
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Francesco Saraceni,
Azienda Ospedaliero Universitaria
Ospedali Riuniti, Italy

REVIEWED BY

Geoff Chong,
Olivia Newton-John Cancer Research
Institute, Australia
Gerardo Musuraca,
Scientific Institute of Romagna for the
Study and Treatment of Tumors
(IRCCS), Italy

*CORRESPONDENCE

Bauke Ylstra
b.ylstra@amsterdamumc.nl

SPECIALTY SECTION

This article was submitted to
Hematologic Malignancies,
a section of the journal
Frontiers in Oncology

RECEIVED 15 June 2022
ACCEPTED 17 October 2022

PUBLISHED 27 October 2022

CITATION

Mendeville M, Roemer MGM,
Los-de Vries GT, Chamuleau MED, de
Jong D and Ylstra B (2022) The path
towards consensus genome
classification of diffuse large B-cell
lymphoma for use in clinical practice.
Front. Oncol. 12:970063.
doi: 10.3389/fonc.2022.970063

COPYRIGHT

© 2022 Mendeville, Roemer, Los-de
Vries, Chamuleau, de Jong and Ylstra.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author
(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Review
PUBLISHED 27 October 2022

DOI 10.3389/fonc.2022.970063
The path towards consensus
genome classification of diffuse
large B-cell lymphoma for use
in clinical practice
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Diffuse large B-cell lymphoma (DLBCL) is a widely heterogeneous disease in

presentation, treatment response and outcome that results from a broad

biological heterogeneity. Various stratification approaches have been

proposed over time but failed to sufficiently capture the heterogeneous

biology and behavior of the disease in a clinically relevant manner. The most

recent DNA-based genomic subtyping studies are a major step forward by

offering a level of refinement that could serve as a basis for exploration of

personalized and targeted treatment for the years to come. To enable

consistent trial designs and allow meaningful comparisons between studies,

harmonization of the currently available knowledge into a single genomic

classification widely applicable in daily practice is pivotal. In this review, we

investigate potential avenues for harmonization of the presently available

genomic subtypes of DLBCL inspired by consensus molecular classifications

achieved for other malignancies. Finally, suggestions for laboratory techniques

and infrastructure required for successful clinical implementation

are described.

KEYWORDS
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Introduction

Molecular diagnostics of cancer has entered a new era, propelled by advances in

omics- and bioinformatic technologies that provide a new layer of characteristics for

tumor classification. In general, current state-of-the-art diagnostic pathology categorizes

tumors using phenotypic macro- and microscopic and immunohistochemical (IHC)
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characteristics, combined with molecular assays for single or

limited numbers of markers like PCR, and fluorescent in situ

hybridization (FISH). Analyses of highly complex omics data by

bioinformatic technologies have identified molecular patterns

and pathways that underly biologically distinct, and thereby

newly recognized categories. Vice versa, accepted diagnostics

distinct categories may proof to be molecularly so closely related

they may even be combined into a single entity.

Diffuse large B-cell lymphoma (DLBCL), the most prevalent

type of non-Hodgkin lymphoma and the focus of this review, is

characterized by a complex, heterogeneous tumor biology that is

reflected in clinical heterogeneity (1). This is evident from a wide

outcome spectrum with cure for 60% of patients treated with

standard immune-chemotherapy (R-CHOP) and disease

progression for the other 40% of which the far majority

eventually succumbs due to relapsing and/or refractory disease

(2, 3). Since 2000, omics information started to contribute layers

of comprehensive biological information to the diagnosis of

DLBCL (4). At that time, RNA expression profiling by means

of microarray analysis followed by unsupervised clustering

revealed a relatively simple dichotomous distinction based on

cell-of-origin (COO) (5). For universal application in daily

clinical practice, this distinction was translated into various

algorithms that relied on classic immunohistochemistry (IHC)

assay data rather than complex RNA analytics. This undoubtedly

aided to have DLBCL COO classification to be included in the

updated 4th edition of the World Health Organization (WHO)

Classification for Hematolymphoid Malignancies in 2016 (6).

Nonetheless, it was never widely applied outside clinical trials,

largely since the clinical implications ultimately proved to be

limited (7–9). Almost 20 years after the RNA-based COO

classification concept, several independent studies proposed

DNA-based subtyping by next-generation sequencing (NGS) as

an alternative means to capture the biological heterogeneity of

DLBCL and to supersede or complement COO classification (10–

13). The different DNA-subtyping studies bear significant

similarities, but also differ in some a priori concepts, applied

technologies, bioinformatical approaches and ultimately in part in

recognized genomic subtypes (14, 15). These differences preclude

uniform classification, which is a quintessential step towards clinical

implementation and essential to perform meaningful clinical trials

(16–18).
Molecular classifications of DLBCL

Classifications based on RNA-expression

The more than 20-year-old RNA-based COO classification

recognizes 2 major molecularly distinct classes considered to

reflect different stages of B-cell differentiation; activated B-cell

(ABC) and germinal center B-cell (GCB) while a small group of
Frontiers in Oncology 02
patients remains ‘unclassified’. Both in the primary discovery

studies and various subsequent validation studies, patients with a

GCB-type DLBCL consistently showed a better prognosis under

guideline therapy than patients with an ABC-type DLBCL (4).

The differential clinical outcomes coupled with distinctive

underlying biology served as a justification for differential

treatment. In the years that followed it became clear however

that the complex and heterogeneous biology of DLBCL was not

fully captured by this simple dichotomous classification (5). In

particular, phase 2 and phase 3 clinical trials that either used

COO as an inclusion parameter, or were post-hoc analyzed based

on COO class, failed to demonstrate differential improvement of

outcome for patients receiving experimental, targeted treatment

alternatives (7, 8, 19).

This does however not imply that RNA-based information

would not provide essential information to dissect DLBCL

biology, as specific host-immune response signatures could

already be identified in the early 2000s (20). Most recently,

deconvolution algorithms using known cell type specific RNA

signatures to computationally infer cellular components from

bulk RNA data have allowed to further dissect information on

tumor features as well as non-malignant tumor immune

microenvironment (TME) features. Thereby, the original GCB

class was further divided into three to four differentiation phases

(germinal center, dark zone, precursor memory B-cell, light

zone) and ABC into two phases (pre-plasmablast, plasmablast/

plasmacell). Hence, TME analysis from RNA expression data

provided complementary signatures that could further and

largely independently describe DLBCL biology in a clinically

meaningful manner (21).
DLBCL defining DNA-alterations and
subtyping approaches

The first larger DNA-based next-generation sequencing

(NGS) studies for DLBCL that were undertaken revealed a

spectrum of mutations, numerical chromosomal copy number

aberrations (CNAs) and translocations that were largely

characteristic for either of the RNA expression-based COO

classes (22–27). For example, mutations in the chromatin

modifying genes CREBBP, KMT2D and EZH2, were described

as characteristic of GCB-type DLBCL and chromosome 18q gain

and MYD88 mutations characteristic of ABC-type DLBCL.

Apart from these few COO-characteristic DNA alterations, the

majority was shown to be only limitedly overrepresented in

either class, explanatory for the extensive genetic heterogeneity

of DLBCL.

In 2018, research groups from the National Cancer

Institute (NCI) and the Dana Farber Cancer Institute (DFCI)

independently and practically simultaneously proposed DNA-

based subtyping approaches based on whole exome sequencing
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(WES) (1, 10, 11). The NCI group made a first step towards

harmonization of the two approaches by, like DFCI, also

including CNAs to their classification which resulted in the

LymphGen algorithm (12). The DFCI- and NCI studies

included retrospectively collected patient cohorts and

identified 5- and 7 genomic subtypes, respectively.

Encouraging is that despite the different cohorts and

bioinformatical approaches, both defining features and the
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resulting subtypes are largely overlapping (Figure 1 and Box

1). Other groups, with other cohorts using overlapping

bioinformatical approaches have been able to reproduce

these subtypes by and large (13, 31–33), including

unpublished results by the authors of this review. This all

provides confidence that a DNA-based characterization of

DLBCL has the potential to disentangle the biological

heterogeneity that underlies DLBCL’s clinical heterogeneity.
FIGURE 1

Sankey diagram comparing the two DLBCL subtypes. A Sankey diagram was constructed to illustrate how the LymphGen (12) and NMF (10)
subtyping systems compare, as described in Box 1. Therefore the NGS data of 304 diffuse large B-cell lymphoma (DLBCL) cases published by
the Dana Farber Cancer Institute (DFCI) (10) was used as input. Left stage: Clustering by means of non-negative matrix factorization (NMF). Right
stage: Classification by means of LymphGen algorithm. Flows between the subtypes resemble DLBCL cases and are labelled according to their
molecular counterpart; C1/BN2, purple; C2/A53, blue; C3/EZB, orange; C4/ST2, green; C5/MCD, red; samples not assigned to a cluster (NMF,
C0) or unclassified (LymphGen, Other) are in gray. Each subtype with numbers of samples (n) and percentage of total (=304).
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The bioinformatic approaches of the
current DNA-based subtyping systems
for DLBCL

The DFCI group used unsupervised clustering combined

with alteration-centric features (Box 2). Driver alterations were

discriminated from passengers, thereby reducing the genetic

dataset to 158 features. Non-negative matrix factorization

(NMF), an unsupervised clustering algorithm that detects

patterns of co-occurring features and assigns a subtype to each

included tumor, was used. The number of clusters to be

identified was predefined between 4 and 10, which is actually

an arbitrary choice. The NMF algorithm identified the optimal
Frontiers in Oncology 04
stability of clusters to be represented by 5 DLBCL groups of

similar sizes, which the authors labelled as C1 to C5.

The NCI group used semi-supervised clustering combined

with gene-centric features (Box 2). The prior knowledge given

were four predefined classes, each composed of 1 or 2 specific

DNA "seed" alterations: MCD (seed is co-mutation of CD79B

and MYD88L265P), BN2 (seed is NOTCH2 mutation or BCL6

translocation), N1 (seed is NOTCH1 mutation) and EZB (seed

is EZH2 mutation or BCL2 translocation). Finally, the

algorithm selected the additional genomic features that had

the strongest association with the four classes through an

iterative approach. All patient samples were included for

classification with this 4-class algorithm, yet of the entire
Box 1 Comparison of the LymphGen and NMF subtyping systems.
The correspondence between the NCI’s LymphGen and DFCI’s NMF subtypes is 75% based on the 63.1% of patients classified by the LymphGen algorithm (12). If
also the LymphGen unclassified samples are considered, the overall agreement between the two subtyping systems is around 50%. Approaches: Both studies
performed comprehensive genomic profiling to detect somatic mutations, CNAs and translocations. Because of the lack of matched normal tissue for most samples,
both studies applied custom computational pre-processing techniques to eliminate sequencing artifacts and distinguish somatic and germline variations. The DFCI
group performedWES on a series of tissue biopsies of 304 patients with primary DLBCL. Samples were from 4 different trials and cohorts, of which 55% were derived
from FFPE tissue, and 44% had matched-normal tissue availability (10). The NCI group performed WES on a series of fresh-frozen DLBCL tissue biopsies of 574
patients for which 96.5% were primary DLBCL tissues and the other 3.5% from relapsed or refractory, without matched-normal tissue (12). Below is a short summary
of the most defining features which the NCI and DFCI proposed subtypes have in common. For a more comprehensive overview on details of their differences and
commonalities we refer to a recent review by Crombie et al. (28).

i. The C1 subtype recognized by DFCIs NMF algorithm finds its analogue in the BN2 subtype recognized by NCIs LymphGen algorithm. Combined, the two
algorithms determined 21 defining genetic alterations, of which eight overlap. Overlapping genes include BCL6 translocations, alterations in NOTCH2 signaling
genes and mutations targeting the NF-kB pathway. Furthermore, the C1/BN2 subtype is enriched for, but not restricted to ABC-type, and shows a favorable
outcome. The C1/BN2 alterations form a genetic basis of immune evasion corresponding to mutations seen in marginal zone lymphoma. Non-overlapping genes
include mutations of B2M, FAS, HLA-B and translocations of PD-1 ligands.

ii. The NMF-C2 subtype is analogues to the LymphGen-A53 subtype. Both have characteristic TP53 inactivation, and a high degree of genome instability as
reflected by the prominence of genome-wide CNAs. This subtype is not significantly enriched for either of the two COO types, which underpins that the original
COO dichotomy was indeed an oversimplification of DLBCL biology. Overall survival of this C2/A53 subtype under R-CHOP treatment is unfavorable. A
notable difference between the two subtypes is the high number of discordant subtype-defining features (36 from 41), including driver alterations such as
chromosomal deletion of the CDKN2A locus (9p.21).

iii. The NMF-C3 subtype is analogues to the LymphGen-EZB subtype, with a relatively high concordance of subtype-defining alterations (10 out of 18); including
translocations of BCL2, and mutations in chromatin modifying genes. Discordant features include amplification of the REL locus (2p16.1) and mutations of FAS.
The C3/EZB subtype represents classic GCB-type DLBCLs, and the genetic features are to a large extent alike follicular lymphoma (FL), which suggest that these
DLBCLs represent transformed FL (29). Clinically, C3/EZB subtype tumors are considered of most high risk within the GCB-type of DLBCLs. Notably, also the
RNA-based DHITSig is enriched in this subtype and used to further subdivide EZB.

iv. The NMF-C4 subtype is analogous to the LymphGen-ST2 subtype. C4/ST2 subtype defining alterations affect BCR/PI3K signaling, the JAK/STAT pathway,
and histone genes. Most of these DLBCLs belong to the GCB-type with favorable outcome. Few alterations linked to this subtype are concordant between the two
classification systems (6 out of 24). The less defined nature of this subtype is further underpinned by a recent study suggesting that this subtype may be further
subdivided into two subtypes with divergent biology: a TET2/SGK1 and a SOCS1/SGK1 subtype (13).

v. The NMF-C5 subtype is analogues to the LymphGen-MCD subtype. Nine of the 24 characteristic alterations overlap which include mutations in genes
associated with extranodal involvement (MYD88, CD79B, TBL1XR1). This C5/MCD subtype is highly enriched for ABC-type DLBCLs and is the subtype with
the least favorable survival under R-CHOP treatment. Discordant alterations include other markers of immune evasion (mutations of HLA-B and translocations
of PD-1 ligands) and copy number gains of chromosomal arms 3q and 18q.

vi. Finally, the LymphGen classification describes the N1 subtype which is characterized by NOTCH1mutations. This subtype occurs in less than 2% of DLBCLs
Figure 1 and has the worst survival among the LymphGen subtypes. This subtype is not recognized by the NMF algorithm with the DFCI cohort. Also, when we
extend the DFCI cohort with another 500 DLBCLs treated with R-CHOP, the NMF algorithm still does not recognize this class (authors unpublished results).
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cohort, only 46% of cases could be assigned (11). In the

remaining 54% of cases in the NCI cohort recurrent

alterations of TP53 (25%), TET2 (10%) and SGK1 (6.9%)

were identified. This prompted the NCI group to refine and

extend the four classes with two additional classes: A53 (seed

is mutation and/or CNA of TP53) and ST2 (seed is mutations

of SGK1 and TET2), resulting in six seed classes (12).

Subsequent l y , a Bayes i an pred i c to r mode l t i t l ed

“LymphGen” was developed, which calculates for each

individual tumor the subtype probabilities for each of the six

classes based on its genetic alterations. Tumors designated as

"core" tumors were defined as being attributed to one class

with a probability score of >90%. Consequently, the Bayesian

predictor allows tumors to be assigned to multiple classes.

Those with a probability score greater than 90% for more than

one class are the so called “genetically composite” tumors.

Tumors with a probability score of 50%-90% for one single

class were termed “extended” class members. Tumors with few

subtype-specific genetic alterations were left unclassified.

Thereby, the then 6-class LymphGen algorithm assigned

63.1% of cases of the NCI cohort (12). Later, the RNA

expression-based MYC double-hit signature (DHITSig),

previously developed by others (34), was added as a

surrogate for MYC translocation status to split the EZB class

in MYC positive and MYC negative cases.
Critical evaluation of the current
subtyping approaches for DLBCL

Despite the different choices in feature identification and

machine learning algorithms (Box 2), the NCI and DFCI groups

recognize a similar and extensive underlying biological

heterogeneity of DLBCL. Some subtypes are already more

similar than others. For example LymphGens MCD/NMF C5,

LymphGen A53/NMF C2 and LymphGen EZB/NMF C3 are
Frontiers in Oncology 05
already relatively consistently defined. An important difference

is that the LymphGen algorithm does only assign 63.1% of

patients to any of their predefined subtypes, whereas the DFCIs

NMF algorithm defines a number of subtypes to which 100% of

the samples in the cohort are assigned. The N1 subtype is the

rarest subtype and is only recognized by the NCI with the

NOTCH1 mutation seed given to the LymphGen algorithm

(Box 1).

A small fraction of DLBCL patients (<2%) carry NOTCH1

mutations which infers potential specific sensitivity to Ibrutinib,

a Bruton’s tyrosine kinase (BTK) inhibitor. Due to its low

frequency, the N1 subtype is not recognized using

unsupervised techniques in relatively small series. The size of

the currently studied cohorts has been too small, hence

underpowered, to detect such rare genomic subtypes by

unsupervised analysis. Unknown small genomic subtypes can

only get recognized once the sample size is sufficiently large, as

exemplified by Curtis et al. for breast cancer (35). Rare subtypes

like N1 may be characterized by very specific biological

characteristics that make them uniquely targetable with

specific potent inhibitors and thereby highly relevant to be

recognized. As an example from another cancer entity, in

about 1% of metastatic colorectal cancers the ERBB2 oncogene

on chromosome 17q is amplified, which can be effectively

targeted by trastuzumab and neratinib and results in high

response rates in these tumors (36–38). Likewise, 4-5% of

non-small-cell lung cancers have a translocation of the ALK

gene, which can be effectively targeted by the ALK inhibitor

crizotinib (39).

Not recognized by either NCI or DFCI are the actual high-

grade B-cell lymphoma (HGBCL), B-cell lymphomas with MYC

translocation together with either BCL2 and/or BCL6 translocation

(double hit/triple hit). Unsupervised NMF clustering theoretically

might be able to recognize this group as a subtype but, like the N1

subtype, it may have remained undetected as a result of the limited

number of MYC-translocation positive DLBCLs in the DFCI
Box 2 Genome feature definition and subtyping algorithms.
The two proposed DNA-based subtyping systems differ in their bioinformatic approaches for i) genomic feature definition, and ii) subtype identification (10, 12):

i. To define genomic features a gene-centric approach can be applied that combines all DNA alterations that impact the same gene into 1 feature, independent of
whether they are a mutation, translocation or CNA. For example, a point-mutation of CDKN2A and a deletion of the CDKN2A-locus 9p.21 would be recognized
as 1 feature. Alternatively, an alteration-centric approach regards each DNA alteration type separately, independent of their location in the genome. In the
example of CDKN2A, the mutation and 9p.21 deletion are regarded as two separate features.

ii. Also machine learning algorithms for patient subtyping can generally be divided in 2 main approaches, supervised or unsupervised (30). The supervised
approach uses predefined classes to construct a classification rule from the features. An unsupervised approach leaves it to the algorithm to identify a number of
subtypes that are composed of feature characteristics prioritized by the algorithm. Semi-supervised learning would be where some prior knowledge on classes and
or features is given.
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dataset. The DHITSig signature used by the NCI is a surrogate

marker to recognize a MYC subtype and troublesome for various

reasons. First it is not DNA alteration derived and requires a

different assay, namely RNA expression analysis. Second, the

name of this signature is deceiving since it implies a genetic

context of HGBCL, whereas only 64% of DHITSig-positive GCB-

type DLBCLs actually carry a MYC translocation and 52% are

actual double hit/triple hit DLBCLs (34). Third, also other

lymphoma classes besides HGBCL double hit/triple hit such as

Burkitt lymphoma score positive for DHITSig. This RNA DHIT

signature is thus not specific for either MYC translocation or

HGBCL (40, 41).

Besides the choice of subtyping algorithms, the NCI gene-

centric versus DFCI alteration-centric choices for genetic features

deserve attention (Box 2). The easiest solved are the focal

chromosomal CNAs, aberrations smaller than 3Mb (42) which

only encompass one or few genes, and can therefore be combined in

a gene-centric fashion (43). The choice between alteration- or gene-

centric is not obvious for the larger-scale chromosomal CNAs since

they harbor hundreds of genes. Rather than rationalizing a choice

between a gene-or alteration-centric approach, the machine

learning algorithms can be offered data processed in either

manner and side-by-side evaluated for best subtyping performance.

Although the unsupervised clustering choice is an elegant

data-driven approach to identify subtypes (17, 44, 45), in the end

a classifier, like LymphGen, will need to be built to diagnose

individual patients in daily clinical practice, which dictates

another step towards harmonization.
Frontiers in Oncology 06
Towards a unifying classification for
DLBCL; Lessons learned from other
tumor types

Two steps towards clinical
implementation of a DNA-based
classification of DLBCL

The currently proposed DNA-based subtypes will be the

basis for a unified biological classification that may require a

two-step strategy (28). Step 1 would involve harmonization of

the current DNA-subtyping systems into a single unified

classification, Step 2 would be the development of a

reproducible and widely applicable molecular diagnostic assay;

certified, as well as cost- and time-effective to enable clinical

implementation. This exposes various challenges, from the

choice of laboratory technique, subtype-defining DNA

alteration features and interpretation to classification

algorithms and bioinformatic procedures.
A universally accepted classification is a
prerequisite to improve patient
management

Harmonization into a single classification is a first

requirement for implementation in diagnostic routine.
Box 3 Summary of the data-driven bioinformatic path to the four consensus molecular subtypes for colorectal cancer.
Three generic methodological steps are involved in the path taken for consensus classification of colorectal cancer.

i. Independent expert team subtyping prediction on normalized raw data sets: Eighteen RNA-based CRC gene expression data sets, derived from different
continents and research groups were assembled from public resources (Gene Expression Omnibus and The Cancer Genome Atlas). The data sets were compiled
from various genome-wide expression analysis techniques (arrays and RNA-sequencing), different sample types (formalin-fixed paraffin embedded and fresh-
frozen tissue materials) and different study designs (retrospective and prospective series, including clinical trials). The first bioinformatics step concerned central
pre-processing and normalization aimed to obtain expression profiles for each of the patients of the 18 gene-expression datasets, independent of cohort or
technique. Next, each of the six initial participating research teams applied their original classification algorithm to each of the 18 data sets. Thus, resulting in six
classifications, with a total of 27 different subtypes for all 3,962 patients.

ii. Network analysis for consensus subtype identification: Using the six classification systems of the 3,962 patients, a network-based approach was applied to study
the association between all the 27 subtypes. To detect robust clusters of recurrent molecular subtypes, an unsupervised Markov clustering approach was
performed, resulting in the identification of four consensus molecular subtypes (CMSs). Of the 3962 samples, 3104 (78%) were identified as highly representative
of a particular subtype and labelled as core consensus samples and the remaining n=858 as non-consensus samples. The core consensus samples were used to
train the novel CMS classifier in the subsequent step.

iii. CMS classifier construction and application: To allow classifications of individual cases, which is mandatory for diagnostic routine, a classification algorithm is
required. Since the data sets were created using different RNA gene expression profiling techniques across the different studies, not all genes were included in all
data sets. The CRCSC first converted all 18 separate data sets into a single data set. The genes that were commonly profiled by all separate data sets were selected
to allow aggregation of all 18 data sets into a single data matrix. To construct the CMS classifier, the single data matrix, CMS classes and consensus sample set
were used. The consensus samples were randomly split using two-third as training and one-third as validation set, and a random forest classifier was generated to
calculate a prediction value for subtype assignment for each sample, by means of bootstrapping with 500 iterations. Application of the CMS classifier on the
validation set demonstrated an overall accuracy of 90%. The CMS classifier was robust enough to allow assignment of 40% of the non-consensus samples, while
the rest showed heterogeneous patterns of CMS subtypes and contained biological information of more than one class.
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Objective, reproducible, and conclusive subtype definition for

each patient sample, combined with a detailed understanding of

the tumor biology of each defined DNA-class, will enable to

explore clinical consequences of such classification, preferably in

clinical trials (46). For various organ-specific malignancies

molecular classifications for tumor families have now been

standardized and integrated in the 5th edition series of the

WHO Classifications and are starting to be implemented in

the diagnostic workflow for those settings that have access to the

technology (47–49). The road towards this level of applicability

has been achieved with several research groups proposing their

individual molecular classification as a starting point, at different

moments in time and with different laboratory and

bioinformatical techniques, as is exemplified by the

classification of breast cancer, central nervous system (CNS)

tumors and colorectal cancer (48, 49).
Lessons learned from classifications that
are universally agreed upon for other
solid malignancies

Probably breast cancer classification is one of the most

successful early examples. An RNA-based classification for

breast cancer found its way already into the 4th edition of the

WHO Classifications of Breast Tumours in 2012, which was

further expanded upon in 5th edition (47). it recognizes 5

molecular classes; each with different prognosis but also

different treatment recommendations. The existing close

transatlantic collaborations undoubtedly facilitated consensus

formation, characterized as “organic” allowing different

biological and bioinformatical perspectives to converge (46, 50,

51). Once a consensus classification was established and

reproducible assays were developed, exploration of

personalized and targeted treatment approaches could be

effectively explored to identify bespoke treatment modalities,

amongst others in the multi-armed I-SPY clinical trials (52).

From the point of view of development of a molecular-based

consensus classification, the present WHO classification for CNS

tumors is an impressive result of intensive collaboration leading to a

highly refined molecular classification. In 2014 a group of neuro-

oncological pathologists, physically converged in 2014 in Haarlem

(NLD) and prepared a clinically relevant histo-molecular diagnostic

consensus classification, whilst reducing interobserver variability

(53), which soon was implemented in the 4th edition of the WHO

Classification of CNS Tumors (54). Subsequently, a largely novel

approach was taken by means of genome-wide DNA methylation

analysis where the large spectrum of CNS tumors were recognized

by methylation profiles combined with a form of dimension

reduction called t-distributed stochastic neighbor embedding (t-

SNE) (55). The t-SNEmethylation test alone allows for diagnoses of

the large majority of CNS tumors, not seldomly more detailed and/
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or reliable compared to the histo-molecular diagnosis, resulting in

redefinition of these entities. The collaborative effort with inclusion

of samples and intellectual input from many research groups across

the world as well as extensive discussions in the Consortium to

Inform Molecular and Practical Approaches to CNS Tumor

Taxonomy (cIMPACT-NOW) (56) has helped a broad

acceptance and indeed this molecular classification is now also

included in the 5th edition of the WHO Classification of Central

Nervous System Tumours (48, 48).

To harmonize colorectal cancer (CRC) classification, the

Colorectal Cancer Subtyping Consortium (CRCSC) was formed

to integrate six independently published RNA-based

classifications (49). As opposed to the CNS assembly

consensus, a predefined mathematical harmonization path was

taken with the aim to resolve inconsistencies between the various

CRC classification systems. This approach culminated in four

consensus molecular subtypes (CMSs) (49) to which each CRC

sample adheres to a higher (core samples) or lesser (non-core)

extend. Since the context in CRC classification is so very similar

to the current status in DLBCL, we here provide a summary of

this CMS approach where three generic methodological steps

were involved (Box 3).

The process to come to a single, harmonized molecular

classification for DLBCL may likely be the one taken for the

development of colorectal cancer CMS. For DLBCL also, a

similar issue in the underlying biology result in single class

(core) tumors, unclassified samples and genetically composite

tumors (12, 57). What should alleviate the consensus process is

that for DLBCL two, rather than the six for colorectal cancer,

existing DNA-classifications as a starting point while still various

independent published and unpublished (authors of this review)

datasets are available.
From DLBCL genome classification
to clinical implementation

DNA alterations required for DLBCL
genome classification

Any consensus classification for DLBCL will include a

combination of mutations and structural chromosomal

variations (CNAs and translocations) (Box 1). Therefore,

inclusion of this information into a single genome subtyping

assay would be highly attractive. Various common laboratory

and bioinformatics applications are available for mutation and

CNA detection by NGS. Also NGS-based translocation detection is

starting to become a cost-effective alternative for routinely used

Fluorescent in situ hybridization (FISH) to determine

translocations. (Figure 2). FISH benefits from a choice of

worldwide commercially available probes and assays but is labor-
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FIGURE 2

A single NGS assay to detect somatic mutations and structural variations, including translocations and CNAs, from DNA extracted from FFPE
tissue. (A–C) Visualization of the detection by NGS of CNAs, mutations, and translocations for a DLBCL sample. (A) Genome-wide chromosomal
CNAs. x-axis shows chromosomes 1 to 22, from left to right, y-axis shows copy number gains (light red) and copy number losses (blue). (B)
Screenshot of high coverage (200X) NGS sequence reads aligned to the reference genome highlighting a somatic mutation in KMT2D. (C)
Screenshot of high coverage (200X) NGS sequence reads aligned to the reference genome highlighting a translocation breakpoint in MYC. (D) A
circular representation of the genome depicting mutations (genes denoted in small red letters), translocations (genes denoted with large black
letters connected by black lines) and CNAs (inner circle: black dots are measurement bins and called losses are colored in blue and gains in light
red). Green and red arrows point to the position of break apart (BA) FISH probes that were used as a control for the translocations detected by
NGS. (E) FISH BA MYC. (F) FISH BA BCL6. Integrated NGS analysis explains aberrant FISH pattern: a loss (green arrow) and a gain (red arrow) at
the MYC locus coincide with a single (green arrow) and double gain (red arrow) at the translocation partner BCL6 locus.
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intensive with a certain level of technical variability and subjectivity

in interpretation. Thereby, NGS outperforms FISH in several ways:

it avoids interobserver variability, it can be performed with small

and histologically compromised materials, and it is able to identify

exact translocation breakpoints on nucleotide level. An additional

advantage of some of the NGS approaches is that unknown

translocation partners may be identified, that may be of clinical

relevance for the biological and clinical interpretation of DLBCL

patients with a MYC translocation (40). Various combinations of

NGS and bioinformatics platforms have been successfully

developed in this direction (58–61).
Assays for clinical implementation

World-wide clinical implementation of any diagnostic

routine requires relatively simple assays that are applicable to

routine diagnostic tissue material, such as formalin-fixed

paraffin embedded (FFPE) specimens. The elaborate

laboratory- and informatics infrastructure needed for current

NGS or array analysis may only be available in selected settings

of large medical centers or commercial providers as exemplified

for CNS tumors. Favorable aspects of commercial involvement

are the wide availability, extensive standardization, quality

control and rapid turnover time due to high case volumes.

Downsides are amongst others worldwide availability, financial

dependency and commercial goals, market dominance of

individual commercial providers, lack of technical

transparency and development, lack of flexibility to include

most recent research developments and generally lack of

integrated interpretation with other pathology parameters.

Another option to bring a genome subtyping assay to

implementation in daily practice is to “reduce” complex

molecular information to simpler and widely applicable

techniques. The DLBCL-COO classification alternative is a

good example; genome-wide molecular classification with

elaborate bioinformatics was translated into several simple

immunohistochemistry (IHC) markers, of which the Hans

classification is most widely used (62). All IHC-based COO

assays show limited concordance with the gold standard of RNA

expression-based assays (63). This prompted the development of

a digital gene expression assay based on 20 key genes that can be

applied on FFPE material (64). This Lymph2Cx assay, restricted

to equipment from the company Nanostring (Seattle, USA),

showed high concordance with the original RNA expression-

based COO classification with a 2% error rate in COO

assignment (65). These characteristics, together with a short

turnaround time of less than 36 hours, allowed for rapid

molecular characterization of patients, making this assay a

suitable middle-ground alternative for employment in research

and clinical trials (19). Similar assays have been commercialized

by others (66). In view of the expected high-dimensional nature
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of a consensus molecular classifier for DLBCL, simple

translation to an IHC is not likely. Current NGS techniques

are already reliably applicable for FFPE biopsy samples offered

by commercial providers. It may be expected that these

companies will readily offer products for consensus molecular

DLBCL classification once this would be developed.
Assay and turnaround time

A single genome subtyping assay that detects CNAs,

mutations, and translocations in parallel would conceivably be

most efficient in terms of labor, cost and tissue material. But is

this also efficient in terms of turnaround time? A recent study

showed that real-time molecular profiling of RNA-based COO

determination of DLBCL is realistic to stratify patients in a

timely manner, with a median turnaround time of 8 days (8).

This would be a desirable timeframe for DNA-based DLBCL

classification, such that based on tumor vulnerabilities, patients

can be diverted after 1 or 2 cycles standard R-CHOP treatment,

which is a successful approach facilitating rapid trial inclusion

(67). A recent feasibility study in the Netherlands, which

involves a WGS specialized non-profit organization, was

performed to evaluate implementation of WGS into routine

diagnostics (68). Meanwhile, they were able to optimize the

turnaround time from biopsy to DNA report to 7 working days,

demonstrating the potential of clinical implementation of NGS

methods for these purposes.
Application in daily clinical practice
and promising future developments

Bespoke treatment of DLBCL patients

Once validated, uniform and widely applicable, consensus

molecular subtypes of DLBCL will be a sound basis to explore

more effective, targeted treatment methods (1). The potential of

DNA-based classification for precisionmedicine ofDLBCLhas been

demonstrated in a recent retrospective analysis of a randomized

phase-III trial (69). In this study, patients under 60 with two specific

DNA subtypes (LymphGen’s MCD and N1) that received R-CHOP

with Ibrutinib had significantly better survival (both subtypes 100%

3-year event-free survival) thanpatients that receivedR-CHOPalone

(42.9% and 50%, respectively), clearly indicating the potential

predictive value of the novel genomic subtypes. Next, prospective

clinical trialsmay further explore associationswithgenomic subtypes

and associationswith targeted compounds, such asNFkB-inhibitors,

PI3K inhibitors, P53-modulators and apoptosis modulators, as well

as immunotherapy such as immune checkpoint inhibitors andCAR-

T cell therapy. For this purpose, various dedicated next-generation

designs are now proposed (70).
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It is obvious to further investigate to what extent the

integrat ion of the current DNA-based and RNA/

microenvironmental-based subtyping methods for DLBCL

would be of added value. Adding a layer of epigenetic

information as for CNS (55) or even germline genetic

characteristics might be considered (71). Also liquid biopsy

strategies measuring circulating tumor DNA (ctDNA), will

provide other lines of opportunities in diagnosis and disease

monitoring of DLBCL patients (72–74) Future studies are

required to investigate the potential integration of these

approaches for the management of DLBCL patients.
Consensus classification serves the
DLBCL patient

The step forward to allow evaluation of new treatment

modalities based on DLBCL genetics is now impeded by a

discordancy between the 2 independently suggested genomic

subtyping approaches, which dictates the challenge that lies

ahead of us. Based on various other tumor entities we suggest

a blueprint for harmonization of the proposed DNA subtypes,

which may allow more widespread clinical implementation.

Once this hurdle is taken, a diagnostic work up, applicable in

a clinically relevant timeframe, will enable the design of next-

generation prospective biomarker-based clinical trials. If

successful, the precision medicine with targeted therapies that

match dependencies of the molecular subtypes of DLBCL may

be brought forward.
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