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Background: Cancer-associated fibroblasts (CAFs) are vital components of

prominent cellular components in lower-grade gliomas (LGGs) that contribute

to LGGs’ progression, treatment resistance, and immunosuppression. Epigenetic

modification and immunity have significant implications for tumorigenesis and

development.

Methods: We combined aberrant methylation and CAFs abundances to build a

prognostic model and the impact on the biological properties of LGGs. Grouping

based on the median CAFs abundances score of samples in the TCGA-LGGs

dataset, differentially expressed genes and aberrantly methylated genes were

combined for subsequent analysis.

Results: We identified five differentially methylated and expressed genes (LAT32,

SWAP70, GSAP, EMP3, and SLC2A10) and established a prognostic gene signature

validated in the CGGA-LGGs dataset. Immunohistochemistry (IHC) and in vitro

tests were performed to verify these expressions. The high-risk group increased in

tumor-promoting immune cells and tumor mutational burden. Notably, risk

stratification had different ICB sensitivities in LGGs, and there were also

significant sensitivity differences for temozolomide and the other three novel

chemotherapeutic agents.

Conclusion: Our study reveals characteristics of CAFs in LGGs, refines the direct

link between epigenetics and tumor stroma, and might provide clinical

implications for guiding tailored anti-CAFs therapy in combination with

immunotherapy for LGGs patients.

KEYWORDS

DNA methylation, cancer-associated fibroblasts, lower-grade gliomas, prognosis,
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1 Introduction

Lower-grade gliomas (LGGs) including World Health

Organization (WHO) grade II and III diffuse gliomas are slow-

growing infiltrative brain tumors (1). Although the survival of

LGGs patients after standardized treatment is better than that of

glioblastoma (GBM), recurrent LGGs inevitably progress to GBM (2).

With advances in the 2021 WHO Classification of Tumors of the

Central nervous system, the understanding of molecular typing for

glioma is gradually increasing. Exploration of epigenetics can help us

better understand LGGs’ immunity and prognosis.

DNA methylation and gene expression are promising sources for

identifying glioma’s molecular biomarkers. For instance, the

promoter hypermethylation and epigenetic silencing of the O6-

methylguanine-DNA methyltransferase (MGMT) gene have become

a classical biomarker for temozolomide resistance glioma (3, 4). DNA

demethylation and upregulation of IGF2BP3 can be involved in the

malignant progression of glioma (5). Alternated DNA methylation in

ZDHHC12 is associated with migration and invasion capabilities in

glioma cell lines (6). GPX8 expression was correlated to the reduced

DNA methylation at the promoter region and might be related to

cancer-associated fibroblasts and immune infiltration levels in glioma

(7). However, the clinical impact of these studies remains limited.

Either due to the lack of drugs targeting these potential biomarkers or

because of a breakthrough in immunotherapy.

Cancer-associated fibroblasts (CAFs) are the significant members

of tumor stroma cells in the tumor microenvironment (TME) (8).

Research on the significance of CAFs in cancer has recently gained

momentum. Accumulating evidence has indicated that CAFs

significantly affect tumor progression and migration, promote

epi thel ia l -mesenchymal transi t ion (EMT), and induce

chemoresistance and immunosuppression (9–12). On the other

hand, CAFs and extracellular matrices constitute the tumor

immune escape initiation mechanism (13). In response to this

problem, harnessing CAFs-related immunosuppressive stromal

environment has been proposed to ameliorate the response to

immune checkpoint inhibitors (14, 15). However, whether CAFs

are associated with the predictive value and immunotherapy of

LGGs patients has not been elucidated.

We reasoned that LGGs samples with different CAFs scores

broadly alter methylation levels and immune infiltration patterns.

To verify the conjecture, we used a median of CAFs score as the

grouping basis for the sample to gather genome-wide methylation

and gene expression data to locate the altered methylations coupled

with altered expression of the same genes. Then we constructed a risk

score system containing five risk genes and validated them at tissue-

level and cell-level. We found the risk score is an excellent predictive

value for survival and a potential factor for immune checkpoint

blockade (ICB) therapies. Applying this prognostic gene signature,

the sensitivity of GDC0941, Bleomycin, and Axitinib showed a

significant difference in sensitivity within the subgroups. These

drugs may have different effects on patients with different levels of

CAFs infiltration.
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2 Material and methods

2.1 Data acquisition

RNA-seq data and clinical data on LGGs were extracted from The

Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) and

Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/).

After transcripts per million (TPM) conversion, we held genes with

expression levels larger than 0.1 TPM for analysis. Matched Normal

data: 105 cortex tissues were obtained from the GTEx project (https://

commonfund.nih.gov/GTEx/). We downloaded both methylation

data (Illumina Infinium HumanMethylation450 BeadChip) and

somatic mutation data generated by TCGA from the UCSC Xena

browser (https://xenabrowser.net/hub/) (16). Fibroblast and glioma

cell lines from The Cancer Cell Line Encyclopedia (CCLE) (https://

portals.broadinstitute.org/ccle) (17). Infiltration Estimation for

TCGA-LGGs was collected from TIMER2.0 (http://timer.comp-

genomics.org/). The STRING (https://www.string-db.org) database

produced the protein-protein interaction network and reconstructed

them via Cytoscape software. A flowchart of the entire procedure can

be shown in Figure 1.
2.3 Analysis of DNA methylation data

The Illumina HumanMethylation450 BeadChip array contains

probes covering 99% of reference sequence genes and 96% of CpG

islands. The raw methylation intensities for each probe were

represented as b-values, which were converted into M-values with R

package Lumi for statistics analysis (18). 5’-C-phosphate-G-3’ (CpG)

methylation data between different groups were compared with R

package limma to identify differentially methylated CpG sites.

Benjamini-Hochberg (BH) method was used to adjust p-value as a

false discovery rate (FDR). The CpG site and gene mapping files were

downloaded from illumine (https://www.illumina.com/). CpGs span

various gene regions, including 1500 bp and 200 bp upstream of the

transcription start sites (TSS1500 and TSS200, respectively). The

average b-values for each region were calculated according to all

CpG sites at the corresponding region, and the average b-value was

converted to an M-value. Average regional methylation data between

different groups were compared with R package limma to identify

differentially methylated regions (DMRs). The hypermethylated DMRs

with a threshold of adjusted p-value< 0.05 combined a delta b-value >
0.2, and the hypomethylated DMRs with a threshold of adjusted p-

value< 0.05 combined a delta b-value< −0.2. Genes harboring DMRs in

any part of the gene features were differentially methylated genes

(DMGs). The equations described above are listed below.

Mi = log2
bi

1 − bi

� �
(1)

  bregion = 2 ok
i=1 log 2 bið Þ

� �
∕ k

(2)
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where M is the intensity of the methylated allele, i = 1, 2, 3,…, k,

and k is the number of CpG sites in a region.
2.4 Cancer-associated fibroblasts
(CAFs) infiltration estimation and
immune score calculation

CAFs abundances were separately estimated via Estimate the

Proportion of Immune and Cancer cells (EPIC) algorithm using the R

package Immunedeconv (19). TCGA-LGGs were divided into a high-

CAFs-score group and a low-CAFs-score group according to the

median score. The estimated immune and stromal scores were

computed using the R package ESTIMATE.
2.5 Analysis of DEGs and DMGs

Differential expression between the high-CAFs-score and low-CAF-

score group samples was analyzed with the R package limma. False

discovery rate (FDR) as adjusted p-value using the Benjamini-Hochberg

(BH) method. The fold change was log2-transformed. Differentially

expressed genes (DEGs) were calculated with a difference > 1.5-fold and

p< 0.01. Methylation analysis results were carried out for joint analysis.

Venn diagram analyses were performed to calculate the intersection of

DMGs and DEGs and explored the differentially methylated and

expressed genes (DMEGs). DMEGs were grouped according to four

expression patterns: HypoUp, HypoDown, HyperUp, and HyperDown.
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2.6 Functional enrichment analyses

To functionally annotate DMEGs of this study, Gene Ontology

(GO) including biological process (BP), cellular component (CC), and

molecular function (MF) analysis was performed in the R package

ClusterProfiler (20). A p-value of< 0.05 and an FDR of< 0.05 were

used for the cutoff value. The ClueGO Plugin version 2.5.8 in

Cytoscape Version 3.8.2 was employed to identify hub genes and

functional analysis (21).
2.7 Construction and validation of the risk
score system

We selected HypoDown and HyperUp genes in TSS200 and

TSS1500 for univariate cox regression analysis and filtrated the

prognostic-related genes. Subsequently, we used the R package

glmnet to conduct the least absolute shrinkage and selection

operator (LASSO) Cox regression algorithm and develop a potential

risk signature. The minimum value of lambda was derived from 1,000

cross-validations (‘1-se’ lambda), and which corresponding partial

likelihood deviance value was the smallest for the risk model.

Coefficients with regression were confirmed by the “cvfit” function

with 1000 repeats. The risk score calculating equation, which contains

five risk genes, is:

Riskscore =o
n

i=1
Coefi*xi (3)
FIGURE 1

Study Flow Chart.
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where Coefi means the coefficients, xi is the expression value of

each gene.

The predictive power of the prognostic signature was evaluated by

the receiver-operating characteristic (ROC) curve. The independent

clinical factor was validated by multivariate Cox regression analysis.

Finally, a nomogram was constructed according to independent

predictors. The calibration of the nomogram was evaluated by the

calibration curve to assess the goodness of 1-, 3-, and 5-year

overall survival.
2.8 Analysis of
immunological characteristics

In this study, the mRNA expression matrix of LGGs was analyzed

using the CIBERSORT R script downloaded from http://cibersort.

stanford.edu. Based on deconvolution, we estimated the abundance of

immune cell populations. The relationship between each immune cell

and survival was measured by Kaplan-Meier (KM) survival analysis.

We evaluated a total of 60 immune checkpoints (ICP) genes in two

categories (Inhibitory ICP (22) and Stimulatory ICP (23)) from

widely recognized literature (24). Then we assessed the expression

and survival of these ICP in the TCGA-LGGs cohort for a

comprehensive overview of the immunosuppressive landscape.

The Tumor Immunophenotype Profiling (TIP) was performed to

quantify the extent of infiltrating immune cells and anticancer

immunity (25). Assessment of antitumor immunity was

conceptually divided into seven steps, including tumor cell antigen

release (step 1), cancer antigen presentation (step 2), priming and

activation (step 3), trafficking of immune cells to tumors (step 4),

infiltration of immune cells (step 5), T cell recognition of cancer cells

(step 6), and killing of cancer cells (step 7).

TIDE (http://tide.dfci.harvard.edu/), an excellent algorithm, was

used to explore the prediction of clinical response to immune

checkpoint blockade (ICB) therapy (22). The TIDE score was

calculated to simulate two mechanisms of tumor immune evasion:

the induction of T cell dysfunction with high infiltration of cytotoxic

T lymphocytes and the retard of T cell infiltration in tumors with low

cytotoxic T lymphocyte infiltration. The TIDE score is a good

reflection of the responsiveness of the ICB. The SubMap (https://

www.genepattern.org/) was carried out to validate the reliability of the

prediction of TIDE.

The R package pRRophetic was used to predict chemotherapeutic

response in LGGs patients (26). In addition to temozolomide, which

patients with glioma widely used, we included three drugs with the

therapeutic potential for glioma in this study: Axitinib, GDC-0941

(PI3K inhibitor), and Bleomycin.
2.9 Verification of gene expression at
cellular level and tissue level

H4, SW1783, and HMF cell lines were purchased from ATCC.

According to the manufacturer’s instructions, total RNA was isolated

using Trizol reagent (Invitrogen, USA). 2mg of the total RNA was

transcribed into cDNA. SYBR Green PCR kit (Takara, Japan) was

used for qRT-PCR. We selected the 2−DDCq method to calculate gene
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transcription level, with b-actin mRNA as control. Data represent the

mean ± SD of triplicate real-time PCR. The primers were synthesized

by Tsingke Biotechnology (Shanghai, China) and displayed in

Supplementary Table S1. Immunohistochemistry (IHC) analyzed

the protein expression levels. GSAP (ab106630), LATS2 (ab111054),

SWAP70 (ab228846), and SLC2A10 (ab110528) antibody was

purchased from Abcam. EMP3 (sc-81797) antibody was purchased

from Santa Cruz Biotechnology. Clinical characteristics of LGGs

patients cohort are displayed in Supplementary Table S2. All the

patients and the hospital’s Ethics Committee approved this research.

LGGs tissues were formalin-fixed, paraffin-embedded, and sectioned

at 4 μm. Immune complexes were detected with the SP Kit (Solarbio,

Beijing, China) and DAB Substrate Kit (Solarbio, Beijing, China).

Signals were detected using an Olympus BX41 microscope.

Quantification of Immunohistochemistry (IHC) staining was

performed in a blinded fashion.
2.10 Statistical analysis

All the data were analyzed using the R software version 4.1.0. The

overall survival (OS) between different groups was analyzed using

Kaplan-Meier curves. Kruskal–Wallis tests were applied to compare

gene expression in two groups. The Fisher test assessed different

groups’ responses to ICB treatment. Somatic mutation data sorted in

the form of Mutation Annotation Format (MAF) was analyzed using

the R package maftools. ImageJ and ImageJ plugin IHC profiler was

applied to quantify IHC staining analysis. IHC scoring data and qRT-

PCR data were analyzed using GraphPad/Prism 9.0. In addition,

tumor mutational burden (TMB) and mutation counts were

computed from somatic mutation frequencies. p< 0.05 was marked

as ‘*’, p< 0.01 was marked as ‘**’, p< 0.001 was marked as ‘***’. and

p< 0.0001 was marked as ‘****’.
3 Results

3.1 Differentially methylated and expressed
genes (DMEGs) in LGG

To identify DMEGs in LGGs, we first extracted the gene

expression and DNA methylation data of TCGA-LGGs and

performed a comparative analysis. Samples were divided into high-

and low-CAFs-score groups according to the median CAFs score.

From the summary estimate, 2393 statistically significant

Differential ly Expressed Genes (DEGs) were identified

(difference > 1.5-fold, p-value< 0.01), including 263 upregulated and

2131 downregulated genes (Figure 2A, Table S3). Promoter regions

(TSS200 and TSS1500) were enrolled in the primary study. As shown

in volcano plots, 1276 DMGs were identified from two regions,

including 896 DMGs in the TSS200 region (Figure 2B, Table S4)

and 583 DMGs in the TSS1500 region (Figure 2C, Table S5).

We analyzed the relationship between methylation and gene

expression by integrating DMGs and DEGs in two promoter regions

(TSS1500 and TSS200). A total of 77 DMEGs were identified

(Figure 2D), and then we performed a principal component analysis

(PCA) of the DMEGs in normal tissue and LGGs (Figure 2E). The
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PCA profile revealed a clear separation of normal samples from LGGs.

Afterwards, GO enrichment analysis was performed on these DMEGs,

and the result indicated that DMEGs were significantly enriched in

positive regulation of oligodendrocyte differentiation, negative

regulation of canonical Wnt signaling pathway, and regulation of

epithelial to mesenchymal transition (Figure 2F). These functions were

closely related to the oncogenesis and progression of glioma.
3.2 DMEGs analysis in two promoter regions

To investigate the differences in DMEGs within each region, we

classified these DMEGs into four groups (HypoUp, HyperUp,
Frontiers in Oncology 05
HyperDown, and HypoDown) for TSS200 and TSS1500,

respectively (Figures 3A, B). The HyperDown group was the most

prevalent in TSS200 and TSS1500 regions, and the HypoUp group

had the second-highest proportion in the two regions (Figure 3C).

After extracting the HyperDown and HypoUp DMEGs in TSS200

and TSS1500 regions separately, we used STRING to construct PPI

networks. These genes were analyzed by GO enrichment using the

“ClueGO” plugin for Cytoscape software (p< 0.01, Kappa score = 0.5).

Functional enrichment analysis revealed that these DMEGs

participated in critical biological processes. In the TSS200 region,

DMEGs are mainly associated with response to mechanical stimulus,

regulation of cell-substrate adhesion, and positive regulation of

macrophage migration (Figure 3D). As shown in Figure 3D,
B C

D E

A

FIGURE 3

Grouping and functional analysis of DMEGs. (A, B) Venn diagram showed four different groups (HypoDown, HyperUp, and HyperDown) of DMEGs in the
TSS200 region (A) and TSS1500 region (B). (C) The bar chart shows the different groups of DMEGs in the two regions. (D, E) ClueGO Cytoscape network
of statistically DMEGs in two regions.
B C

D E F

A

FIGURE 2

Identification and functional enrichment of DMEGs. (A) Volcano plot presenting the DEGs (difference > 1.5-fold, p-value< 0.01) between two groups. (B)
DMGs (difference > 1.5-fold, p-value< 0.01) volcano plot of TSS200 region. (C) DMGs (difference > 1.5-fold, p-value< 0.01) volcano plot of TSS1500
region. (D) Venn diagram exhibiting DMEGs expressed in the TCGA dataset. (E) The profiles of DMEGs and principal component analysis (PCA) between
tumor and normal cortex tissues. (F) GO analysis shows significant GO terms in DMEGs.
frontiersin.org

https://doi.org/10.3389/fonc.2022.977251
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Dong et al. 10.3389/fonc.2022.977251
MMP14 is critically involved in various immune-related functions.

Meanwhile, DMEGs in the TSS1500 region are mainly related to

regulating epithelial to mesenchymal transition, programmed

necrotic cell death, and positive regulation of gliogenesis

(Figure 3E). These simultaneous differential DEGs and DMGs

pooled to DMEGs may be the main factor causing the altered

biological function of LGGs.
3.3 Construct the DMEGs
prognostic signature

Among the DMEGs in HyperDown and HypoUp groups,

Univariate Cox regression analysis screened 203 DMEGs with

prognostic values. Then a Lasso‐penalized Cox analysis was

performed to shrink further the scope of DMEGs screening

(Figure 4A) and lambda. Min was regarded as the optimal value in

the cross-validation process (Figure 4B). Five DMEGs (GSAP, EMP3,

LATS2, SWAP70, and SLC2A10) and corresponding coefficients
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(Table S6) were identified. We used TCGA-LGGs as the train set

CGGA-325 and CGGA-693 as the test sets, and samples were split

into high- and low-risk groups by the median value of the risk score.

KM survival curves depicted that LGG patients with increased risk

scores had worse clinical outcomes in both train set and test sets

(Figures 4C, D, and Figure S1A). Statistical analysis was performed

using a log-rank test (train set p< 0.001, test set p< 0.001). After that,

we established ROC curves of the risk score model with 1-year, 3-year,

and 5-year. The results revealed that the risk score could effectively

distinguish LGGs patients with different survival statuses (Figure 4E

1-yer AUC = 0.86, 3-year AUC = 0.83, and 5-year AUC = 0.80). The

results were similar and slightly lower in the test set (Figure 4F 1-yer

AUC = 0.73, 3-year AUC = 0.79, and 5-year AUC = 0.77).

Multivariate Cox regression analysis showed the independent

prognostic value of this risk score (Figure 4G, p< 0.001, HR =

3.844). Then we examined the mRNA expression of five risk genes

in the glioma cell lines and fibroblast cell lines with CCLE

(Figure 4H). Although glioma lines are not representative of LGGs,

we found the expression of GSAP was consistent with that of
B

C D

E F G H

I J K

A

FIGURE 4

Construction of prognostic signature. (A, B) The process of building the signature. The least absolute shrinkage and selection operator (LASSO)
regression was performed, calculating the minimum criteria. (C, D) K-M curves showed that the high-risk subgroup had worse overall survival than the
subgroup in the train set (p< 0.001) and test set (p< 0.001). (E, F) ROC curves showed the predictive efficiency of the risk signature on the 1-, 3- and 5-
year survival rates of train set (E) and test set (F). (G) Independent prognostic factors were determined by the multivariate Cox regression analyses. (H)
Expression of five risk genes in fibroblast cell lines and glioma cell lines in the CCLE dataset. (I) The heatmap was based on the expression of the five
genes in the high- and low-risk group. (J, K) A nomogram (J) and decision curve analysis (K) of the risk score for predicting 1-, 3- and 5-year survival.
(*p < 0.05, **p <0.01, ***p <0.001, ****p <0.0001).
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fibroblasts, and the expression of the other four risk genes was lower

than that of fibroblasts in glioma cell lines. The mortality of patients

increased with the increase in the risk score (Figure 4I). Finally, we

established the Nomogram model, which contained risk score and age

to assess the survival prediction in LGGs patients (Figure 4J) and

calibration curves for nomogram predicted 1-, 3- and 5-year overall

survival performed well with the risk model (Figure 4K).
3.4 Correlation between risk score and
clinical characteristics

Clinical variables were introduced into the risk score system to

analyze the relationship between risk scores and clinical

characteristics. We initially compared the CAFs’ scores concerning

the risk score. As shown in Figure 5A, the risk score was mildly

positively associated with the CAFs score (r = 0.42, p< 0.01). In

contrast, tumor purity was negatively correlated with the risk score

(Figure 5B r = -0.56, p < 0.01). Other clinical features were then

introduced. WHO grade III LGGs have a higher risk score thanWHO

grade II LGGs, which is consistent with their poor prognosis

(Figures 5C, D, Figure S1B). The risk score in MGMT promoter

methylated LGGs were significantly lower than that in MGMT

promoter unmethylated LGGs samples (Figures 5E, F, Figure S1C).

It is widely accepted that glioblastoma patients with MGMT promoter

methylated are sensitive to temozolomide and suitable for TMZ

chemotherapy. For another crucial molecular marker 1p19q

codeletion status, the risk score was significantly higher in 1p19q-

non-codeletion samples compared to codeletion samples in both

datasets (Figures 5G, H, Figure S1D). Correspondingly, IDH1/2

wild-type cases showed a valid increased risk score compared to

IDH1/2 mutant cases (Figures 5I, J, Figure S1E). The high-risk scores

were seen in cases aged > 45 years. (Figures 5K, L, Figure S1F).
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Overall, some important molecular markers and clinical features of

LGGs responded well to this risk score system.
3.5 Prognostic signature and
immune landscape

To investigate the relationship between the prognostic signature

and immune cell infiltration in LGGs. We evaluated immune scores,

immune cell infiltration, and immune checkpoints separately. CAFs

are the most prominent tumor stroma cell type in the TME.

Comparing the stromal score and immune score of the LGGs

datasets, we found a significantly positive correlation between the

risk score and stromal score, and the same was true of the immune

score (Figures 6A, B, stromal score p< 0.001 and Figures 6C, D

immune score p< 0.001). CIBERSORT algorithm showed the

proportions of distinct immune cell subpopulations in different risk

groups (Figure 6E). The relative expression is shown in bar diagrams.

The proportions of Macrophages M0 and Macrophages M2 in the

high-risk group were significantly higher than in the low-risk group

(Figure 6F). By contrast, the proportions of Monocytes, activated NK-

cell and activated Mast-cells were higher in the low-risk group.

Subsequently, we performed KM survival analysis to evaluate the

OS with differing immunocytes infiltration samples (Figures 6G–I).

High proportions of activated NK-cell and activated Mast-cell had a

better OS (Figures 6G, I). Conversely, the level of macrophage M0

expression is inversely related to OS (Figure 6H). We next examined

whether the risk score is associated with the expression of inhibitory

and stimulatory immune checkpoint (ICP) molecules. Fortunately,

the expression of many immune checkpoint molecules showed

significant differences between high and low-risk groups (Figure 6J

Inhibitory ICP and Figure 6K stimulatory ICP). The KM curves for

survival analysis of these immune checkpoints were presented in
B C D

E F G H
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A

FIGURE 5

Clinical characteristics and risk scores. (A) Correlation of risk scores with CAFs scores, r = 0.42 p< 0.001. (B) Correlation of risk scores with tumor purity,
r = -0.56, p< 0.001. (C, D) Risk scores for different WHO-graded samples, (E, F) MGMT promoter status, (G, H) 1p19q codeletion status, (I, J) IDH
mutation status, and (K, L) Age effect. (*p < 0.05, **p <0.01, ***p <0.001, ****p <0.0001).
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Figure S2. In summary, the risk score was associated with the

expression of these immune checkpoint molecules.
3.6 Risk score-based stratification
predicts the immune response and
chemotherapy efficacy

To explore the risk score stratification and the associated

characteristics of the antitumor immune response, we introduced

the Tracking Tumor Immunophenotype (TIP) system, which

analyzed the status of anticancer immunity and the proportion of

tumor-infiltrating immune cells across seven-step Cancer-Immunity

Cycle. As shown in Figure 7A, the scores of the high-risk group were

significantly higher in tumor antigen release (step 1), immune cell

recruitment (step 4), and immune cell infiltration into the tumor (step
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5). Conversely, the low-risk group scored significantly higher in T cell

priming and activation (step 3), T cell recognition of cancer cells (step

6), and killing of cancer cells (step 7). Then, we used the CGGA

dataset to validate these results (Figure S3A). Next, we introduce the

TIDE algorithm to assess the efficacy of risk score in predicting ICB

responsiveness. We found there was a significant difference in

response to ICB treatment between the two groups (p< 0.001), and

the response to ICB treatment was more sensitive in the low-risk

group (Figures 7B, C). SubMap was used to compare the prediction

response to anti-PD1 and anti-CTLA4 therapy results with another

dataset containing 47 patients with melanoma that responded to

immunotherapies. Using this tool, we found that the high-risk group

in the train and test sets showed comparable performance in

predicting the LGGs’ response to anti-PD1 therapy (Figures 7D, E

p< 0.05). Anti-CTLA4 therapy also showed a partial response in the

TCGA train set (Figure 7D Bonferroni corrected p = 0.32).
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K

FIGURE 6

Analysis of immune infiltration in different risk groups. (A–D) Immune score and stromal score calculated by ESTIMATE in different groups (A, C TCGA
data set, and B, D CGGA data set). (E, F) The relative infiltrating proportion of 22 immune cells in high- and low-risk groups. (G–I) KM curves of
infiltrating immune cells associated with survival in LGGs patients (p< 0.05). (J, K) Immune checkpoints expression in the LGGs microenvironment,
inhibitory ICP (J), and stimulatory ICP (K). (*p < 0.05, **p <0.01, ***p <0.001, ****p <0.0001).
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We tried to analyze the response of two risk groups to chemo-

drug efficacy. Here, in addition to TMZ, we selected three other

chemo drugs from the literature that may have therapeutic potential

for glioma. As expected, the sensitivity in the low-risk group was

slightly better than that in the high-risk group (Figure 7F). That may

be related to the level of MGMT promoter methylation in the low-risk

group (Figure 5E). For the other three drugs, the estimated IC50 was

significantly better in the low-risk group (Figures 7G–I). These results

were validated using the CGGA325 dataset (Figure S3B–E). Although

these drugs have not been used in clinical treatment on a large-scale,

differences in sensitivity suggest that they have potential as novel

therapeutic agents.
3.7 Genomic alterations of
prognostic signature

Tumor genomic alterations have profound effects on immunity

and drug therapy. We investigated the mutation frequencies of

different risk groups and showed the top ten most frequently

mutated genes (Figures 8A, B). As we expected, IDH1 had the

highest mutation frequency, predominantly missense. Remarkably,

some genes were associated with the immune microenvironment and
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immunotherapy. These genes were more prominent in the high-risk

group, such as ATRX, EGFR, and PTEN. We targeted IDH1, the most

frequently mutated of the two groups in our study and analyzed the

relationship between the expression of five risk genes and IDH1

mutations. The results were shown in Figures 8C–G. The expression

of all risk genes was higher in samples with wild-type IDH1 than in

mutant IDH1. These risk genes and corresponding risk scores are

consistent with the findings summarized in the preceding text

(Figure 5I). In addition, we analyzed correlations between tumor

mutational burden (TMB) and risk score. Like previous research,

LGGs patients in the high TMB group have a poorer prognosis.

Hence, we introduced the risk score and analyzed it jointly with TMB.

Our results show that the risk score had a low positive correlation

with TMB values (Figure 8H). Meanwhile, the high-risk group with a

poorer prognosis corresponded to high TMB values (Figure 8I).

Combining the two elements in the analysis, we found that LGGs

samples with high-risk scores and high TMB values had the worst

prognosis (Figure 8J). Finally, we compared the TIDE, dysfunction,

and exclusion scores between the different risk groups. The TIDE

score in patients with low-risk scores was significantly higher than

those with high-risk scores (Figure 8K p< 0.01). In parallel, patients in

the high-risk group had higher dysfunction scores constructed using

dysregulated immune genes (Figure 8L p< 0.001). No difference was
B C D E
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A

FIGURE 7

Risk score-based analysis of the stratifiable immune response and chemotherapy efficacy. (A) The TIP system quantified seven steps of the antitumor
immune response. (B, C) Predicted response of TIDE to immune checkpoint inhibitors. (D, E) Comparing the effectiveness of PD1 and CTLA4 in response
to different risk groups. (F–I) The sensibility of chemotherapeutic drugs (F) Temozolomide, (G) Axitinib, (H) GDC0941, and (I) Bleomycin. (*p < 0.05,
**p <0.01, ***p <0.001, ****p <0.0001).
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found between the two groups for exclusion scores constructed using

immune rejection genes (Figure 8M). The mechanism of immune

escape in these high-risk LGGs samples may be immune dysfunction

rather than immune exclusion. These epigenetic alterations may affect

the prognostic model for the therapeutic assessment of LGGs patients.
3.8 Experimental verification in cell lines
and tissues

After obtaining the above five risk genes, we identified them at the

cellular and protein levels. Given the rarity of fibroblasts in brain

tissue, we chose a stable human mammary fibroblast (HMF) cell line

as a control group. T98G and U251 cell lines are commonly used

glioma cell lines for experiments. GSAP and SWAP70 expressed

similar levels in different cell lines, and the expression of the

remaining three genes was lower in glioma cell lines (Figures 9A–

E). For protein expression, three patients were analyzed with IHC.

LGGs tissues were obtained from the tumor center (TC) and tumor

periphery (TP). We found the expression of five proteins was highly

expressed in tumor periphery (Figure 9F). After a 4-step grading

system was quantified, except for LATS2, other proteins showed high

expression in the TP group (Figures 9G–K). This founding may be

related to the research that tumor cells can influence the recruitment
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of CAFs precursors and induce the activation of normal fibroblasts

into CAFs.
4 Discussion

Abnormal epigenetic alterations contribute to tumorigenesis and

progression, as reflected in the latest guidelines for glioma

classification (27). DNA methylation has been found to regulate

microRNAs and predict overall survival in glioma (28, 29).

Recurrence of LGGs occurs mainly within a few centimeters of the

resected cavity, even in complete tumor resection and adjuvant

chemotherapy (30, 31). Glioma recurrence and prognosis are

closely related to alterations of TME (32, 33). Immune cells and

CAFs are essential components of the TME. Here, we combined

abnormal methylation and CAFs abundance for an in-depth analysis

of LGGs, which is essential for a more comprehensive understanding

of TME and developing stromal CAFs-targeted therapies.

Herein, we analyzed DMEGs in different CAFs abundance

groups, and we found that the functional annotations of these

DMEGs were enriched in pathways of tumorigenesis, progression,

and malignant transformation. Compelling evidence shows that the

extracellular matrix acts as the “soil” for malignant tumor progression

and immune resistance (34). Among them, functions closely related
B
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FIGURE 8

Epigenetic analysis of risk genes. (A, B) The mutation of high- and low-risk groups (Top 10 mutated genes). (C–G) Expression of 5 risk genes in the
presence of different IDH1 mutations status. (H) Correlation analysis of risk score and TMB. (I) K-M curves of the high-TMB and low-TMB groups (p<
0.001). (J)The combined risk score and TMB analysis of K-M curves in LGGs patients. (K–M) TIDE algorithm to model tumor immune evasion, (K) TIDE
score, (L) Dysfunction score, and (M) Exclusion score.
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to CAFs, such as the Wnt signaling pathway plays a vital role in the

carcinogenic activity of LGGs (35). Oligodendrocyte differentiation

reflects the stemness of glioma cells (36). EMT has been implicated in

cancer stemness, invasiveness, and drug resistance (23). The genes

with simultaneous alterations in gene expression and methylation

levels may be factors that alter LGGs functions through CAFs. DNA

methylation at these promoter regions is widely known to correlate

negatively with gene expression levels (37). GO enrichment analysis

revealed the main functions and hub genes involved in DMEGs. It is

worth noting that in TSS200 and TSS1500 regions, MDK is a critical

player in cancer progression and immune microenvironment (38).

MMP14 regulates the activity of multiple extracellular and plasma

membrane proteins, influencing cell-cell and cell-extracellular matrix

communication (39).

After integrating clinical information, we constructed a

prognostic signature based on five genes (EMP3, GSAP, LATS2,

SLC2A10, and SWAP70). Compared to fibroblast cell lines and

glioma cell lines using the CCLE database, we found that the

expression of GSAP was similar. In the validation of in vitro cell

experiments, in addition to GSAP, SWAP70 expression was also

similar to fibroblasts. However, no evidence exists that any glioma cell

line can represent LGGs or GBM. Its predictive value appears to be

quite weak. In order to test protein expression, we performed

sampling and IHC analysis in the center and periphery of LGGs.

The expression of EMP3, GSAP, SLC2A10, and SWAP70 was higher

in tumor periphery. This finding suggests that there may be more

activated fibroblasts at the TP, and CAFs could function at tumor

periphery. However, there is no significant difference in LATS2
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expression between TC and TP. Despite LATS2 having been

recognized as a target gene of CAFs-derived exosome microRNA-

92 in breast cancer (40). SLC2A10 regulated fibroblasts in arterial

tortuosity syndrome by encoding glucose transporter 10 (41). The

PI3K-dependent recruitment of SWAP70 to the plasma membrane

has been observed in growth factor-stimulated fibroblasts (42). EMP3

plays an important role in the regulation of membrane receptors

associated with IDH-Wild type glioblastoma (43).

More and more research focused on the immuno-phenotype and

immunotherapy of glioma cells. The high-risk scoring group showed

increased antitumor immune cells macrophage M2 and M0. Despite

glioma being defined as a cold tumor, proportions of macrophages

can still constitute up to 30–50% of the TME (44–46). Surprisingly,

mast cells activated were higher in the low-risk group. We quantified

antitumor immunity in seven steps and further evaluated the

antitumor immune process. Increased risk in the LGGs sample was

accompanied by a decrease in the score of T cell priming and

activation (step3) and destruction of tumor cells (step6, 7). It

corresponds to a higher density of antitumor immune infiltration in

the high-risk group. Immunotherapy, especially ICB, has brought

paradigm shifts to cancer treatment. We found that the specific

inhibitory immune checkpoints PD1 and CTLA4 were significantly

overexpressed in the high-risk group (Figure 6J), while the Submap

approach suggests that the high-risk group showed promising

performance in predicting LGGs predicted response to anti-PD1

and anti-CTLA4 therapies (Figures 7D, E). Other immune

checkpoints that are highly expressed in high-risk groups are also

being studied in an expanding way, such as the inhibitory immune
B C D E

F

G H I J K

A

FIGURE 9

Experimental verification in cell lines and tissues. (A–E) The mRNA levels were determined by qRT-PCR in three cell lines. (F) The expression of five
protein comparison of tumor center (TC) vs tumor periphery (TP) sites. (G–K) Bar graph showing the five protein levels obtained by quantification of
immunohistochemical images. (*p< 0.05, **p < 0.01, and ***p < 0.001).
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checkpoints CD276 (47) and IL-10 (48), and the stimulatory

checkpoints ICOS (49) and CD40 (50) are involved in the

regulation of T cell function. TGFB1 can increase endothelial and

epithelial permeability. It is more inclined to promote GBM cell

invasion (51). SLAMF7 is a cell surface receptor involved in natural

killer cell activation that received approval for treating multiple

myeloma (52). Treatment by blocking or stimulating these new

checkpoints in LGGs holds the promise of going beyond traditional

PD1 therapies. Although our risk score distinguished the expression

of ICPs of LGGs and predicted anti-ICB therapy, it still lacks

elucidation of the interaction mechanism between CAFs and ICB.

We hope to provide new ideas on the relationship between the

treatment of immune checkpoints and CAFs.

TMZ has become the conventional chemotherapeutic agent for

glioma however, TMZ resistance is the main factor that leads to

current studies aimed at expanding multiple chemotherapeutic agents

for glioma (53). Besides TMZ, three promising drugs were introduced

in this study (Figures 7G–I). Axitinib induces senescence-associated

cell death and necrosis in glioma (54). The PI3K inhibitor GDC-0941

enhances radiosensitization and reduces chemoresistance to

temozolomide in GBM (55). Bleomycin inhibits proliferation and

promotes apoptosis of glioma via the TGF-b/Smad signaling pathway

(56). All three drugs showed promising IC50 in the low-risk group,

and we hope this study will provide potential directions for the

relationship between new chemotherapeutic agents and CAFs.

However, these speculations are still at the level of data analysis,

and whether these drugs can be applied to LGGs still needs a lot of

experimental verification, such as molecular docking.

Solid evidence suggests that TMB plays a vital role in tumor

immune escape (57). TP53 was frequently mutated in the high-risk

subtype, and its mutation was reported to be associated with a poorer

prognosis. Mutations in IDH1 characterize the majority of lower-grade

gliomas in adults and define a subtype associated with a favorable

prognosis (58, 59). Glioma shows a markedly elevated mutation

burden, referred to as TMB-H (60). A study suggests that some

gliomas with high TMB may benefit from PD-1 blockade therapy

(61). Interestingly, MMR deficiency gliomas with TMB-H also lack

significant inflammatory CD8+ infiltrates (62). On the other hand,

TIDE algorithm analysis revealed that the mechanism of immune

escape in LGGs samples might be immune dysfunction (Figure 8L).

Even in the presence of a high level of infiltration by cytotoxic T cells,

immune escape is still inevitable (63). However, it is worth noting that

our study also has some limitations. Although our study identified five

risk genes, they could not directly serve as CAFs marker genes in

LGGs. We should further confirm the role of these CAFs risk genes on

glioma cells using in vitro co-culture or single-cell multi-omics.

Bioinformatics has always been used to research CAFs, but how

gliomas induce the production of CAFs and exercise their functions

in TME still requires extensive in vivo or in vitro experimental studies.

These efforts will be included in our future studies.
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SUPPLEMENTARY FIGURE 1

Clinical characteristics and risk scores in CGGA-693 LGGs test set. (A) K-M
curves showed that the high-risk subgroup had worse overall survival than the

subgroup in the test set (p< 0.001). (B) K-M curves of different risk groups in

WHO II and WHO III gliomas, (C) MGMT promoter status, (D) 1p19q codeletion
status, (E) IDH mutation status, and (F) age effect.
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SUPPLEMENTARY FIGURE 2

Overall survival analysis on immune checkpoint for LGGs patients. Grouping by
median expression of immune checkpoint genes.

SUPPLEMENTARY FIGURE 3

Immunotherapy response and chemotherapy sensitivity in the CGGA. (A) TIP
system analyzed the status of anticancer immunity and the proportion of
tumor-infiltrating immune cells across the seven-step Cancer-Immunity

Cycle. (B) Chemosensitivity of TMZ, p = 0.11. (C) Chemosensitivity of Axitinib,
p< 0.001. (D) Chemosensitivity of GDC0941, p< 0.001. (E) Chemosensitivity of

Bleomycin, p = 0.004.
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