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Purpose: Preoperative evaluation of lymph node metastasis (LNM) is the basis

of personalized treatment of locally advanced gastric cancer (LAGC). We aim to

develop and evaluate CT-based model using deep learning features to

preoperatively predict LNM in LAGC.

Methods: A combined size of 523 patients who had pathologically confirmed

LAGC were retrospectively collected between August 2012 and July 2019 from

our hospital. Five pre-trained convolutional neural networks were exploited to

extract deep learning features from pretreatment CT images. And the support

vector machine (SVM) was employed as the classifier. We assessed the

performance using the area under the receiver operating characteristics

curve (AUC) and selected an optimal model, which was compared with a

radiomics model developed from the training cohort. A clinical model was built

with clinical factors only for baseline comparison.

Results: The optimal model with features extracted from ResNet yielded better

performance with AUC of 0.796 [95% confidence interval (95% CI), 0.715-

0.865] and accuracy of 75.2% (95% CI, 67.2%-81.5%) in the testing cohort,

compared with 0.704 (0.625-0.783) and 61.8% (54.5%-69.9%) for the radiomics

model. The predictive performance of all the radiological models were

significantly better than the clinical model.

Conclusion: The novel and noninvasive deep learning approach could provide

efficient and accurate prediction of lymph node metastasis in LAGC, and

benefit clinical decision making of therapeutic strategy.

KEYWORDS

deep learning, locally advanced gastric cancer, lymph node metastasis, radiomics,
computed tomography
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Introduction

Gastric cancer (GC) is one of the most common cancers and

the third leading cause of death from cancer worldwide (1). The

incidence rate of gastric cancer is relatively high in Asia, South

American and Europe (2–4). Locally advanced gastric cancer

refers to the wall invasion deeper than the submucosa, with a

high rate of lymph node metastasis (LNM) and poor clinical

prognosis (5–7). Accurate evaluation on lymphatic metastasis

based on preoperative computed tomography (CT) images is

crucial for individual treatment of LAGC (8–10). Preoperative

knowledges of LNM have important clinical significance for

selecting the optimal surgical procedure (endoscopic procedures

or gastrectomy plus lymph node dissection) and the need for

adjuvant therapy (11–13). The National Comprehensive Cancer

Network recommended CT as a first-line imaging technique for

detecting LNM, but the overall accuracy is 50%-70%, which is

unsatisfactory (14).

The advances in deep learning techniques provides a new

field for CT imaging analysis, which could convert medical

images to mineable data and generate thousands of

quantitative features (15). Convolutional neural networks

(CNNs) have been proved to be an effective method for

improving the diagnostic accuracy of medical imaging (16–

18). Due to the lack of enough annotated cases, training a

CNN model from scratch for one specific clinical problem

often is infeasible. An effective approach is to adopt the

transfer learning technique using pre-training CNNs, which

ran additional steps of pre-training on specific medical domain

from the existing checkpoint. It is frequently used to alleviate the

limitations of small datasets and expensive annotation (19, 20).

Part of natural imaging descriptors developed for object

detection have been used for lesion segmentation in medical

imaging analysis (21). Another option is to use a pretrained

CNNs models as the feature extractor and traditional machine

learning methods as classifier, which may also have satisfactory

performance in terms of prediction accuracy and computational

cost (22). Handcrafted radiomics have been studied extensively

for radiological diagnosis and prediction (8, 23, 24). However,

the application of transfer learning to prediction of LNM in

gastric cancer has not been explored.

In this study, we hypothesize that CT-based transfer learning

techniques are feasible to extract deep learning features for

preoperatively predicting LNM risk. To this end, our study

aims to build a noninvasive measurement based on pre-

trained deep learning models for the preoperatively prediction

of LNM in patients with gastric cancer, making comparison with

the handcrafted radiomics method. Additionally, we further

explored the application value of deep learning features in

predicting LNM and making treatment decisions.
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Materials and methods

Patients

This retrospective study was approved by the institutional

review board of our hospital, and the requirement for informed

consent was waived. A total of 523 consecutive patients with

gastric cancer who was treated between August 2012 and July

2019 were enrolled. The patients were enrolled based on

following inclusion criteria: (a) pathologically diagnosed as

local advance gastric cancer (pT2-4aNxM0); (b) all patients

with gastrectomy plus lymph node dissection and CT imaging

data were complete; (c) without any systematic or local

treatment before CT imaging study or surgery; (d) the lesion

covers at least 3 slices on CT cross section. The patients were

excluded based on the following criteria: (a) invisible lesion on

CT images; (b) insufficient stomach distension; (c) poor image

quality for post-processing due to artifacts. The flowchart of

patient selection was shown in Figure 1. We adopted computer-

generated random numbers to split the training cohort (n=367,

74.40% males; mean age, 59.75 ± 10.38; range, 22-82 years) and

the testing cohort (n=156, 73.98% males; mean age, 59.36 ± 9.94;

range, 22-81 years). The tumor location information was got

from the medical or endoscopic reports, and the clinical

information was got by reviewing the medical reports.
Image process and tumor segmentation

All patients underwent contrast-enhanced CT scan and

informed consent forms were signed before inspection. The

CT scans were acquired with breath-hold with the patient

head first supine in all of the phases for covering the whole

abdomen. The details on CT acquisition parameters were

described in Supplemental Material.

Tumor regions of interest (ROIs) were manually segmented CT

images by two experienced radiologists using ITK-SNAP software

(version 3.6.0; http://www.itksnap.org). In order to make a fair

comparison with different features, we only chosen one slice with

the maximum cross-sectional area of the tumor lesion by the

radiologists. We randomly chosen 30 patients from training

cohorts to assess the interobserver reproducibility for ROI-based

radiomics features in a blinded manner. After one month,

segmentation procedure was repeated to assess the intraobserver

reproducibility. The features with intra-class correlation coefficient

(ICC) greater than 0.75 were selected for further analysis. For deep

learning features extraction, the 3 axial slices containing the

delineated tumor were resized to 224× 224mm (the size for the

input layer of the pretrained CNN models) with the use of a

bounding box covering the radiologist contoured tumor area.
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Deep learning features

We employed five commonly convolutional neural networks

(ResNet (25), VGG16 (26), VGG19 (26), Xception (27) and

InceptionV3 (28)) as base models to extract deep learning

features automatically. These five CNNs models were pre-

trained on the large-scale lightweight well-annotated

biomedical image database (29). We removed the last fully

connected layer at top of the network, and applied global max

pooling strategies to efficiently capture the maximum values of

each layer of the feature maps. Finally, we converted the feature

maps to the raw values. The extracted deep features were used to

construct the machine learning model. Due to the complexity of

deep learning model structure, the potential mechanisms of

predictive value were unclear. Additional details of deep

features extraction in this study are listed in Supplementary

Material. Furthermore, Gradient-weighted Class Activation

Mapping technique (Grad-CAM) could generate visual

explanations for any CNN-based model (30). We use this

visualization technique to investigate which regions of the ROI

were most important in the deep features.
Frontiers in Oncology 03
Radiomics features

Image standardization was implemented before feature

extraction: bi-cubic spline interpolation was used to resample

the image scale in the slice to reduce the heterogeneity

results from different scanners, resulting in a voxel size of

1mm×1mm×1mm (31, 32). The radiomics features were

automatically extracted from each radiologist’s ROIs using the

Python package Pyradiomics (http://pyradiomics.readthedocs.

io) (33). The radiomics features were standardized by referring

to the Image Biomarker Standardization Initiative (IBSI) (34).

The study was based on the reporting guidelines of IBSI. The

hand-crafted radiomics features were divided into three different

groups of features: shape features, histogram statistics, second

order features: Gray Level Co-occurrence Matrix (GLCM), Gray

Level Dependence Matrix (GLDM), Gray Level Run Length

Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM),

Neighboring Gray Tone Difference Matrix (NGTDM). Most

features mentioned above were delineated according to the

IBSI, and the detailed introduction of the features were

described in Supplementary Material.
FIGURE 1

Flow chart of patient selection.
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Harmonization

Radiomics extracts features from medical images more

precisely than general visual evaluation. However, radiomics

features are affected by the acquisition protocol and

reconstruction methods, thus obscuring underlying biologically

important texture features. In practical clinical retrospective

studies, it is impractical to standardize the parameters of

different devices in advance. In order to reduce the batch

effect, ComBat harmonization technique had been successfully

applied to properly correct radiomic feature values from

different scanner or protocol effect (35). We exploited the

ComBat to pool and harmonize radiomics and deep learning

features after extraction.
Feature selection and
model construction

Based on the training set, we performed deep learning or

radiomics feature selection and constructed model for predicting

lymph node metastasis. Firstly, the z-score normalization was

used for standardization. In addition, we selected top 20% best

features by univariate analysis. Then, we used an embedded

feature selection approach based on the least absolute shrinkage

and selection operator (LASSO) algorithm to select the most

predictive features. Classification model was constructed by the

SVM (36). We also built a clinical model based on the clinical

characteristics. The code for model construction is available on

Github (https://github.com/cmingwhu/DL-LNM).
Statistical analysis

P values for differences in the clinical characteristics between

cohorts were assessed by Fisher’s exact test or Chi-square test for

categorical variables, and the Mann-Whitney U test or independent

t-test for numeric variables. Receiver operating characteristic curve

(ROC) was adopted to determine the predictive performance of the

relatedmodels, while the DeLong’s test was adopted for comparison

of AUC between each model. The AUC and 95% confidence

interval (CI) were calculated. Accuracy, specificity and sensitivity

were calculated to assess the diagnostic performance. The

calibration of the model was evaluated by the calibration curves

using the Hosmer-Lemeshow test. To assess the reproducibility of

our results, we randomly divided the patients into training or testing

set ten times. Subsequently, the model was reconstructed and

validated repeatedly. P value < 0.05 was considered statistically

significant. We used Python version 3.6 (https://www.python.org/)

and R version 4.0.3 (https://www.r-project.org) to perform

statistical analysis and graphic production. The packages used in

this study are shown in Supplementary Material.
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Results

Clinical characteristics

Figure 2 depicts the workflow processes. Of the 523 patients

(mean age: 59.64 ± 10.24 years; male: 74.40%) with locally

advance gastric cancer for this study, 367 patients were

assigned to the training cohort, and 156 patients was assigned

for testing cohort. Clinical characteristics in two cohorts are

shown in Table 1. No significant difference was identified in

terms of sex, age, tumor location, tumor thickness between the

two cohorts (Tables 1, S1). Tumor diameter, clinical T stage, and

CT-reported LN differed significantly between LNM-negative

and positive group in two cohorts (p <0.05). Finally, a clinical

model was established (incorporating tumor diameter, CT-

reported LN and clinical T stage) for predicting LNM, yielding

an AUC of 0.683 and 0.756 for testing and training cohorts,

respectively, as shown in Tables 2, S2.
Handcrafted radiomics
model construction

851 handcrafted radiomics features were extracted, where

107 were from the original images and 744 were from the

wavelet filtered images. After ComBat harmonization (35).

Forty-eight features were selected, including three and forty-

five from original and wavelet filtered images (Table S3). The

handcrafted radiomics model get an AUC of 0.704, C-index of

0.704, accuracy of 61.8%, sensitivity of 56.5%, specificity of

73.5%, positive predictive value (PPV) of 82.4%, and negative

predictive value (NPV) of 43.4% in the testing cohort, and an

AUC of 0.779, C-index of 0.779, accuracy of 74.0%, sensitivity of

77.5%, specificity of 66.4%, positive predictive value (PPV) of

83.2%, and negative predictive value (NPV) of 57.9% in the

training cohort in Tables 2, S2.
Deep learning model construction

For predicting LNM based on deep learning features, we

compared five CNNs models which were adopted to extract

deep features to optimize the prediction performance. The

AUC ranged from 0.578 to 0.796 for testing cohort, and 0.804

to 0.897 for training cohort, as shown in Table 2, S2. The

ResNet-SVM model containing 116 deep learning features

could get the best classification performance among the five

CNNs models and was superior to the radiomics model, and

yielding an AUC of 0.796, C-index of 0.796, accuracy of

75.2%, sensitivity of 80.2%, specificity of 64.7%, PPV of

82.5%, NPV of 61.1% in the testing cohort in Figures 3A, B.

The calibration and favorable clinical benefit could also get
frontiersin.org
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FIGURE 2

Analysis flowchart. (A, B) Features extraction from the deep learning method and handcrafted radiomics method. (C) Machine learning methods
were employed in model construction. (D) Model evaluation. CNN, convolutional neural network; LASSO, the least absolute shrinkage and
selection operator; SVM, support vector machine; AUC, area under the receiver operating characteristic curve; DCA, decision curve analysis.
TABLE 1 The clinical characteristics of patients in the training and testing cohorts.

Characteristics Training cohort (120: 247) Testing cohort (47: 109)

LNM (-) LNM (+) P value LNM (-) LNM (+) P value

Age (mean ± SD, years) 59.98 ± 10.53 59.83 ± 10.40 0.834 60.98 ± 10.91 58.66 ± 9.46 0.182

Sex

Female 28 (23.3) 66 (26.7) 0.569 16 (13.04) 24 (22.0) 0.168

Male 92 (76.7) 181 (73.3) 31 (86.96) 85 (78.0)

Location

Cardia/fundus 67 130 0.453 26 52 0.655

Body 23 51 11 26

Antrum 29 57 10 29

More than two-thirds of stomach 1 9 0 2

Tumor thickness ± SD (mm) 22.65 ± 8.58 23.43 ± 7.70 0.383 21.71 ± 7.67 21.93 ± 7.46 0.865

Tumor diameter ± SD (mm) 82.60 ± 41.59 94.22 ± 51.70 0.032* 70.29 ± 30.46 90.36 ± 51.69 0.014*

Clinical T stage

T2 13 21 0.005* 9 13 0.006*

T3 81 130 33 57

T4a 26 96 5 39

CT-reported LN

Negative 90 76 <0.001* 39 37 <0.001*

Positive 30 181 8 72
Frontiers in Oncology
 05
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LNM, lymph node metastasis; (-), negative; (+), positive; *p < 0.05.
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good performance in Figures 3C, D. The number of features

were adopted in model of different CNNs are listed in Table

S4. Features maps from the ResNet model could indicate the

locations that were important in generating the output. With

the segmentation of the tumor region delineated, the

informative slices (one slice with the maximum tumor area)

were cropped to 224 × 224 mm using a bounding box

covering the whole tumor area. The cropped images were

used to generate the features from ResNet and the

visualization of feature heatmaps were generated based on

the Guided Grad-CAM, as shown in Figure 4. The tumoral

lesion and perifocal areas in images were of great valuable for

the feature pattern extraction. Then, we further analyzed the

performance generated by features extracted from different

layers to see whether the last layer was the most suitable to

extract features. The current features extraction strategy is the

best for ResNet in Table S5.

Different classifiers and features selection methods could

greatly affect the prediction performance. For the features

extracted from different CNNs, we compared the cross

combination of multiple classifiers and feature selection

methods. We find that the performances of different

combinations are different, the results shown that the current

combination method of classifier and extraction (ResNet-SVM)

demonstrated the best discrimination ability with an AUC of

0.796 (95% CI, 0.715-0.865) for our dataset, as shown in Figure

S1 and Table S6, but further generalization tests on other

datasets are required. The DeLong test showed that there were

significant improvements in contrast to the radiomics model and

the clinical signature (p < 0.05), which yielded AUCs of 0.704

(95% CI, 0.625–0.783) and 0.683 (95% CI, 0.632–

0.721), respectively.
Frontiers in Oncology 06
Radiomics-deep learning
combined model

We further integrated the radiomics and deep learning features

to explore whether the predictive capability could be improved.

After combination with radiomics and deep features, the prediction

performance had not been improved, with a comparable AUC of

0.787 in the testing cohort in Figure S2. In addition, we further

evaluated the addition of clinical factors to radiomics or deep

learning features for potential improvement of prediction

performance. The combination of deep and/or radiomics features

with clinical features were incorporated into the model

construction, the experimental results showed that combination

of clinical factors could not increase the prediction performance in

the testing cohort in Figures S3, S4.
Discussion

In this retrospective study, we applied deep transfer learning

techniques to build a CT imaging-based prediction model for

LNM prediction in gastric cancer. Our previous studies shown

that the noninvasive deep learning CT image-based radiomics

model was effective for LNM prediction and prognosis in GC

(37). Hereby, we adopted transfer learning technique and extract

deep learning features from five different pre-trained CNNs.

Finally, the ResNet-SVM model could achieve better

performance than the handcrafted radiomics and clinical

models. In addition, different gastric cancers have different

potentials for lymph node metastasis due to the heterogeneity

and complexity of primary tumors. Previous studies clarified

that the tumor size were independent risk factors for LNM. Our
TABLE 2 Predictive performance of radiological or clinical models in the testing cohort.

AUC Accuracy Sensitivity Specificity PPV NPV

InceptionResNetV2 0. 707 65.6 67.9 60.8 78.3 47.7

(0.653, 0.771) (60.1, 72.7) (55.9, 72.2) (56.2, 73.3) (73.0, 85.3) (31.7, 53.8)

VGG16 0.661 61.8 65.2 58.0 63.2 60.0

(0.540, 0.745) (55.7, 70.6) (60.6, 69.9) (51.8, 65.8) (55.5, 70.0) (53.7, 69.4)

VGG19 0.578 49.6 40.6 68.6 72.9 35.7

(0.507, 0.661) (41.7, 55.1) (40.6, 51.9) (63.0, 75.6) (66.0, 80.6) (30.6, 47.9)

ResNet50 0.796 75.2 80.2 64.7 82.5 61.1

(0.715-0.865) (67.2, 81.5) (75.4, 84.2) (58.2, 71.6) (74.9, 87.3) (55.5, 69.3)

Xception 0.660 62.4 65.1 56.9 75.8 43.9

(0.607, 0.759) (56.2, 71.6) (52.2, 69.0) (49.8, 68.7) (70.9, 81.1) (40.9, 51.6)

Radiomics 0.704 61.8 56.5 73.5 82.4 43.4

(0.625, 0.783) (54.5, 69.9) (50.8,62.3) (68.8, 79.8) (75.8,87.3) (40.8, 52.1)

Clinical signature 0.683 68.2 67.6 67.7 70.7 53.6

(0.632, 0.721) (65.3, 72.1) (63.5,70.1) (63.1, 71.6) (67.5, 75.2) (50.7, 61.9)
fron
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FIGURE 4

Grad-CAM visualizations for the feature heatmaps of representative patients generated from the ResNet. The right color bar indicates the scaled
weights of deep features.
A B
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FIGURE 3

Evaluation of predictive performances for ResNet-SVM model and radiomics model. (A) The ROC curves showing the predictive performances
of the ResNet and the radiomics model in testing cohorts. (B) The ROC curves showing the predictive performances of the ResNet and the
radiomics model in training cohorts. (C, D) Curves of calibration analysis and the decision curve analysis for the ResNet and radiomics model.
AUC, area under the receiver operating characteristic curve; LNM, lymph node metastasis.
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results are consistent with the above studies, and it is reasonable

that GCs with greater tumor size tend to have a higher risk of

lymph node metastasis.

As an emerging image quantification approach, radiomics

has been widely used in diagnosis and prognosis of cancer

patients based on medical images (5, 38, 39). Previous studies

mainly focused on the characteristic manifestations of CT

imaging to develop radiomic model, and did not use the

transfer learning technology in the field of radiological

prediction of LNM in gastric cancer. We established a CT-

based model using the novel deep learning technique. Deep

learning features extraction only needs to set a fixed size

bounding box to tumor area, which not only improves the

efficiency, but also reduces the subjectivity of manual

segmentation in the radiomics procedure.

Deep learning technology has been widely used in the field

of medical image processing. However, training a deep learning

model from scratch is often not feasible because of various

reasons: (1) the lack of a number of annotated images for one

specific clinical problem. (2) reaching convergence could take

too long for experiments to be worth. In the medical domain,

using pre-trained CNNs as feature extractors is an effective way

to alleviate these issues (19, 39–41). Transfer learning can

transfer prior knowledge of image features and apply it to

medical imaging with better generalization and ease of

replication and testing. Our research shows that deep

learning features extracted by transfer learning approach

generalized well in medical tasks and achieved fairly good

results. Moreover, the combination of radiomics and deep

learning features did not improve the prediction performance

in our study (Figures S2), which is similar to the results

published by (40, 41). The reason is that the imaging features

calculated from different frameworks might have different

high-level dimensional characteristics, which are not suitable

for feature combination.

Our study has some limitations that are worth noting. First,

tumor regions of interest were manually delineated on CT

images, which is high cost and laborious task. Semi-automatic

or automatic segmentation method may be better. Second,

although our experimental results showed good prediction

performance, indicating that transfer learning could alleviate

the domain difference, heterogeneity existed between various

dataset. The main obstacle of this research is the lack of sufficient

annotated medical images to further train the deep learning

models. Such dataset could further extract more valuable

features to improvement prediction performance. Third, we

followed the IBSI benchmarks to filter the images after

resampling, which may lead to the failure of estimating how

much this would affect wavelet features to some extent. Last, this

study is a single-center which is lack of external validation for

the developed model, but we further randomly divided the
Frontiers in Oncology 08
patients into training or testing set and reconstructed and

tested repeatedly ten times to evaluate the results. And, we are

working to further access our model in a bigger dataset that may

come from multiple centers.
Conclusion

In conclusion, our study adopted a noninvasive deep

learning technique to perform prediction of LNM in GC.

Compared to the handcrafted radiomics methods, the ResNet-

SVM model could get better performance, and the

implementation is simple and efficient without drawing

the tumor contour manually. This study represented that the

transfer learning strategy might also achieve good performance

in medical imaging tasks without sufficient annotated

medical images.
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and challenges for the implementation of computational medical imaging
(radiomics) in oncology. Ann Oncol (2017) 28(6):1191–206. doi: 10.1093/
annonc/mdx034

15. Shen DG, Wu GR, Suk HI. Deep learning in medical image analysis. Annu Rev
Biomed Eng (2017) 19(1):221–48. doi: 10.1146/annurev-bioeng-071516-044442

16. Kermany DS, GoldbaumM, Cai W, Valentim CCS, Liang H, Baxter SL, et al.
Identifying medical diagnoses and treatable diseases by image-based deep learning.
Cell (2018) 172(5):1122–31. doi: 10.1016/j.cell.2018.02.010
17. Li F, Chen H, Liu Z, Zhang X, Wu Z. Fully automated detection of retinal
disorders by image-based deep learning. Graefes Arch Clin Exp Ophthalmol (2019)
257(3):495–505. doi: 10.1007/s00417-018-04224-8

18. Wakiya T, Ishido K, Kimura N, Nagase H, Kanda T, Ichiyama S, et al. CT-
based deep learning enables early postoperative recurrence prediction for
intrahepatic cholangiocarcinoma. Sci Rep (2022) 12(1):8428. doi: 10.1038/
s41598-022-12604-8

19. Shin HC, Roth HR, Gao M, Le L, Xu Z, Nogues I, et al. Deep convolutional
neural networks for computer-aided detection: CNN architectures, dataset
characteristics and transfer learning. IEEE Trans Med Imaging (2016) 35
(5):1285–98. doi: 10.1109/TMI.2016.2528162

20. Alzubaidi L, Fadhel MA, Al-Shamma O, Zhang JL, Santamarıá J, Duan Y,
et al. Towards a better understanding of transfer learning for medical imaging: a
case study. Appl Sci (2020) 10(13):4523. doi: 10.3390/app10134523

21. Lowe DG. Distinctive image features from scale-invariant keypoints. Int J
Comput Vision (2004) 60(2):91–110. doi: 10.1023/B:VISI.0000029664.99615.94

22. Raghu S, Sriraam N, Temel Y, Rao SV, Kubben PL. EEG Based multi-class
seizure type classification using convolutional neural network and transfer
learning. Neural Netw (2020) 124:202–12. doi: 10.1016/j.neunet.2020.01.017

23. van Rossum PSN, Xu C, Fried DV, Goense L, Court LE, Lin SH. The
emerging field of radiomics in esophageal cancer: current evidence and future
potential. Transl Cancer Res (2016) 5(4):410–23. doi: 10.21037/tcr.2016.06.19

24. Gu L, Liu Y, Guo X, Tian Y, Ye H, Zhou S, et al. Computed tomography-
based radiomic analysis for prediction of treatment response to salvage
chemoradiotherapy for locoregional lymph node recurrence after curative
esophagectomy. J Appl Clin Med Phys (2021) 22(11):71–9. doi: 10.1002/
acm2.13434

25. He K, Zhang X, Ren S, Sun J. (2016). Deep residual learning for image
recognition, in: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), (Las Vegas, NV, USA: IEEE), June 27-30. pp. 770–8. doi: 10.1109/
CVPR.2016.90

26. Simonyan K, Zisserman A. Very deep convolutional networks for Large-
scale image recognition, in: 3rd International Conference on Learning
Representations (ICLR), (2015) (San Diego, CA, USA: OpenReview.net), May 7-
9, 2015. doi: 10.48550/arXiv.1409.1556

27. Chollet F. Xception: Deep learning with depth wise separable convolutions,
(2017) in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
(Honolulu, HI, USA: IEEE), July 21–26. doi: 10.1109/CVPR.2017.195

28. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. (2016). Rethinking the
inception architecture for computer vision, in: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), (Las Vegas, NV, USA: IEEE). pp. 2818–
26. doi: 10.1109/CVPR.2016.308

29. Yang J, Shi R, Wei D, Liu Z, Zhao L, Ke B, et al. MedMNIST v2: A Large-
scale lightweight benchmark for 2D and 3D biomedical image classification. CoRR
(2021) abs/2110.14795. doi: 10.48550/arXiv.2110.14795

30. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-
CAM: Visual explanations from deep networks via gradient-based localization. Int
J Comput Vision (2020) 128(2):336–59. doi: 10.1007/s11263-019-01228-7

31. Mackin D, Fave X, Zhang L, Yang J, Jones AK, Ng CS, et al. Correction:
Harmonizing the pixel size in retrospective computed tomography radiomics
studies. PloS One (2018) 13(1):e0191597. doi: 10.1371/journal.pone.0191597
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2022.969707/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.969707/full#supplementary-material
https://doi.org/10.3322/caac.21492
https://doi.org/10.1016/S1470-2045(13)70436-4
https://doi.org/10.1093/annonc/mdw350
https://doi.org/10.3322/caac.21338
https://doi.org/10.1016/j.annonc.2020.04.003
https://doi.org/10.1200/JCO.2004.08.026
https://doi.org/10.1007/s00330-018-5483-2
https://doi.org/10.1016/j.ejso.2016.03.001
https://doi.org/10.1016/j.ejso.2007.05.009
https://doi.org/10.1016/j.gie.2006.03.932
https://doi.org/10.1016/j.gie.2006.03.932
https://doi.org/10.6004/jnccn.2013.0070
https://doi.org/10.1002/jso.20018
https://doi.org/10.1093/annonc/mdx034
https://doi.org/10.1093/annonc/mdx034
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1016/j.cell.2018.02.010
https://doi.org/10.1007/s00417-018-04224-8
https://doi.org/10.1038/s41598-022-12604-8
https://doi.org/10.1038/s41598-022-12604-8
https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.3390/app10134523
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1016/j.neunet.2020.01.017
https://doi.org/10.21037/tcr.2016.06.19
https://doi.org/10.1002/acm2.13434
https://doi.org/10.1002/acm2.13434
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.48550/arXiv.2110.14795
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1371/journal.pone.0191597
https://doi.org/10.3389/fonc.2022.969707
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.969707
32. Ligero M, Jordi-Ollero O, Bernatowicz K, Garcia-Ruiz A, Delgado-Muñoz E,
Leiva D, et al. Minimizing acquisition-related radiomics variability by image
resampling and batch effect correction to allow for large-scale data analysis. Eur
Radiol (2021) 31(3):1460–70. doi: 10.1007/s00330-020-07174-0

33. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan
V, et al. Computational radiomics system to decode the radiographic phenotype.
Cancer Res (2017) 77(21):e104–7. doi: 10.1158/0008-5472.CAN-17-0339

34. Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V,
Apte A, et al. The image biomarker standardization initiative: Standardized
quantitative radiomics for high-throughput image-based phenotyping. Radiology
(2020) 295(2):328–38. doi: 10.1148/radiol.2020191145

35. Orlhac F, Frouin F, Nioche C, Ayache N, Buvat I. Validation of a method to
compensate multicenter effects affecting CT radiomics. Radiology (2019) 291
(1):53–9. doi: 10.1148/radiol.2019182023

36. Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W. Applications of
support vector machine (SVM) learning in cancer genomics. Cancer Genomics
Proteomics (2018) 15(1):41–51. doi: 10.21873/cgp.20063
Frontiers in Oncology 10
37. Li J, Dong D, Fang M, Wang R, Tian J, Li H, et al. Dual-energy CT-based
deep learning radiomics can improve lymph node metastasis risk prediction for
gastric cancer. Eur Radiol (2020) 30(4):2324–33. doi: 10.1007/s00330-019-06621-x

38. Wang S, Dong D, Zhang W, Hu H, Li H, Zhu Y, et al. Specific borrmann
classification in advanced gastric cancer by an ensemble multilayer perceptron network:
a multicenter research. Med Phys (2021) 48(9):5017–28. doi: 10.1002/mp.15094

39. Lopes UK, Valiati JF. Pre-trained convolutional neural networks as feature
extractors for tuberculosis detection. Comput Biol Med (2017) 89:135–43.
doi: 10.1016/j.compbiomed.2017.08.001

40. Yun J, Park JE, Lee H, Ham S, Kim N, Kim HS. Radiomic features and
multilayer perceptron network classifier: a robust MRI classification strategy for
distinguishing glioblastoma from primary central nervous system lymphoma. Sci
Rep (2019) 9(1):5746. doi: 10.1038/s41598-019-42276-w

41. Hu Y, Xie C, Yang H, Ho JWK, Wen J, Han L, et al. Computed tomography-
based deep-learning prediction of neoadjuvant chemoradiotherapy treatment
response in esophageal squamous cell carcinoma. Radiother Oncol (2021) 154:6–
13. doi: 10.1016/j.radonc.2020.09.014
frontiersin.org

https://doi.org/10.1007/s00330-020-07174-0
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1148/radiol.2019182023
https://doi.org/10.21873/cgp.20063
https://doi.org/10.1007/s00330-019-06621-x
https://doi.org/10.1002/mp.15094
https://doi.org/10.1016/j.compbiomed.2017.08.001
https://doi.org/10.1038/s41598-019-42276-w
https://doi.org/10.1016/j.radonc.2020.09.014
https://doi.org/10.3389/fonc.2022.969707
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Computed tomography-based deep-learning prediction of lymph node metastasis risk in locally advanced gastric cancer
	Introduction
	Materials and methods
	Patients
	Image process and tumor segmentation
	Deep learning features
	Radiomics features
	Harmonization
	Feature selection and model construction
	Statistical analysis

	Results
	Clinical characteristics
	Handcrafted radiomics model construction
	Deep learning model construction
	Radiomics-deep learning combined model

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


