doi: 10.21203/
rs.3.rs-34252/v1

44. Zhang F, Sang Y, Chen D, Wu X, Wang X, Yang W, et al. M2 macrophage-
derived exosomal long non-coding RNA AGAP2-AS1 enhances radiotherapy
immunity in lung cancer by reducing microRNA-296 and elevating NOTCH2.
Cell Death Dis (2021) 12:467. doi: 10.1038/s41419-021-03700-0

45. Ren P, Niu X, Zhao R, Liu J, Ren W, Dai H, et al. Long non-coding RNA
AGAP2-AS1 promotes cell proliferation and invasion through regulating miR-
193a-3p/LOXL4 axis in laryngeal squamous cell carcinoma. Cell Cycle (2022)
21:697–707. doi: 10.1080/15384101.2021.2016197

46. Yan Y, Wang Y, Liu Y, Chen T, Zhu Y, Li H, et al. Long non-coding RNA
AGAP2-AS1/miR-628-5p/PTN axis modulates proliferation, migration, invasion,
and apoptosis of glioma cells. Cancer Manag Res (2020) 12:6059–68. doi: 10.2147/
CMAR.S250890

47. Ji H, Wang J, Lu B, Li J, Zhou J, Wang L, et al. SP1 induced long non-coding
RNA AGAP2-AS1 promotes cholangiocarcinoma proliferation via silencing of
CDKN1A. Mol Med (2021) 27:10. doi: 10.1186/s10020-020-00222-x

48. Pan Y, Shao S, Sun H, Zhu H, Fang H. Bile-derived exosome noncoding
RNAs as potential diagnostic and prognostic biomarkers for cholangiocarcinoma.
Front Oncol (2022) 12:985089. doi: 10.3389/fonc.2022.985089

49. Wang Z, Zhang Y, Chen Y, Liu S, Li C, Li X. Identification of a ferroptosis-
related gene signature for predicting the prognosis of cholangiocarcinoma.
Expert Rev Gastroenterol Hepatol (2022) 16:181–91. doi: 10.1080/17474124.
2022.2029700

50. Zhang Z, Wang Z, Huang Y. Identification of potential prognostic long non-
coding RNA for predicting survival in intrahepatic cholangiocarcinoma. Med
(Baltimore) (2020) 99:e19606. doi: 10.1097/MD.0000000000019606

51. Zou W, Wang Z, Wang F, Li L, Liu R, Hu M. A metabolism-related 4-
lncRNA prognostic signature and corresponding mechanisms in intrahepatic
cholangiocarcinoma. BMC Cancer (2021) 21:608. doi: 10.1186/s12885-021-
08322-5
frontiersin.org

https://doi.org/10.1038/s41576-019-0150-2
https://doi.org/10.1186/s12943-021-01342-6
https://doi.org/10.1016/j.trecan.2019.05.010
https://doi.org/10.1093/bib/bbaa224
https://doi.org/10.1038/nrclinonc.2017.157
https://doi.org/10.2217/imt-2021-0126
https://doi.org/10.1016/j.jhep.2020.03.008
https://doi.org/10.12688/f1000research.13196.1
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.2202/1544-6115.1128
https://doi.org/10.2202/1544-6115.1128
https://doi.org/10.1016/j.jbi.2020.103496
https://doi.org/10.1016/S1470-2045(14)71116-7
https://doi.org/10.1200/JCO.2007.12.9791
https://doi.org/10.1200/JCO.2007.12.9791
https://doi.org/10.1038/bjc.2013.610
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1186/s13073-019-0638-6
https://doi.org/10.1146/annurev-pathol-030220-020455
https://doi.org/10.1038/s41575-021-00438-0
https://doi.org/10.1038/s41571-021-00573-2
https://doi.org/10.1038/nrclinonc.2017.43
https://doi.org/10.3322/canjclin.44.6.326
https://doi.org/10.3322/canjclin.44.6.326
https://doi.org/10.1002/ijc.33013
https://doi.org/10.1016/S1470-2045(20)30157-1
https://doi.org/10.1002/hep.30289
https://doi.org/10.1111/liv.14090
https://doi.org/10.1016/j.ejca.2021.03.005
https://doi.org/10.1016/j.compbiomed.2019.103380
https://doi.org/10.1111/his.13975
https://doi.org/10.1111/exd.14575
https://doi.org/10.1111/exd.14575
https://doi.org/10.1038/s41388-018-0304-2
https://doi.org/10.1038/s41467-018-05388-x
https://doi.org/10.21203/rs.3.rs-34252/v1
https://doi.org/10.21203/rs.3.rs-34252/v1
https://doi.org/10.1038/s41419-021-03700-0
https://doi.org/10.1080/15384101.2021.2016197
https://doi.org/10.2147/CMAR.S250890
https://doi.org/10.2147/CMAR.S250890
https://doi.org/10.1186/s10020-020-00222-x
https://doi.org/10.3389/fonc.2022.985089
https://doi.org/10.1080/17474124.2022.2029700
https://doi.org/10.1080/17474124.2022.2029700
https://doi.org/10.1097/MD.0000000000019606
https://doi.org/10.1186/s12885-021-08322-5
https://doi.org/10.1186/s12885-021-08322-5
https://doi.org/10.3389/fonc.2022.977992
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Identification of therapeutic targets and prognostic biomarkers in cholangiocarcinoma via WGCNA
	Introduction
	Materials and methods
	Dataset collection
	Differential gene expression analysis
	Coexpression module construction
	Functional enrichment analyses
	Prognostic signature construction
	Gene&minus;based prognostic signature validation
	Nomogram construction and validation
	Patients and clinical sample collection
	Cell culture and transfection
	Western blotting and quantitative real-time PCR
	Transwell invasion and cell proliferation assays

	Results
	Identification of DEGs and gene coexpression modules
	Determination of key modules related to clinical features
	Identification of key genes related to survival
	Identification of the biological functions of GOLGA7B and AGAP2&minus;AS1
	Construction and internal validation of the two-gene prognostic signature
	External validation of the two-gene prognostic signature
	The landscape of tumor-infiltrating immunocytes in CCA
	Construction of the prognostic signature combining clinical parameters with the gene signature

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


