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Gabryś HS, Basler L, Burgermeister S,
Hogan S, Ahmadsei M, Pavic M,
Bogowicz M, Vuong D,
Tanadini-Lang S, Förster R, Kudura K,
Huellner M, Dummer R, Levesque MP
and Guckenberger M (2022) PET/CT
radiomics for prediction of
hyperprogression in metastatic
melanoma patients treated with
immune checkpoint inhibitors.
Front. Oncol. 12:977822.
doi: 10.3389/fonc.2022.977822

TYPE Original Research
PUBLISHED 24 November 2022

DOI 10.3389/fonc.2022.977822
PET/CT radiomics for prediction
of hyperprogression in
metastatic melanoma patients
treated with immune
checkpoint inhibitors
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M. Ahmadsei1, M. Pavic1, M. Bogowicz1, D. Vuong1,
S. Tanadini-Lang1, R. Förster1, K. Kudura3, M. Huellner3,
R. Dummer2, M. P. Levesque2† and M. Guckenberger1*†

1Department of Radiation Oncology, University Hospital Zurich, University of Zurich,
Zurich, Switzerland, 2Department of Dermatology, University Hospital Zurich, University of Zurich,
Zurich, Switzerland, 3Department of Nuclear Medicine, University Hospital Zurich, University
of Zurich, Zurich, Switzerland
Purpose: This study evaluated pretreatment 2[18F]fluoro-2-deoxy-D-glucose

(FDG)-PET/CT-based radiomic signatures for prediction of hyperprogression in

metastatic melanoma patients treated with immune checkpoint inhibition (ICI).

Material and method: Fifty-six consecutive metastatic melanoma patients

treated with ICI and available imaging were included in the study and 330

metastatic lesions were individually, fully segmented on pre-treatment CT and

FDG-PET imaging. Lesion hyperprogression (HPL) was defined as lesion

progression according to RECIST 1.1 and doubling of tumor growth rate.

Patient hyperprogression (PD-HPD) was defined as progressive disease (PD)

according to RECIST 1.1 and presence of at least one HPL. Patient survival was

evaluated with Kaplan-Meier curves. Mortality risk of PD-HPD status was

assessed by estimation of hazard ratio (HR). Furthermore, we assessed with

Fisher test and Mann-Whitney U test if demographic or treatment parameters

were different between PD-HPD and the remaining patients. Pre-treatment

PET/CT-based radiomic signatures were used to build models predicting HPL

at three months after start of treatment. The models were internally validated

with nested cross-validation. The performance metric was the area under

receiver operating characteristic curve (AUC).

Results: PD-HPD patients constituted 57.1% of all PD patients. PD-HPD was

negatively related to patient overall survival with HR=8.52 (95%CI 3.47-20.94).

Sixty-nine lesions (20.9%) were identified as progressing at 3 months. Twenty-

nine of these lesions were classified as hyperprogressive, thereby showing a

HPL rate of 8.8%. CT-based, PET-based, and PET/CT-based models predicting

HPL at three months after the start of treatment achieved testing AUC of 0.703
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+/- 0.054, 0.516 +/- 0.061, and 0.704 +/- 0.070, respectively. The best

performing models relied mostly on CT-based histogram features.

Conclusions: FDG-PET/CT-based radiomic signatures yield potential for

pretreatment prediction of lesion hyperprogression, which may contribute to

reducing the risk of delayed treatment adaptation in metastatic melanoma

patients treated with ICI.
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Introduction

Immune checkpoint inhibition (ICI) targeting PD-1 and

CTLA-4 have become guideline-recommended treatment

standards in metastatic melanoma and have revolutionized the

outcome of this disease (1–3). However, more than 50% of

patients do not respond to treatment (4).

Moreover, one of the most important subjects is early

identification and potentially prediction of patients who

experience rapid disease progression, that is a hyperprogressive

disease (PD-HPD), following ICI treatment (5–7). In this

specific subset of patients, the treatment with ICI is actually

harmful to patients and leads to a worsened outcome. About 4–

29% of patients treated with ICI may experience PD-HPD (7).

There is no widely accepted definition of PD-HPD, however it is

often defined as progression (PD) in terms of RECIST criteria

with at least doubling of the tumor growth rate (TGR) (6, 8, 9).

The biological and clinical mechanisms leading to the

development of PD-HPD are not yet fully understood.

Identifying biomarkers for ICI response prediction and

response assessment is challenging. Currently, only LDH is

established as a serum biomarker with prognostic value for

overall survival (OS) in melanoma (10). S100 is another well-

known blood marker, associated with response to Ipilimumab

(11). However, despite obvious advantages of biospecimen-

derived biomarkers, they require at least minimally invasive

diagnostic techniques and are not used in the current clinical

routine (12–20). On the other hand, non-invasive anatomical

and functional imaging using CT, MRI, and FDG-PET is

performed repetitively during the treatment course, providing

the opportunity for continuous response evaluation.

Furthermore, imaging-based biomarkers could be able to

identify most likely response of every single lesion, whereas

serum biomarkers can be correlated only with response on a

patient level.

Quantitative medical image analysis with radiomics has been

shown to predict not only the immune phenotype of tumors but

also the clinical patient outcome (21). In our previous study, we
02
presented FDG-PET/CT-based radiomic and delta-radiomic

prediction models for the differentiation of pseudoprogression

from true progressive disease (22). Recently, Wang et al. showed

that CT-based radiomics has potential to predict early response

to ICI and to identify pseudoprogression (23).

As of today, there are no reliable, clinically validated

biomarkers of PD-HPD. In recent years, a few studies were

published investigating suitability of image-based biomarkers for

PD-HPD prediction (24–26). Most of these studies, however,

considered only CT-based radiomic signatures. In this

exploratory study, we aimed to evaluate the value of radiomic

signatures for early prediction of PD-HPD from pre-treatment

CT and FDG-PET imaging. Here, we investigate whether

combination of CT-based and PET-based radiomics could

provide an advantage over models based on a single

imaging modality.
Material and methods

Patient cohort

This analysis is based on a retrospective cohort of 190

consecutive metastatic melanoma patients treated with either

single checkpoint-inhibition (anti-PD-1) or dual checkpoint

inhibition (anti-PD-1/anti-CTLA-4) between 2013 and 2019 in

a single institution. The study was approved by the local ethics

committee (Kantonale Ethikkommission Zürich, approval

number 2019-01012) in accordance with ‘good clinical

practice’ (GCP) guidelines and the Declaration of Helsinki.

Written informed consent was obtained from all patients.

The following exclusion criteria were applied: lack of pre-

baseline/baseline/follow-up imaging; patients with only

contrast-enhanced CT imaging (as most patients were staged/

followed with non-enhanced PET/CT-imaging); patients with

only brain metastases; patients presenting with only very small

metastases at baseline (all baseline lesions <0.5 cc). After

exclusion of patients without valid baseline and follow-up
frontiersin.org
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imaging as well as at least one measurable non-brain metastasis

at baseline, the cohort was reduced from 190 to 112 patients and

corresponded to the cohort used in our previous study (22).

Subsequently, 56 patients without pre-baseline imaging were

excluded. This resulted in 56 patients that were selected for this

study. The patient characteristics are provided in Table 1.
Frontiers in Oncology 03
Endpoints

The primary study endpoint was hyperprogression of

individual metastatic lesions (HPL) at 3 months after the start

of immunotherapy. The HPL was defined as progression

according to RECIST criteria and at least doubling of a lesion’s
TABLE 1 Patient characteristics.

All patients (n=56) nPD (n=42) PD-nHPD (n=6) PD-HPD (n=8) p-value

Age (years) 0.89

Median 70 70 67 66

Q1-Q3 53–74 52–76 56–70 58–72

Range 33–93 33-93 41–80 53–81

Sex 0.67

Male 41 (73.2%) 32 (76.2%) 4 (66.7%) 5 (62.5%)

Female 15 (26.8%) 10 (23.8%) 2 (33.3%) 3 (37.5%)

Type of ICI* 1.00

aPD1 50 (89.3%) 38 (90.5%) 5 (83.3%) 7 (87.5%)

aCTLA4 + aPD1 5 (8.9%) 4 (9.5%) 1 (16.7%) 0

aCTLA4 1 (1.8%) 0 0 1 (12.5%)

Number of lesions 0.19

Total 330 250 18 62

Median 5 6 3 7

Q1-Q3 2–8 2–9 1–4 5–10

Range 1–19 1–19 1–6 2–15

Metastatic sites

Lymph node 120 (36.4%) 97 (38.8%) 9 (50.0%) 14 (22.6%) 0.42

Lung 61 (18.5%) 52 (20.8%) 3 (16.7%) 6 (9.7%) 0.62

Liver 38 (11.5%) 24 (9.6%) 1 (5.6%) 13 (21.0%) 0.06

Bone 32 (9.7%) 21 (8.4%) 0 (0.0%) 11 (17.7%) 0.75

Other 79 (23.9%) 56 (22.4%) 5 (27.8%) 18 (29.0%)

BRAF mutation** 0.66

Wild type 42 (75.0%) 31 (73.8%) 04 (66.7%) 7 (87.5%)

V600E 9 (16.1%) 6 (14.3%) 2 (33.3%) 1 (12.5%)

V600K 2 (3.6%) 2 (4.8%) 0 0

V600-K601E 1 (1.8%) 1 (2.4%) 0 0

K601E 1 (1.8%) 1 (2.4%) 0 0

N581S 1 (1.8%) 1 (2.4%) 0 0

New lesions during follow-up 0.03

Yes 15 (26.8%) 5 (11.9%) 5 (83.3%) 5 (62.5%)

No 41 (73.2%) 37 (88.1%) 1 (16.7%) 3 (37.5%)

LDH [U/L] 0.27

Median 380 374 414 428

Q1-Q3 343–462 326–441 382–463 362–500

Range 247–1099 247–1099 299–759 337–639

S100 [mg/L] 0.64

Median 0.140 0.145 0.105 0.200

Q1-Q3 0.085–0.315 0.065–0.468 0.085–0.178 0.115–0.250

Range 0.00–2.940 0.000–2.940 0.000–0.300 0.090–1.190
fronti
* p-value for type of ICI was calculated as single vs double checkpoint inhibition.
** p-value for BRAF mutation was calculated as wild type vs (any) mutation.
The p-values were reported for comparisons between PD-HPD vs. the remaining patients (nPD and PD-nHPD). nPD, non-progressing patients; PD-nHPD, progressing but not
hyperprogressing patients; PD-HPD, hyperprogressin patients.
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TGR between the baseline and the follow-up (6, 8, 9). The TGR

was estimated using the exponential tumor growth assumption

following the approach of Champiat et al. (8). To establish the

TGR, the long diameters (according to RECIST) of all lesions

were measured at the pre-baseline (3 months +/- 2 months

before the baseline), baseline (up to 3 months before the

treatment), and follow-up (3 months +/- 1.5 months after the

start of the treatment).

Additionally, we evaluated hyperprogression on a patient

level, that is a hyperprogressing disease (PD-HPD). A patient

with PD-HPD was defined as a patient developing a progressive

disease (PD) according to the RECIST 1.1 criteria (27) who had

at least one HPL. PD patients that were not hyperprogressing

were marked as PD-nHPD, whereas patients that were not

progressing were marked as nPD.
Imaging and lesion delineation

All imaging was performed using standardized imaging-

protocols at a single institution. The patients were injected

with a body-weight-dependent and/or BMI-adapted FDG dose

(2.0–3.5 MBq per kg). Scanning was performed on different

scanners, partly with time-of-flight acquisition. PET image

reconstructions used ordered subset expectation maximization

together with point spread function modeling where available.

The CT acquisition parameters were almost identical for all

scanners and have been described previously in detail (28).

Fifty-six patients with a total of 330 lesions at baseline fulfilled

all inclusion and exclusion criteria, which differed from our

previous study in the regard that an additional pre-baseline

imaging was required to define the pre-baseline TGR. All lesions

were manually segmented in 3D and mutually checked by two

experienced clinicians with validated reproducibility based on a

common protocol and consistent quality control at all time-points.

A rigid registration was performed for CT and PET images and CT-

based contours were propagated to the PET images. Spatial
Frontiers in Oncology 04
mismatches were manually corrected by shifting the CT-based

contours to the corresponding lesion locations in PET images.

Subsequently, PET contours were adapted to conform to the PET

signal. Sample baseline images with segmentations are presented

in Figure 1.
Radiomic feature extraction

Preprocessing and extraction of radiomic features from the

baseline medical images were done using an in-house developed

software, Z-Rad (29). Implementation of radiomic feature

definitions in Z-Rad fol lows the Image Biomarker

Standardization Initiative (IBSI) (30).

In the preprocessing step, CT and PET images were resized

to isotropic voxels of 2 mm size. Intensity values of the images

were discretized using a quantization step of 5 HU for CT and

0.25 SUV for PET. Lesions smaller than 0.5 cc were excluded

from the analysis. Features describing shape of the lesions,

histogram of voxel intensities, and texture of the lesions were

extracted. Since CT-based and PET-based segmentations

differed slightly, shape features were extracted separately from

CT and PET images. In total, 180 radiomic features per lesion

were extracted for each imaging modality. A full list of extracted

features is provided in the supplement.
Statistical analysis

The PD-HPD rates with respect to patient sex, the immune

checkpoint inhibition type, BRAF mutation status, and

appearance of new lesions at the follow-up were compared

with Fisher’s exact test. Mann-Whitney U test was used to

evaluate association of PD-HPD rate with patient age, total

number of metastatic lesions, and serum biomarker levels. The

difference in the HPL rate with respect to lesion location was

evaluated with Fisher’s exact test.
B C DA

FIGURE 1

Baseline images of hyperprogressing (A, C) and non-hyperprogressing (B, D) lesions of a selected patient.
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Patient OS was estimated with the Kaplan-Meier estimator and

the difference in survival between different patient groups was

assessed using the log-rank test and hazard ratios. The landmark

for the survival analysis was set at three months after start of

treatment to correct for guarantee-time bias (31, 32). Therefore, all

metrics relating to patient OS in this study are to be taken with

respect to this landmark and not to the start of treatment.

The models of hyperprogression were trained to predict HPL

at 3 months after start of the treatment based on baseline FDG-

PET/CT imaging data. Building reliable models of PD-HPD was

not feasible due to the low number of patients. Three HPL

models were considered: 1) a model relying on CT-based

radiomic features, 2) a model relying on PET-based radiomic

features, 3) and a model relying on both CT- and PET-based

radiomic features. The feature space comprised 180 radiomic

features extracted from CT, 180 radiomic features extracted

from PET images. Next, from all pairs of features correlated

above Kendall’s tau = 0.90, a random one was subsequently

removed to reduce redundancy of the features.

The predictive models of HPL were trained, optimized, and

tested in a setting of a nested cross-validation. A nested cross-

validation allows to select the best model for the data set and the

best set of hyperparameters for the chosen model.

Hyperparameter selection (model tuning) is done in the inner

cross-validation, whereas the outer cross-validation estimates an

unbiased performance of the model (33). The inner loop, used

for model tuning, was a 10x-repeated stratified 5-fold cross-

validation. In total, 100 randomly generated hyperparameter

samples were evaluated in model tuning with random search

optimization. The list and scope of hyperparameters that were

tuned is provided in the code repository associated with this

manuscript. The outer loop, used for model testing, was a

stratified group 5-fold cross-validation. This type of cross-

validation ensured that folds preserved the percentage of

samples for each class and lesions of the same patients were

not overlapping testing and training folds. Feature selection

method and its hyperparameters were part of the model

tuning pipeline. It was realized by fitting a gradient tree

boosting model and selection of its most important features.

These features were later fed into a logistic regression model

(34). We imposed an arbitrary hard limit of maximum six

features per imaging modality to avoid generation of overly

complex models. For this reason, the largest CT-based and PET-

based models had six covariates, whereas the largest PET/CT-

based models had twelve covariates.

Model performance was measured with the area under

receiver operating characteristic curve (AUC). The variability

of the performance scores was estimated with standard deviation

of the scores from the cross-validation.

The following open-source Python packages were used for

visualization and statistical analysis: Lifelines (35), Matplotlib

(36), NumPy & SciPy (37), Pandas (38), Scikit-learn (39),

XGBoost (40). The code used for model training, tuning,
Frontiers in Oncology 05
testing, and visualization is provided in a public online

repository: https://github.com/hubertgabrys/PET-CT-

radiomics-for-prediction-of-hyperprogression-in-metastatic-

melanoma-patients-treated-with-imm
Results

Hyperprogression rates and patient
survival

The cohort comprised 56 patients with 330 lesions at

baseline (Figure 2). According to the RECIST criteria, 20.9%

(n=69) lesions were progressing. The 29 hyperprogressing

lesions corresponded to a 42.0% HPL rate among the

progressing lesions and an 8.8% HPL rate among all lesions.

The difference in HPL rates with respect to lesion location was

evaluated with Fisher’s exact test and did not result in significant

differences: lymph nodes (p-value=0.42), lung (p-value=0.62),

liver (p-value=0.06), and bone (p-value=0.75).

The 14 PD patients accounted for 25.0% of all patients. The PD-

HPD patients (n=8) constituted 57.1% of PD patients and 14.3% of

all patients. The influence of various patient-specific factors on the

PD-HPD rate was evaluated and the results are reported in Table 1.

PD-HPD was independent from patient age (p-value=0.89) and sex

(p-value=0.67). Also, BRAF mutation status (p-value=0.66) and the

type of immune checkpoint inhibition (p-value=1.00) were not

significantly different between the groups PD-HPD and the

remaining patients. A slight trend of increasing median values of

LDH from nPD through PD-nHPD to PD-HPD was observed,

however the difference was far from statistical significance (p-

value=0.27). The other analyzed serum biomarker, that is S100,

also was not significant (p-value=0.64). Total number of lesions at

baseline was not associated with risk of PD=HPD (p-value=0.19).

However, appearance of new metastatic lesions during follow-up

was significantly higher in the PD-HPD group compared to the

other patients with p-value=0.03.

Median survival in the total cohort was 54 months. The nPD

patients had significantly longer survival (median OS not

reached; HR = 0.10 (95%CI 0.05-0.23)) than PD-nHPD

(median OS = 12 months; HR = 4.27 (95%CI 1.69-10.81)) and

PD-HPD (median OS = 7 months; HR = 8.52 (95%CI 3.47-

20.94)) patients (p-value<0.01). However, the difference in

survival between PD-nHPD and PD-HPD was not statistically

significant (p-value = 0.32). Kaplan-Meier curves for different

patient groups are presented in Figure 3.
Models of hyperprogression

After removal of correlations above Kendall’s tau = 0.90, the

dimensionality was reduced to 85 CT-based features and 78 PET-

based features. Full correlation matrix is provided in the
frontiersin.org
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supplement. The dendrogram showing hierarchical agglomerative

clustering of features left after the dimensionality reduction is also

provided in the supplement.

The CT-based model achieved AUC=0.760 +/- 0.017 in

training and AUC=0.703 +/- 0.054 in testing (Figure 4A). The

model was based on four histogram features and one texture feature

(Figure 4B). However, the weight of the texture feature was rather

low and had little influence onmodel predictions. There were we no

highly correlated features in the model (Figure 4C). The PET-based

model failed to validate achieving AUC=0.629 +/- 0.028 in training

and AUC=0.516 +/- 0.061 in testing (Figure 4D). The model

weights and correlations among model covariates are presented in

Figures 4E, F). The PET/CT model performed comparable to the

CT-based model scoring AUC=0.756 +/- 0.041 in training and
Frontiers in Oncology 06
AUC=0.704 +/- 0.070 in testing (Figure 4G). The model was based

on the same five features as the CT-based model with the addition

of one PET-based texture feature (Figure 4H). Both CT-based and

PET-based texture features in this model had relatively low weights

so the model outputs were mainly driven by the CT-based

histogram features. A correlation matrix of the model covariates

is presented in Figure 4I.
Discussion

Hyperprogression, which describes an accelerated disease

progression, constitutes a major challenge in treatment of cancer

patients treated with ICI. In this study, we investigated the
B

A

FIGURE 2

Progression and hyperprogression rates on a lesion (A) and a patient level (B).
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prevalence of PD and PD-HPD in our patient cohort and its

relation to patient OS. Furthermore, we trained and tested

machine learning models based on pre-treatment FDG-PET/

CT radiomics to predict and identify metastatic lesions, which

might become HPL at 3 months after start of therapy.

The incidence of PD-HPD described in previous studies was

between 4-29% across multiple histologies (7). Consistently with

the existing literature, the PD-HPD rate in our study was 8.8%

on a metastatic lesion level distributed over 8 patients. It is

noteworthy that the PD-HPD patients constituted 57.1% of all

PD patients. This shows that, although PD-HPD affects a

relatively small fraction of all patients, it appears to form a

significant proportion within a group of patients that are in a

progressing disease stage. Furthermore, PD-HPD is a high-risk

factor and was associated with significantly reduced OS

compared to the other patients (median OS = 7 months vs.

“not reached”), regardless of the type of ICI. Several other studies

have reported similar results (7, 24). An explanation might be

that the affected patients experienced a negative effect upon

treatment with ICI (41). While the exact pathomechanism of

PD-HPD is not clearly understood yet, several studies suggest

that a variety of immune-cells might play a crucial role. Upon

treatment with ICI, PD-HPD patients show a massive increase of

intratumoral macrophages, which can express PD1 and thereby

block ICI. Furthermore, PD-HPD patients show an increased
Frontiers in Oncology 07
amount of senescent CD4+ T cells (Tsens) and Ki67-positive

effector regulatory T cells in tumor-infiltrating lymphocytes

(TIL) (42). We also observed a significantly increased rate of

new metastases in PD-HPD patients during the first three

months of the follow-up (p-value = 0.03). The difference in the

OS between PD-HPD and PD-nHPD patients was noticeable

(median OS = 7 months and median OS = 12 months,

respectively), however statistically not significant, likely due to

a limited number of patients in these groups.

The potential of radiomics to predict treatment response and

outcome for a variety of tumor types has been demonstrated in

several studies (43, 44). In our previous study, we demonstrated that

the combination of multi-modal radiomics and blood markers can

differentiate true progression from pseudoprogression in melanoma

patients treated with ICI (22). Vaidya et al. reported that CT-based

radiomic signatures extracted from pre-treatment CTs of patients

with advanced NSCLC treated with ICI can identify patients at risk

of hyperprogression (AUC=0.96) (25). Unfortunately, no

uncertainty estimates were provided. Additionally, Song et al.

evaluated CT-based radiomic features of hyperprogression at the

lesion level in patients with advanced lung cancer treated with ICI

(24). The authors demonstrated that radiomic features identifying

hyperprogression differed among organs with AUC varying from

0.61 to 0.72, highlighting the potential of radiomics to differentiate

hyperprogression and its organ-specific micro-environment. In
FIGURE 3

Kaplan-Meier curves for the whole cohort (All; n=56), non-progressing patients (nPD; n=42), progressing but not hyperprogressing patients
(PD-nHPD; n=6), and hyperprogressing patients (PD-HPD; n=8). Survival functions were estimated with respect to the landmark (3 months) and
not to the start of treatment.
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both studies, HPD correlated with significantly reduced OS.

Predictive performance of our models (AUC=0.70) is in line with

the scores reported by Song et al. Furthermore, He et al. showed in a

multicenter study that pre-treatment CT-based radiomics might

contribute to predict atypical responses to ICI in several cancer

types (26). The models reported by He et al. achieved higher AUCs

ranging from 0.77 to 0.93.

CT-based radiomic features proved to be more predictive of

HPL than PET-based features. Our CT-based model achieved

generalization AUC=0.703 +/- 0.054. The PET-based model was

meaningless (AUC testing=0.516 +/- 0.061). Moreover, the PET/

CT did not provide significant improvement over the CT-based

model (AUC testing=0.704 +/- 0.070) and virtually resembled

the CT-based model with addition of one texture type PET-
Frontiers in Oncology 08
based feature. This indicates that PET imaging does not provide

additional hyperprogression-related information over CT in our

data set. This could be caused by relatively low imaging

resolution of PET with respect to lesion size.

The CT-based features underlying the models were mostly

intensity features. Interpretation of results in studies involving

radiomics are always challenging. Nevertheless, the features

underlying our best performing models paint a coherent

picture. It seems that lesions classified as likely to become

hyperprogressive had high minimum intensity values (high

hist_percentile10) and high average signal intensity (high

hist_RMS). However, at the same time these lesions had

relatively low overall signal intensity (low hist energy) and

their intensity distribution was rather homogenous (low
B
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FIGURE 4

Receiver operating characteristic curves (A, D, G), feature weights (B, E, H), and correlation matrices with Kendall’s tau (C, F, I) for the CT-, PET-,
and PET/CT-based logistic regression models predicting HPL at three months after start of treatment. The receiver operating characteristic
curves were calculated for each fold of cross-validation and the curves presented in the figure are result of averaging of the component curves.
Python code used for generation of these figures is provided in a public online repository (https://github.com/hubertgabrys/PET-CT-radiomics-
for-prediction-of-hyperprogression-in-metastatic-melanoma-patients-treated-with-imm).
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hist_entropy). This most likely means that a typical, according to

our model, lesion that is at risk of hyperprogression has elevated

uniform average intensity with no hot- or cold spots.

The presented CT-based and PET/CT-based models could

not serve the purpose of clinical tools identifying with high

certainty which lesion is going to become hyperprogressive in

the future. However, they identify lesions that are at higher risk

of becoming hyperprogressive. Identification of such lesions

already at baseline could allow for closer patient monitoring or

early treatment adaptations. Furthermore, lack of reliance on

PET-based radiomics could reduce cost and time of image

acquisition for these models.

There are a few limitations of this study. Those include the

retrospective nature of the analysis and a limited total number of

patients. The segmentation of metastatic lesions was done

manually which inherently involves a degree of inter- and

intraobserver variability. To reduce it, we performed

qualitative segmentation stability control by ensuring that both

observers followed the same protocol and segmentations were

cross-checked and corrected when necessary. Moreover, no

external validation of our models has been performed, yet. In

order to circumvent this challenge, we did an internal validation

with nested cross-validation which is a robust unbiased method

of generalization performance estimation. Nevertheless, despite

these limitations, this study is the largest multimodal FDG-PET/

CT radiomics analysis conducted to predict hyperprogression in

metastatic melanoma patients treated with ICI.
Conclusion

This study analyzed multimodal radiomic signatures of

hyperprogression in metastatic melanoma patients treated with

ICI. Our CT- and PET/CT-based models were able to predict

development of HPL at 3 months after start of the treatment based

on the baseline imaging data. Therefore, we showed that

performing PET/CT radiomics at baseline can help to early

recognize lesions that are likely to become HPL and potentially

patients at risk of PD-HPD. This could allow for early treatment

adaptation, increased patient monitoring to improve treatment

outcome, and reduction of costs related to unnecessary ICI therapy.
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