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Background: Head and neck squamous cell carcinoma (HNSCC) is among the

most lethal and most prevalent malignant tumors. Glycolysis affects tumor

growth, invasion, chemotherapy resistance, and the tumor microenvironment.

Therefore, we aimed at identifying a glycolysis-related prognostic model for

HNSCC and to analyze its relationship with tumor immune cell infiltrations.

Methods: The mRNA and clinical data were obtained from The Cancer

Genome Atlas (TCGA), while glycolysis-related genes were obtained from the

Molecular Signature Database (MSigDB). Bioinformatics analysis included

Univariate cox and least absolute shrinkage and selection operator (LASSO)

analyses to select optimal prognosis-related genes for constructing glycolysis-

related gene prognostic index(GRGPI), as well as a nomogram for overall

survival (OS) evaluation. GRGPI was validated using the Gene Expression

Omnibus (GEO) database. A predictive nomogram was established based on

the stepwise multivariate regression model. The immune status of GRGPI-

defined subgroups was analyzed, and high and low immune groups were

characterized. Prognostic effects of immune checkpoint inhibitor (ICI)

treatment and chemotherapy were investigated by Tumor Immune

Dysfunction and Exclusion (TIDE) scores and half inhibitory concentration

(IC50) value. Reverse transcription-quantitative PCR (RT-qPCR) was utilized

to validate the model by analyzing the mRNA expression levels of the
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prognostic glycolysis-related genes in HNSCC tissues and adjacent non-

tumorous tissues.

Results: Five glycolysis-related genes were used to construct GRGPI. The

GRGPI and the nomogram model exhibited robust validity in prognostic

prediction. Clinical correlation analysis revealed positive correlations

between the risk score used to construct the GRGPI model and the clinical

stage. Immune checkpoint analysis revealed that the risk model was associated

with immune checkpoint-related biomarkers. Immune microenvironment and

immune status analysis exhibited a strong correlation between risk score and

infiltrating immune cells. Gene set enrichment analysis (GSEA) pathway

enrichment analysis showed typical immune pathways. Furthermore, the

GRGPIdel showed excellent predictive performance in ICI treatment and

drug sensitivity analysis. RT-qPCR showed that compared with adjacent non-

tumorous tissues, the expressions of five genes were significantly up-regulated

in HNSCC tissues.

Conclusion: The model we constructed can not only be used as an important

indicator for predicting the prognosis of patients but also had an important

guiding role for clinical treatment.
KEYWORDS

prediction, glycolysis prognosis model, head and neck squamos cell carcinoma,
immune microenviroment, chemothearapeutic responses
1 Introduction

HNSCC is a heterogeneous epithelial tumor that includes

nasopharyngeal, oropharyngeal, hypopharyngeal, and laryngeal

cancers. The risk factors for HNSCC include long-term alcohol

exposure, smoking, betel nut chewing, chronic oral trauma, and

HPV infections (1). The complexity of its etiology is a major

contributor to HNSCC heterogeneity. Surgical, radiotherapy-

chemotherapy, targeted therapy and immunotherapy approaches

have been developed to treat HNSCC patients. However, HNSCC is

associated with poor prognostic outcomes, and its 5-year OS rate is

50% (2). Therefore, there is a need to establish viable markers for

the clinical prophetic prediction of HNSCC.

Recent studies have evaluated metabolic changes in tumor cells.

The Warburg effect, the most prevalent and widely studied

metabolic change in cancer cells, explains that under aerobic

conditions, tumor tissues metabolize approximately tenfold more

glucose to lactate in a given time than normal tissues, enhanced

glucose uptake by tumor cells, and inhibited glucose oxidation in

adjacent tissues (3). During glycolysis, glucose is converted to

lactate, and cancer cells gain maximum energy. Molecular

imaging revealed markedly increased glycolysis levels in HNSCC

(4–6), a metabolic phenotype typical of aggressive tumor growth.
02
This metabolic change increases glucose uptake and lactate

production, affecting cell growth, proliferation, angiogenesis, and

invasion (7). Overall, the oncogenic regulation of glycolysis

emphasizes the biological significance of tumor glycolysis in

HNSCC patients, demonstrating that targeting glycolysis remains

potentially effective for clinical relevance and therapeutic

intervention (8, 9). In addition, researchers have suggested that

glycolysis in HNSCC is associated with alterations in oncogenes and

tumor suppressor genes (10). Akt, the serine/threonine kinase, an

oncogene that boosts cancer growth (11), has been proven to

activate aerobic glycolysis significantly, leading to cancer cells

dependent on glycolysis for survival (12). Notably, screening and

identification of biological markers predicting prognosis in HNSCC

by using broad glycolysis-related gene expression profiles have

enormous potentially clinical relevance in targeting glycolysis for

cancer therapy.

Premalignant cells frequently metastasize but are spontaneously

eliminated by the immune system before developing aggressive

tumors, thereby preventing tumor transformation. Thus, there is an

interaction between the cancerous tissue and the immune

suppressive network within the tumor microenvironment (TME).

Changes in peripheral blood immune cell pool and activity are also

associated with tumors (13, 14). The immune system plays a key
frontiersin.org
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role in carcinogenesis, development, and progression of HNSCC,

where immune cell infiltration is diverse and heterogeneous. The

immune system is controlled by immune checkpoint pathways that

typically remain self-tolerant and limit collateral tissue damage

during inflammation. Upregulated TIM-3 (15), OX40 (16), and

IDO1 expressions in tumor-infiltrating lymphocytes suggest a

rationale for the therapeutic targeting of these molecules.

Targeting these checkpoints has led to breakthroughs in cancer

immunotherapy. Immunotherapy, which activates the host’s

natural defense system to identify and eliminate tumor cells, has

emerged as a practical therapeutic approach. We analyzed tumor-

infiltrating immune cells, immune checkpoints, and immune

pathways. Our findings have clinical implications for developing

personalized immunotherapeutic strategies to improve treatment

outcomes for HNSCC patients.
2 Method and materials

2.1 Gene set enrichment analysis

GSEA was performed using the GSEA software (version

4.2.3) (https://www.gsea-msigdb.org/gsea/downloads.jsp) with

the MSigDB glycolysis-related pathway gene sets, which

contain 1320 gene sets. Pathways with p < 0.05 and FDR <

0.05 were considered significantly enriched.
2.2 Data collection and acquisition of
glycolysis-related genes

The HNSCC gene expression data (RNA-Seq) and the

corresponding clinical data (including age, gender, stage,

grade, smoking, alcohol, HPV, survival time, and survival

status) were downloaded from the TCGA database (https://

portal.gdc.cancer.gov) and GEO dataset (https://www.ncbi.nlm.

nih.gov/geo/). Used as a training cohort, the inclusion criteria for

TCGA-HNSCC were: HNSCC samples with complete somatic

mutation data and clinical information (457 retrieved HNSCC

samples with single nucleotide polymorphism(SNP) data were

analyzed), with 462 HNSCC samples and 32 adjacent non-tumor

tissue samples included. The glycolysis-related gene dataset was

downloaded from MSigDB. Expression characteristics of

glycolysis-related genes were obtained from the MSigDB

(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp).
2.3 Identification of differential
glycolysis-related genes

Using |log FC| > 1 and p < 0.05 as thresholds, differentially

expressed genes between HNSCC samples and adjacent non-tumor
Frontiers in Oncology 03
tissue samples were evaluated using the Wilcoxon test in the limma

package. Then, differentially expressed glycolysis-related genes were

selected from all differentially expressed genes (DEGs) and

displayed on a Venn diagram.
2.4 Identification and validation of a
glycolysis-related gene signature

Survival-associated differentially expressed glycolytic genes were

identified via univariate Cox regression and Lasso regression

analyses, after which a polygenic prognostic risk model was

constructed. Based on the median risk score of the TCGA

training set as the cutoff, HNSCC patients were assigned into

high- and low-risk groups. Clustering effects of Principal

Component Analysis (PCA) dimensionality reduction revealed

significant differences between the groups. Kaplan-Meier survival

curves, time-dependent receiver operating characteristic (ROC)

curves, and risk score distributions for OS prediction were

evaluated to verify the prognostic significance of risk scores.

Similar to the training set approach, the GEO cohort was used as

an independent validation set to assess the generality and reliability

of the prognostic risk model.
2.5 Construction of the nomogram

Independent prognostic factors in HNSCC patients were

determined by univariate and multivariate Cox regression

analysis. Both TCGA training set and GEO validation set were

used to construct a nomogram for predicting the 1-year, 3-year,

and 5-year survival outcomes of HNSCC patients. Consistency

between actual survival rates and nomogram-predicted rates was

tested via a calibration curve. In addition, decision curves were

used to assess the reliability of risk scores and clinical stage.
2.6 Analysis of tumor immune
microenvironment

The “Cell Type Identification by Estimating Relative Subsets

of RNA Transcripts (CIBERSORT)”was used to assess immune

cell infiltrations. The immune, stromal, and ESTIMATE

(Estimation of STromal and Immune cells in MAlignant

Tumors using Expression data) scores for each sample were

calculated using the ESTIMATE algorithm. Correlations

between the GRGPI score and those scores were determined

by Spearman correlation analysis.
2.7 Assessment of tumor
mutation burden

The tumor mutation data was obtained from the cBioPortal

database. The tumor mutation burden (TMB) for all samples
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was calculated using “maftools” in R. Based on median TMB

values, HNSCC samples were assigned into high TMB and low

TMB groups. A total of 16360 genes involved in developing SNP

in 457 samples were obtained by MusigCV (running under the

linux system), and the top ten were screened using q<0.05 as the

cut-off. Correlations between the prognosis for HNSCC patients

with GRGPI and TMB were determined by Kaplan-Meier

survival curves in R.
2.8 Analysis of drug sensitivity

To assess the clinical applicability of the established model,

pRRophetic was used to calculate the IC50 of HNSCC

chemotherapeutic drugs.
2.9 Statistical analysis

The R software (version 4.1.1) was used for statistical

analyses. Differentially expressed genes between tumor and

adjacent normal tissues were compared by the Wilcoxon test.

Survival-associated differentially expressed glycolytic genes

were identified by univariate Cox and Lasso regression

analyses. Then, Kaplan-Meier survival curves were plotted.

Univariate COX and multivariate COX regression analyses
Frontiers in Oncology 04
were performed to determine the independent prognostic

factors for OS. The predictive ability of the model was

assessed by KM survival curves and ROC curves. Correlation

tests were conducted by Spearman correlation analyses.

Categorical data were compared by the chi-square test. p ≤

0.05 was the threshold for statistical significance. The flow

chart of our study is shown in Figure 1.
2.10 Reverse transcription-
quantitative PCR

All HNSCC and adjacent non-tumorous tissue samples were

collected from 10 patients in the Shanxi Province Cancer

Hospital. Extraction of total RNA from HNSCC tissues and

adjacent non-tumor tissues was performed by the TRIzol reagent

(Invitrogen, CA, USA). cDNA synthesis from the extracted RNA

was performed by PrimeScriptTM RT Master Mix (RR036B,

Takara). We use Quantitative PCR to analyze the mRNA

expression levels of the prognostic glycolysis-related genes by

GoTaq® qPCR Master Mix (Promega, A6001). The RT-qPCR

was utilized in the ABI Vii7 Sequence detection system (ABI,

USA). The PCR reaction system and conditions were according

to the manufacturer’s instructions. Gene expression levels of

STC1, STC2, AURKA, P4HA1, and PLOD2 were calculated

using the 2-DDCT method.
FIGURE 1

Flow chart of the study process.
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3 Results

3.1 GSEA

Based on KEGG, REACTOME and HALLMARK gene sets,

GSEA was performed to reveal potential differences between

HNSCC and control groups. These pathways are associated with

glycolysis, implying that glycolysis plays an essential role in

HNSCC (Supplementary Figures 1A–C).
3.2 Identification of glycolysis-
related DEGs

A total of 1695 differentially expressed genes (DEGs) (149

upregulated and 119 downregulated genes) in the TCGA

training cohort were identified by Wilcoxon signed-rank test

and visualized using volcano plots (Figure 2A) and heatmaps

(Figure 2B). Then, 49 glycolysis-related genes were extracted

from the DEGs (Figure 2C).
3.3 Construction of glycolysis-related
gene signature for predicting
patient outcomes

Through univariate Cox regression analysis, 15 prognosis

glycolytic genes were established to be closely associated with

survival outcomes of HNSCC patients (Figure 3A). The 15 OS-

related genes may be collinear rather than independent. LASSO

Cox regression analysis was performed to determine the real OS-

affecting factors, and finally, a prognostic panel consisting of five

glycolysis-related genes was established. The risk score was

calculated as: Riskscore=0.021*AURKA+0.099*P4HA1

+0.015*PLOD2+0.031*STC1+0.163*STC2. (Figure 3B, C).

Based on this gene signature, all patients were assigned to high

(n=231) and low-risk (n=231) subgroups using the risk score

median as the threshold. Risk scores, survival scores, and
Frontiers in Oncology 05
heatmap of prognostic glycolytic gene expressions among the

low-risk and high-risk patients are presented in Figure 3D. Based

on expressions of these five hub genes, dimensionality reduction

was performed in all patients and presented with methods of t-

distributed stochastic neighbor embedding (t-SNE), suggesting

that different risk subgroups show significant discrete tendencies

directly in the two-dimensional plane (Figure 3E). Kaplan-Meier

survival curves revealed that high-risk score patients had

significantly worse OS outcomes than low-risk score patients.

The area under the curve (AUC) analysis for HNSCC patients at

1-year, 3-year, and 5-year revealed respective OS rates of 0.622,

0.649, and 0.614, demonstrating the optimal predictive

performance of GRGPI (Figures 3F, G). Finally, the year with

the largest AUC value is shown in the RMST plot (Figure 3H).
3.4 Verification of the five gene signature
using the validation cohort

Given that the predictive potential of GRGPI in different

datasets is misty into account, GSE65858 was used as the

independent validation set. Based on the above risk scores,

patients were assigned to low-risk (n=140) and high-risk

(n=130) groups (Figure 4A). Findings from t-SNE and KM

survival analyses of the GEO validation set were consistent

with the results of the TCGA training cohort (Figures 4B, C).

The AUC values for ROC curves accurately revealed the

predictive performance of the prognostic risk model, with the

largest AUC value year shown as an RMST plot (Figures 4D, E).
3.5 Independent prognostic, predictive
value of risk scores and construction of
the nomogram

In this study, the risk score, gender, smoking, and clinical

stage were established to be independent prognostic factors in

HNSCC patients, and they were used to construct subsequent
B CA

FIGURE 2

Identification of the HNSC-related DEGS in TCGA. (A, B) The volcano and heatmap plot showed differentially expressed genes between tumor and
adjacent normal tissue. (C) Venn diagram showed glycolysis-relate differentially expressed genes between tumor and adjacent normal tissue.
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nomograms (Figure 5A). Nomograms were used to predict the

1-year, 3-year, and 5-year survival probabilities of HNSCC

patients (Figure 5B). Moreover, a calibration curve was

constructed to assess the agreement between nomogram

predictions and actual survival outcomes (Figure 5C). The

actual and predicted survival rates at 1-year, 3-year, and 5-year

were well matched, indicating that the nomogram has a good

predictive performance. A decision curve (DCA) was used to

assess the reliability of the risk score. It was observed that

Model1 (Stage) was close to the extreme curve, while Model2

(RiskScore) was significantly higher than the extreme

curve (Figure 5D).

The above analyses were also performed on the GEO

validation set to verify the robustness of the model

(Figure 6A). Unlike the TCGA training set, univariate and

multivariate Cox regression analyses revealed that in the GEO
Frontiers in Oncology 06
validation set, only risk score and clinical stage were

independent prognostic factors for HNSCC patients.

Therefore, a nomogram integrating risk scores and clinical

stages was constructed to predict the 1-year, 3-year, and 5-year

survival probabilities of HNSCC patients (Figure 6B). Findings

from the calibration curve were consistent with those of the

TCGA training set (Figure 6C).
3.6 Clinical relevance form

Based on the relationship between high and low-risk groups

and clinical stages in the TCGA training set, a clinical correlation

table was prepared. It was established that about 60% of patients

in the low-risk group were in locations I/II, while 76% of patients

in the high-risk group were in stages III/IV (Supplementary
B C

D E F

G H

A

FIGURE 3

The Glycolysis-Related Gene Signature on the training cohort was constructed to predict patient outcomes. (A) Univariate Cox regression
analysis yielded 15 prognosis-associated differentially expressed glycolysis-related genes. (B, C) LASSO regression analysis identified the five
prognostic genes. (D) The TCGA risk score, survival time, survival status, and expression of the five-gene signature. (E) t-SNE cluster showed
groups with high and low-risk scores. (F) Kaplan-Meier survival curve analysis for HNSCC patients divided into high-risk and low-risk groups.
(G) Time-independent ROC curve of a risk score for prediction of 1-year, 3-year, and 5-year overall survival outcomes. (H) RMST plot for the
TCGA training set.
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B C

D E

A

FIGURE 4

Verification of the five-gene signature in the validation cohort (GSE65858). (A) Risk map of patients based on risk score heatmap of survival
status and risk gene expression profiles of individual HNSCC patients. (B) t-SNE grouping cluster. (C) Kaplan–Meier curves according to the five-
gene signature. Log-rank tests were performed to determine the p values. (D) ROC curve and AUC values of five-gene feature classification in
GEO. (E) RMST plot for the GEO testing set.
B C D

A

FIGURE 5

Prognostic values of the 5-gene signature model in the TCGA training set. (A) Results of univariate and multivariate Cox regression analyses
regarding OS. (B) Nomogram for prediction of 1-year, 3-year, and 5-year survival probabilities of HNSCC patients. (C) Calibration curve for
assessing the agreement between nomogram predicted and actual survival outcomes. (D) Assessment of the reliability of risk scores by DCA
(decision curve). (*p < 0.05, **p < 0.01, ***p < 0.001).
Frontiers in Oncology frontiersin.org07

https://doi.org/10.3389/fonc.2022.972215
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Han et al. 10.3389/fonc.2022.972215
Figure 2), implying that risk grouping was positively correlated

with the clinical stage. These findings prove that the constructed

GRGPI model is clinically valuable.
3.7 The tumor mutation burden

Mutation data for HNSCC were downloaded from the

cBioPortal database. Somatic mutation types for the 457

patients were evaluated, and SNP was found to be the most

dominant mutation type (Figures 7A, C). About 95.18% of

samples in the high-risk group had SNPs, compared to 96.07%

in the low-risk group (Figures 7B, D).

Given that SNP was the most dominant mutation type in

HNSCC, 16,360 SNP-mediating genes were identified in the 457

samples using MusigCV. Using q<0.05 as the cut-off, the top ten

genes were screened. Mutations types of the 10 genes and their

distributions in high-risk and low-risk groups were analyzed

(Figure 7E). The top ten genes with the highest mutation rates in

the high-risk group were TP53, TTN, FAT1, MUC16, CSMD3,

CDKN2A, LRP1B, KMT2D, DNAH5, and PIK3CA (Figure 7B),

while those in the low-risk group were TP53, TTN, FAT1, MUC16,

CSMD3, NOTCH1, SYNE1, CDKN2A, LRP1B, and PIK3CA

(Figure 7D). It was observed that the gene with the highest

mutation rate was TP53 in HNSCC patients regardless of the high

GRGPI group or the low GRGPI group, suggesting that the

mutations of the tumor suppressor gene TP53 may have potential
Frontiers in Oncology 08
clinical and pathophysiological significance in HNSCC patients. In

fact, in a recent study, themutational profile ofTP53has beenproved

to act as an independent prognostic factor in HNSCC patients. This

relationship is associated with unique site-specific biological

networks, consistent with our findings (17). Correlation analyses

showed that GRGPI was positively correlated with TMB (R=0.015,

p=0.75).Thedifference in thenumberofHNSCCpatients in thehigh

and low TMB groups was insignificant (Supplementary Figure 3A).

Moreover, the difference in TMB values between the groups was

negligible (Supplementary Figure 3B). We combined GRGPI and

TMB and grouped them into three; high GRGPI high mutation

(HTMB+HGRGPI), high GRGPI lowmutation or low GRGPI high

mutation (HTMB+LGRGPI & LTMB+HGRGPI), and low GRGPI

low mutation (LTMB+LGRGPI). Then, Kaplan-Meier survival

curves were drawn. The survival curve showed that the LTMB

+LGRGPI group had the best prognosis, while the HTMB

+HGRGPI group had the worst prognosis (Figure 7F). These

findings imply that high GRGPI and high TMB play a synergistic

role in promoting tumor occurrence and development, and the

combined effects of the twomay lead to worse prognostic outcomes.
3.8 Prognostic glycolysis gene
interaction network

Interactions among the five glycolysis key genes and

transcription factors may elucidate on mechanisms of the
B C D

A

FIGURE 6

Prognostic values of the 5-gene signature model in the GEO set. (A)Univariate and multivariate Cox regression analysis to investigate the
independence of risk models among clinicopathological factors. (B) Nomogram for predicting the 1-year, 3-year, and 5-year survival
probabilities of HNSCC patients. (C) Calibration curve for assessing the agreement between nomogram predicted and actual survival outcomes.
(D) Decision curve analyses of the nomogram based on OS outcomes.
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GRGPI model. Using cor Filter=0.5 and fdr Filter=0.01 as critical

values, associations between AURKA, P4HA1, PL0D2 and 11

transcription factors were obtained (Supplementary Figure 4),

which proved that the genes used to construct the GRGPI model

were correlated with transcription factors in cancer and para

cancer differentially expressed genes.
3.9 The immune microenvironment and
immune status

Compared to the low-risk group, infiltrations of resting CD4

memory T cells, M0 macrophages, M2 macrophages, and
Frontiers in Oncology 09
activated mast cells were marked in the high-risk group, while

infiltrations of CD8 T cells, follicular helper T cells, and Treg

cells were to a greater extent (Figure 8A). Cell immunity-related

cells, such as CD8 T cells, were highly infiltrated in the low-risk

group, suggesting that immune cells may be activated in the low-

risk group and suppressed in the high-risk group. Moreover, the

M0 macrophages, activated mast cells, and resting CD4 memory

cells were positively correlated with GRGPI scores while resting

dendritic cells, CD8 T cells, follicular helper T cells, and Treg

cells were negatively correlated with GRGPI scores (Figure 8B).

The higher the GRGPI scores, the worse the extent of T cell

infiltrations, validating that weaker antitumor immunity may be

one of the reasons for poor prognostic outcomes. Therefore, the
B

C D

E F

A

FIGURE 7

Analysis of tumor mutation burden among HNSCC patients. (A) High-GRGPI. (B) High-GRGPI group mutation types and top 20 mutated genes
in the sample. (C) Low-GRGPI. (D) low-GRGPI group top 20 mutated genes. (E) Mutation types of the top ten SNP-driven genes and their
distribution in high-GRGPI group and low-GRGPI group. (F) Kaplan-Meier survival curve showing OS differences among the three subgroups.
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high-risk group was defined as the low-immunity group, while

the low-risk group was defined as the high-immunity group.

Differences in ESTIMATE scores between the high-risk group

and low-risk group were insignificant. However, the high-risk

group exhibited low immune scores (p< 0.001, Figure 8D). These

findings are consistent with those obtained from CIBERSORT,

whereby the high-risk group exhibited worse immune status

while the low-risk group exhibited better immune status. The

relationship between stromal cells and GRGPI scores was further

investigated (18). The high-risk group had higher stromal scores
Frontiers in Oncology 10
(p < 0.01, Figure 8E), implying that tumor stroma plays an

important role in tumor development.
3.10 Immune checkpoints and
immune pathways

ICI therapy has advanced the treatment of many solid tumors.

Therefore, 11 human leukocyte antigen(HLA) class immune

checkpoints were included, and their differential expressions in
B

C D E

A

FIGURE 8

Association between tumor immunity and GRGPI scores in high and low GRGPI groups. (A) The 22 infiltrating immune cells are shown in
boxplots. (B) Correlation analysis between 8 types of infiltrating immune cells and GRGPI scores. (C–E) Boxplots showing the correlation
between GRGPI with ESTIMATE, immune, and stroma scores of HNSCC samples. (ns, not significant, *p < 0.05, **p < 0.01, ***p < 0.001).
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high-risk and low-risk groups were determined. Four HLA class

checkpoints (HLA-A, HLA-C, MICA, and MICB) were highly

expressed in the high-risk group (Figure 9A), while the remaining

seven were highly said in the low-risk group. Since the HLA class

immune checkpoints are closely associated with immune

responses, the better prognostic outcomes in the low-risk group

could have been due to better immune responses. The expressions

of 7 genes (CD274, CTLA4, IDO1 LAG3, PDCD1, TIGIT, and
Frontiers in Oncology 11
TNFRSF9) in the high-risk group and low-risk group were also

analyzed (Figure 9B). Results show that five immune checkpoints

cut in the high-risk group, CTLA4, IDO1, LAG3, PDCD1, and

TIGIT, which are consistent with the result, once again proved

that the GRGPI model and the close correlation between HLA

class immune checkpoints.

GSEA was performed to assess the immune pathways, and

differentially expressed immune-related pathways between the
B

C

D E

A

FIGURE 9

Immunization between high and low risk groups. (A) Differential expressions of 11 HLA class immune checkpoints. (B) 7 genes. CD274, CTLA4,
IDO1, LAG3, PDCD1, TIGIT, and TNFRSF between the high-GRGPI group and low-GRGPI group. (C) Immune-related pathways. (D, E) Violin
diagram for differences in cytolytic activities and Tumor Inflammation Signature between the high-GRGPI and low-GRGPI groups. (ns, not
significant, *P<0.05, **p < 0.01, **p < 0.001).
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high-risk and low-risk groups were obtained (Figure 9C).

The BCR, Chemokines, Chemokine, Receptors, Interleukins

Receptor, NK cell Cytotoxicity and TCR signalling pathway

were found to be enriched in the high-risk group. However,

enrichments of “TGFb Family Members” and “TGFb Family

Members Receptor” were significantly high in the low-risk

group, in accordance with the functions of TGF-b, which is

involved in tumorigenesis and immunosuppression.
3.11 Tumor inflammation signature

The Tumor Inflammation Signature (TIS) is investigational

use only (IUO) 18-gene signature that measures pre-existing but

suppressed adaptive immune responses within tumors (19). The

high-risk group had a low TIS score, implying that this group

had weaker adaptive immune responses and worse prognostic

outcomes (Figure 9D).
3.12 Cytolytic activity

The CYT score is a novel cancer immune index calculated

from mRNA expressions of GZMA and PRF1 (20). The

transcriptional levels of GZMA and PRF1 were determined to

assess the cytolytic activities of immune lymphocytes in HNSCC.

Based on previous risk grouping, the low-risk group exhibited a

higher CYT score (Figure 9E), implying that immune cells in the

low-risk group had stronger cytolytic activities and anti-tumor

immune response, leading to a better prognosis.
3.13 GRGPI was highly predictive
in ICI therapy

TIDE is a computational framework developed by Peng Jiang

et al. to identify two tumor immune escape mechanisms (21). A

higher TIDE score means a greater likelihood of immune evasion,

indicating that a patient is less likely to benefit from ICI therapy and

may have worse prognostic outcomes. The TIDE website was used

to process 457 HNSCC samples with complete somatic mutation

data in the training cohort, of which 131 responded to

immunotherapy while the remaining 326 did not. Then, the

GRGPIs of responding and non-responding samples were

evaluated, which revealed that responding samples had lower

GRGPIs (Figure 10A). This confirms our findings in a previous

study. Since the low-risk group had better performance in immune

gene expressions, immune cell infiltrations, and activation of

immune pathways, the higher degree of immune cell infiltrations

enables it to achieve better results in immunotherapy, proving that

our definition of the low-risk group as the high-immunity group in

terms of immunotherapeutic effects is correct. Then, TMB values of

response and non-response samples were determined, which did
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not reveal significant differences in TMB values (Figure 10B). The

GRGPI established in this paper is superior to TMB in predicting

immunotherapeutic effects. To validate the effects of

immunotherapy in IMvigor210, differences in GRGPIs between

response and non-response samples were investigated and found to

be insignificant (Figure 10C). Differences between the two groups of

TMB values were analyzed, and the response group was found to

have higher TMB values (Figure 10D).

Therefore, the proportion of response and non-response

samples in the three subgroups was identified after combining

GRGPI and TMB (Figure 10E). The HTMB+HGRGPI group had

the most significant proportion of responding models, followed by

HTMB+LGRGPI& LTMB+HGRGPI, and LTMB+LGRGPI,

suggesting that immunotherapy had better effects in the HTMB

+HGRGPI group. To determine the prognostic performance of the

established three subgroupmodels, we compared the AUC values of

the three predictive models of GRGPI, TMB, and GRGPI combined

with TMB (Figure 10F), which were 0.534, 0.647, and 0.646. The

TMB and GRGPI combined with TMB exhibited better predictive

performance. Finally, the prognostic value of the predictive model

in melanoma was assessed using the GSE78220 cohort for external

validation. Differences in GRGPIs between response and non-

response groups were insignificant (Supplementary Figure 5).
3.14 Drug sensitivity

Although ICI therapy has shown great promise for the

treatment of HNSCC, given its high costs and limited

therapeutic effects (326/457 showed no responses to ICI

therapy in this study), chemotherapy is a clinically meaningful

treatment. However, HNSCC is associated with significant

resistance to chemotherapeutic drugs during clinical treatment.

To assess the application effects in the clinical chemotherapy

process of the established model, IC50 was used to express the

sensitivity of the high-risk and low-risk groups to several

common chemotherapeutic drugs. Cisplatin, paclitaxel, and

docetaxel were recommended by the Chinese Society of

Clinical Oncology (CSCO) Guidelines of 2021 as first-line

therapeutic drugs for HNSCC. Therefore, IC50 values in a

high-risk group and low-risk group of the three drugs were

calculated (Figures 10G–I). Patients in the high-risk group were

more sensitive to cisplatin (p=1.4e-05) and docetaxel (p=5.5e-

12). In contrast, those in the low-risk group were more sensitive

to paclitaxel (p=9.9e-01), implying that the established model

indicates chemotherapeutic sensitivity.
3.15 RT-qPCR analysis

To verify the accuracy of GRGPI in HNSCC patients, we

collected HNSCC tissues and adjacent non-tumorous tissues

from 10 HNSCC patients. RT-qPCR was implemented to
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analyze the expressions of five prognostic glycolysis-related

genes in the GRGPI. We found that compared with adjacent

non-tumorous tissues, the terms of five genes were significantly

up-regulated in HNSCC tissues (Figures 11A–E).
4 Discussion

Conversion of the primary energy source from oxidative

phosphorylation (OXPHOS) to aerobic glycolysis is an emerging

hallmark of cancer cells (22). Although the amount of ATP

produced by glycolysis is low, several advantages inherent to

aerobic glycolysis can explain this metabolic switch in cancer

cells. Glycolysis produces ATP 100 times faster than OXPHOS

(23), which can provide sufficient energy for cell survival.

Second, glycolytic intermediates can be transferred to various
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biosynthetic pathways to provide materials for the synthesis of

biomolecules and organelles (24, 25). In addition, glutathione is

key in protecting cancer cells from oxidative damage and

antitumor drugs. In contrast, intermediates accumulated by

cancer cells during glycolysis promote the pentose phosphate

pathway and can ensure their growth in an environment with

reduced glutathione levels (26, 27). Finally, the formation of an

acidic microenvironment associated with lactate accumulation

due to increased glycolysis provides a tissue environment for

tumor recurren tumor metastasis (28). These factors increase the

dependence of tumor cells on glycolysis and provide a

biochemical basis for the preferential killing of cancer cells by

using glycolysis as a therapeutic target, possibly resulting in

improved therapeutic efficacies (29).

Studies are evaluating the molecular mechanisms of glycolysis

in tumorigenesis, proliferation, and invasion. For instance,
B C
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FIGURE 10

Prognostic value of ICI therapy. (A, B) Sizes of training cohort responses, non-response sample GRGPIs, and TMB values. (C, D) Differences in
GRGPIs and TMB between responsive and non-responsive samples from IMvigor210. (E) Proportions of immunotherapy-responsive and non-
responsive samples in the three subgroups from the IMvigor210 cohort. (F) ROC curves of GRGPI, TMB, and GRGPI combined with TMB in the
IMvigor210 cohort. Analysis of drug sensitivity. Differences in IC50 values of (G) Gefitinib, (H) Erlotinib, and (I) Cisplatin in the high-GRGPI group
and low-GRGPI group.
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PLOD2 induces epithelial-mesenchymal transition (EMT) via the

PI3K/AKT signaling pathway. It is involved in regulating outer

stromal collagen and tumor metastasis through EMT, TGF-b, and
hypoxic signaling. PLOD2 levels are significantly associated with

advanced cancer staging. The presence of regional STC1

uncouples the oxidative phosphorylation process by increasing

the expressions of mitochondrial UCP2, which is a valuable

biomarker for the diagnosis of malignant glioma for the

assessment of postoperative prognosis. Elevated STC2 levels

selectiveprotectcts HeLa cells from endoplasmic reticulum

stress-induced cell death and are also associated with larger

tumor formation, tumor invasion, lymph node metastasis, and

poor prognostic outcomes. P4HA1 is a hypoxia-responsive gene

that plays a key role in regulating collagen biosynthesis (30). HPV

infections promote HNSCC by suppressing P4HA1. AURKA-

mediated phosphorylation can regulate the function of AURKA-

discovered substrates, some of which are filamentous regulators,

tumor suppressors, or factors in cancer. There are already several

small molecules targeting AURKA that have been tested in

AURKA (AKI) preclinical studies (31).

Given the importance of glycolysis in HNSCC, it can be

hypothesized that glycolysis-related genes are potential

prognostic factors for HNSCC. In addition, computed

multigene prognostic markers outperformed single biomarkers

in predicting overall survival. We analyzed the mRNA

expression profiles of 49 glycolysis-related genes in the TCGA

head and neck squamous cell carcinoma cohort. Five genes

associated with glycolysis were selected as candidate
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prognostic factors for HNSCC. These genes are potential

molecular predictive biomarkers and may help inform

individualized treatments based on patient risk. We combined

the established risk scores and multiple clinical parameters to

construct column line plots for predicting the 1-year, 3-year, and

5-year OS in HNSCC patients. Calibration plots based on the

TCGA database showed that the expected and observed values

were very close, indicating the excellent predictive performance

of column line plots. The predictive efficacy was equally good

when examined in the validation set. Thus, our new prognostic

column line plot may be better than the original clinical factors

for predicting survival status for HNSCC patients and informing

specific individualized treatment.

Analysis of the new risk scoring model (GRGPI) revealed

higher immune cell infiltration scores in the low-risk group. Host

immunosuppression is an integral factor in HNSCC

carcinogenesis (32). The immune microenvironment is

characterized by the presence of infiltrating immune cells (33).

We compared immune cell infiltrations between the high-risk and

low-risk groups of HNSCC. We found that resting CD4 memory

cells, M0-phase macrophages, M2-phase macrophages, and

activated mast cells were highly infiltrated in the high-risk

group. In contrast, Tregs and other cells were more in the low-

risk group. Acquired immune-related cell infiltrations were lower

in the high-risk group compared to the low-risk group, suggesting

that the higher risk score may be associated with

immunosuppression. CD8 T cells directly targeting tumor cells

were more stable in the low-risk group. However, CD4 T cells in
B C

D E

A

FIGURE 11

RT-qPCR analyses of five hub genes between HNSCC and Healthy control tissues. Relative mRNA expressions of (A) STC1, (B) STC2, (C) AURKA,
(D) P4HA1, (E) PLOD2. (***p < 0.001,****p < 0.0001).
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the tumor microenvironment were unstable for a broad

subpopulation with potentially different functions (34). CTLA-4,

which is downregulated in the low-immune group, is the first

negative regulator of T cell activation identified in the context of

antitumor immunity, and its blockade using monoclonal

antibodies triggers tumor regression with durable antitumor

immunity in preclinical models. LAG-3 acts synergistically with

other checkpoint molecules to promote T cell dysfunction.

However, the molecular mechanisms and pathways associated

with LAG-3 signaling have not been fully established (35). In this

regard, the conserved KIEELE motif in the cytoplasmic structural

domain was indispensable for LAG-3 downstream signaling and

inhibition of CD4 T cell activation. MHC-II/LAG-3 triggers the

activation of ITAM signaling in DCs, thereby promoting a

tolerance profile (36). Thus, MHC-II/LAG-3 interactions

function as a bidirectional inhibitory pathway.

Through immune pathway analyses, cytokines, TGF-b
family, and TGF-b family receptors were activated in the high-

risk group of the TCGA dataset. The postulate that

overproduction of TGF-b promotes tumor progression was

verified. While the TGF-b-related pathway plays an important

role in inhibiting the proliferation of immunoreactive cells and

stimulating the expressions of the extracellular matrix, activation

of the TGF-b-related pathway in the high-risk group may be one

of the reasons for the immunosuppression and lower stromal

scores. Immune cell dysfunctions within the HNSCC-TME

promote immunosuppression and may thus be associated with

tumor survival and progression outcomes. Therefore, it also

requires therapeutic interventions (37, 38). We found that the

density of CD8 T cells, resting dendritic cells, follicular helper T

cells, Treg cells, and high immune scores correlated with patient

prognosis, consistent with findings from previous studies (20,

39). This underscores the fact that preexisting immune

responses have antitumor effects and positively influence

immunotherapeutic responses. Several seminal clinical and

genomic studies have reported that HNSCC has a high degree

of immune cell infiltrations. However, less than 20% of HNSCC

patients respond to immunotherapy, implying that even the

resistant phenotype in the tumor is not an absolute predictor of

immunotherapeutic responses (40, 41). Molecular analyses of

HNSCC have identified a range of cytokines, chemokines, and

other TME components that determine the ability of the host to

mount anti-tumor immune responses. During tumorigenesis,

these molecular changes may interfere with intercellular

communication between infiltrating immune cells, disrupting

the balance between immune tolerance and cellular activity (42).

Higher CYT scores were associated with higher expressions of

inhibitory ligands by tumor cells that predispose to immune evasion.

Patients with high CYT scores showed better efficacies regarding

checkpoint inhibitors such as PD-L1 than those with low CYT

scores. Based on previous risk groupings, we found that the low-risk
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group had higher CYT scores (43), suggesting that immune cells in

the low-risk group had stronger cytolytic activities and antitumor

immune responses may have better prognostic outcomes. Drug

sensitivity assays revealed that patients in the high-risk group were

more sensitive to cisplatin and docetaxel. In contrast, patients in the

low-risk group were more sensitive to paclitaxel, gefitinib, and

erlotinib, suggesting that this model can be used as a potential

predictor of chemotherapeutic sensitivity for screening sensitive

drugs. Tumor cell chemotherapy drug sensitivity testing can

provide valuable information to physicians to support their

treatment decisions and provide a powerful tool for physicians

and patients in their battle against cancer.

Overall, according to survival analysis, functional analysis,

ICI therapy, drug sensitivity, and RT-qPCR analysis, the

signature was a valuable indicator for predicting survival

outcomes among HNSCC patients. But our study still has

some limitations. First, it was carried out based on the TCGA

database, which lacked specific data on surgery, chemotherapy,

and tumor size. Besides, some patients have undergone immune

or targeted therapy, which may impact the prognosis analysis.

Second, a very high proportion of patients with tumors located

in the oral cavity in the model could make it difficult to

generalize the results of head and neck cancer. Third, the

number of patients we collected was too small to validate the

performance of our prognostic model.
5 Conclusion

In conclusion, a new HNSCC prognostic signature based on

five glycolysis-related genes was constructed in the TCGA

cohort and validated in the GEO database. The signature

shows excellent performance in predicting survival outcomes

among HNSCC patients, reveals the relationship between

glycolysis-related genes and tumor immunity in HNSCC and

provides guidance to clinical treatment decisions.
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