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Breast cancer diagnosis using
frequency decomposition of
surface motion of actuated
breast tissue

Jessica Fitzjohn1*, Cong Zhou1,2 and J. Geoffrey Chase1

1Department of Mechanical Engineering, Centre for Bio-engineering, University of Canterbury,
Christchurch, New Zealand, 2School of Civil Aviation, Northwestern Polytechnic University,
Xian, China
This paper presents a computationally simple diagnostic algorithm for breast

cancer using a non-invasive Digital Image Elasto Tomography (DIET) system.

N=14 women (28 breasts, 13 cancerous) underwent a clinical trial using the

DIET system followingmammography diagnosis. The screening involves steady

state sinusoidal vibrations applied to the free hanging breast with cameras used

to capture tissue motion. Image reconstruction methods provide surface

displacement data for approximately 14,000 reference points on the breast

surface. The breast surface was segmented into four radial and four vertical

segments. Frequency decomposition of reference point motion in each

segment were compared. Segments on the same vertical band were

hypothesised to have similar frequency content in healthy breasts, with

significant differences indicating a tumor, based on the stiffness dependence

of frequency and tumors being 4~10 times stiffer than healthy tissue. Twelve

breast configurations were used to test robustness of the method. Optimal

breast configuration for the 26 breasts analysed (13 cancerous, 13 healthy)

resulted in 85% sensitivity and 77% specificity. Combining two opposite

configurations resulted in correct diagnosis of all cancerous breasts with

100% sensitivity and 69% specificity. Bootstrapping was used to fit a smooth

receiver operator characteristic (ROC) curve to compare breast configuration

performance with optimal area under the curve (AUC) of 0.85. Diagnostic

results show diagnostic accuracy is comparable or better than mammography,

with the added benefits of DIET screening, including portability, non-invasive

screening, and no breast compression, with potential to increase screening

participation and equity, improving outcomes for women.
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breast cancer, screening, diagnostic, digital image elasto tomography, DIET,
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Introduction

Breast cancer is the most frequent cancer and leading cause of

cancer deaths in women worldwide (1–4). In 2018 over 620,000

breast cancer related deaths were recorded and both incidence and

deaths are expected to rise (5). Early detection is associated with

increased survival rates due to cancer being found at an earlier,

more curable stage (3, 6). Currently, x-ray mammography is the

gold standard for breast cancer screening and is estimated to

reduce mortality by up to 25% (7). However, mammography

remains controversial due to painful breast compression and

invasive radiation exposure (1). Reduced success in women with

dense breast tissue (almost 50% of women (8)), arises due to

fibroglandular tissue masking the presence of tumors in

mammographic images (9–11), further contributing to

mammography’s radiologist-dependent performance and

reducing sensitivity to as low as 27% (12). Because of these

drawbacks, mammography is not recommended for younger

women (13, 14), where poorer outcomes do not outweigh the

risks, creating inequity of breast care for younger women.

Although mammography is accepted as a large scale

screening tool, a number of issues have led mammography

sensitivity to be significantly overstated (8). Hollingsworth

suggests many mammography studies use a cohort inclusive of

palpable tumors, which are larger and therefore expectedly easier

to diagnose (15, 16). Similarly, sensitivity calculations based on

prevalence screens only (the initial screen) result in a

disproportionate number of larger tumors and consequently

an inflated value for sensitivity (8, 17).

Further, many studies use interval cancers, cancers which

occur following a negative mammogram, but before the next

round of screening (18), as a measure of false negatives. This

methodology is also flawed, as while some cancers may have begun

and developed between screens, slower growing tumors may not

present in the screening interval, and consequently would be

diagnosed as true positives in the following screen, despite being

missed previously. This issue results in sensitivity dependent on

screening interval and higher sensitivity than studies comparing

supplemental imaging modalities. This method of assessment will

also impact specificity values, as false negatives in past

mammograms would be included as a true negative reading. In

other words, studies which exclude the use of a complementary

modality assume mammography diagnosis is true until proven

false with only future mammograms to compare to. Even then,

cancer found in subsequent mammograms are considered true

positives and assumed to have began and developed between

screens. This process is clearly methodologically over-simplistic

and unsound, and accuracy estimates of sensitivity or specificity

using these methods should be discounted appropriately.

Digital Image Elasto Tomography (DIET) (19–23) is an

alternative breast cancer screening technology. The system is

portable with non-invasive testing, and thus able to increase

equity for young women and those living rurally. DIET involves
Frontiers in Oncology 02
a patient lying face down while a mechanical actuator induces

steady state sinusoidal vibration in the free-hanging breast. Five

digital cameras surrounding the breast capture images of the

surface vibration at different stages using synchronized strobe

lights. These images are converted into displacement data for

over 14,000 reference points using surface volume and optical

flow techniques by Tiro Medical (Christchurch, New Zealand).

Cancer diagnosis using this surface motion data is based on

shear wave transmission differences reflected in the surface

motion highlighting the differences in underlying tissue

stiffness and damping. A significant contrast in elastic

properties (400-1000%) between healthy and cancerous tissue

provides a potentially highly distinguishable diagnostic, which is

much greater than the 5-10% contrast in radio density used by

mammography (24, 25). Thus, the DIET system detects and

localises a tumor location based on identification of the higher

underlying tissue stiffness, which is very different to typical

internal imaging modalities.

Analysis of this data has showed potential for diagnostic

success including Zhou et al’s study on hysteresis loop analysis

(HLA) (26, 27) and Kashif et al’s study on modal analysis (22).

Most diagnostic methods developed were exclusively tested on

silicone phantom data, used in early technology development

(28). Despite sophisticated silicone phantom design (23, 29),

silicone phantom breasts with stiffer inclusions cannot truly

imitate the inhomogenous fibrous structure of breast tissue nor

the complex interactions between tumors and healthy tissue.

Zhou et al’s HLA study underwent limited testing with clinical

data (3 subjects) (27), but sensitivity was not high and dependent

on selection of actuator input frequency for different subjects,

showing inconsistent performance.

This author presented one diagnostic method using DIET

displacement data, which was validated on 26 breasts (30). This

method involved fitting a viscous damping model (VDM) to

viscous damping distribution in different breast segments and

comparing model coefficients. One model coefficient, related to

stiffness showed diagnostic insight with optimal sensitivity and

specificity of 77%, using clinical data.

This paper describes a fully automated, computationally

efficient diagnostic algorithm, which uses displacement data

from a novel 3D surface motion reconstruction DIET

technology. The proposed method is based on the hypothesis

stiff tumors will affect response frequencies in the breast

compared to other regions containing healthy tissue, thus

enabling transformation of dynamic response into a novel

diagnostic metric to identify regions of higher stiffness for

cancer diagnosis. This diagnostic uses a combination of

frequency components analysis, surface segmentation and

bootstrapping techniques, while previous diagnostic methods

based on DIETs technology mainly identify damping, stiffness

and modal distribution (22, 27, 30). In addition, it provides an

unbiased diagnostic criteria to ensure each breast to be

diagnosed independently, regardless of varying breast
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properties across the population, which is critical for improving

the equity of screening with this technology. Overall, this work

offers a novel approach to implement automated unbiased

tumor detection in this DIET screening technology.
Method

Clinical data

Fourteen women (P1-P14) were recruited to undergo testing

using a prototype DIET system, as part of a clinical trial run at

Canterbury Breastcare (Christchurch, New Zealand). Thirteen

women had a tumor in one breast and one women had two

healthy breasts resulting in a total of 13 cancerous, 15 healthy

breasts. Patient P6 also has an additional non-malignant cyst in

their right (healthy) breast. Eachwoman underwentmammography

screening prior to testing using the DIET prototype and diagnostic

capabilities of the algorithm presented in this paper aim to correctly

distinguish between healthy and cancerous breasts in this cohort and

match the diagnostic given by mammography. Ethics approval for

the experimental tests, data collection, and analysis of this data was

granted by theNZNationalHealth andDisability EthicsCommittee,

South Island Regional Committee.

Table 1 shows the patient age, tumor size and location from

mammography reports for each patient with a cancerous breast, as

well as the approximate breast volume of the cancerous breast

calculated using the DIET measured displacement data. Tumor

sizes ranged from 7 to 48mm and displacement data was available

for a range of testing frequencies (20~50 Hz).While clinical data is

limited to 28 breasts, the variation in breast properties and tumor

sizes is large, providing a varied cohort. Ensuring diagnostic

performance is robust to these variations in tumor size and breast

properties is a particular focus in this paper.The accuracyof the size
Frontiers in Oncology 03
and location vary and can be difficult to determine from

mammography images. Thus, location and size data were treated

as approximate, and algorithm success focused on correct

diagnosis, rather than precise tumor localisation.

It is important to note patient P14, with two healthy breasts,

originally had their right breast, P14R, diagnosed as cancerous,

which was later discovered to be healthy tissue. This result shows a

false positive inmammography and correct diagnosis of this breast

using DIET would further demonstrate its diagnostic potential.

Occasionally, difficulties in optical flow or image reconstruction

resulted in a lack of data for some subjects or a limited number of

available input frequencies. The algorithm presented in this paper

uses low actuator input frequencies, resulting in the exclusion of

twohealthy breasts in P4 andP13. The result is 13 cancerous and 13

healthy breasts used in this analysis and the diagnostic algorithm

presented in this paper aims to correctly diagnose these subjects.
Diagnostic criteria

As mentioned, sensitivity and specificity of mammography

has been overstated in many studies. To assess approximate true

sensitivity and specificity, studies were considered if diagnostic

results of mammography were validated using another modality,

such as ultrasound or MRI. Values for both dense and non-dense

breasts were used when studies distinguished between the two,

based on approximately 50% of women having dense breasts (8).

Average sensitivity of the ten studies assessed was 60% (40%-

78% range) and average specificity was 80% (46%-99% range)

(31–40). These accuracy values are more suitable for comparing

mammography to other breast screening modalities.

The area under a receiver operator characteristic (ROC)

curve (AUC) between 0 and 1 is commonly used to compare

diagnostic methods, as a higher AUC indicates a better optimal
TABLE 1 Patient age, breast volume, tumor size and locations cancerous breasts where 12 o’clock is the top of the breast.

Subject
Number

Age Cancerous
Breast

Tumor Location
(around breast)

Tumor diameter
(mm)

Tumor depth
(mm)

Cancerous breast Volume
(cm3)

P1 50 Left 10 o’clock 18 35.1 691.7

P2 58 Left 2.30 o’clock 15 – 307.9

P3 58 Right 10 o’clock 14 51.7 265.8

P4 37 Left 3-5 o’clock 48 – 740.8

P5 38 Left 12.30 o’clock 14 26.3 239.5

P6 45 Left 6 o’clock 12 13.3 708.6

P7 55 Left 2 o’clock 23 78.8 673.7

P8 51 Right 10.30 o’clock 37 83.9 1022.0

P9 55 Left 12 o’clock 16 53.1 474.4

P10 50 Left 9-12 o’clock 7 – 1057.0

P11 51 Right 10 o’clock 7 – 342.9

P12 55 Left 11 o’clock 10 – 444.2

P13 47 Right 9-3 o’clock 18 – 593.8
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sensitivity and specificity. AUC greater than 0.7, 0.8 and 0.9 are

considered acceptable, excellent and outstanding, respectively

(41). The average ROC curve AUC value for mammography

across eight studies was 0.73 (0.54-0.84 range), which will also be

used to compare diagnostic success of the method presented in

this paper (12, 31, 40, 42–46).

Two overall accuracy criteria are suggested to show

diagnostic potential for the algorithm presented:
Fron
1. Diagnostic sensitivity and specificity similar tomammography

(60% sensitivity, 80% specificity) Achieving comparable

diagnostic accuracy to mammography would allow the

DIET technology to realise its many benefits including

comfort, portability and safety for all women without

compromising on diagnostic success.

2. A highly sensitive diagnostic algorithm is achieved (80%

sensitivity, 65% specificity) An algorithm capable of

providing sensitivity higher than mammography will be

considered a success even if specificity is slightly lower.

This criteria is due to the ease ofDIET testing and itsmany

other benefits making it an attractive solution for breast

screening. There is potential for added clinical breast exam

(CBE) or other breast screening technologies with higher

specificity to optimise diagnosis and reduce false positive

biopsies, followingahighly sensitive diagnosis usingDIET.
To maximise the benefit of the DIET technology, this

diagnostic algorithm should meet the criteria in Table 2.
Stiffness dependent vibration

The stiffness dependence of vibration frequency is well

documented (47). Stiffer materials vibrate at higher frequencies,

based on:

w =

ffiffiffiffiffi
k
m

r
(1)

wherew is frequency,k is stiffness andm ismass. Thus, the presence

of tumors, known to be 4~10 times stiffer than healthy tissue
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[24,48,49,50],may result in a visible increase in response frequency,

given mass at a local point is similar, yielding:

wtumor =

ffiffiffiffiffiffiffiffiffiffiffiffi
ktumor

m

r
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(4 ∼ 10) khealthy

m

r
= 2

∼ 3:16 whealthy (2)

This equation further suggests higher frequency response in

cancerous breasts, or breast segments, of a magnitude 2~3 times

the response of healthy tissue. Development of a diagnostic

algorithm using DIET concluded variation of breast properties,

including stiffness and viscous damping, across the population can

exceed variations between cancerous and healthy tissue in an

individual (30). Therefore, it is important to understand single

diagnostic thresholds for response frequencies may not be suitable

for diagnosis across a varied cohort and may cause women with

naturally stiff breasts to experience a disproportionate number of

false positive diagnoses. The author’s prior work presented a breast

segmentationmethodology to analyse tissue properties in different

regions of a breast (30). Healthy breasts were hypothesised to have

similar breast properties in different segments and larger

discrepancies were indicative of a tumor. Applying this

methodology, it is hypothesised frequency response of different

areas in a healthy breast will be similar; in contrast, tumor presence

is expected to affect response frequency.
Frequency component of each reference
point vibration response

Displacement data for over 14,000 reference points on each

breast surface was provided by Tiro Medical (Christchurch, New

Zealand) following clinical testing using the DIET system at each

input frequency for the 26breasts from14patients inSection2.1.The

Fourier transformof each reference point signal was implemented in

Matlab (48) to obtain frequency components of each reference point

vibration. Magnitudes of frequency components were ordered, with

the dominant frequency expected to be equivalent to the actuator

input frequency at the induced steady state response. Based on the

knowledge of highmechanical stiffness resulting in higher frequency

of response, and cancerous tissue resulting in 400~1000% higher

stiffness than healthy tissue, the second dominant frequency has the

potential to provide diagnostic information. This latter frequency is

hypothesised to behigher, but,more importantly, different in regions

of the breast containing a tumor.

The second dominant frequency and its signal magnitude

were obtained for each reference point. Reference points with

second frequency magnitudes less than 15% of the dominant

frequency magnitude were discarded to avoid using reference

points where frequency composition was highly varied and the

second frequency not considered particularly dominant.

Frequency composition is considered irregular when the

dominant frequency is not equivalent to the input frequency.

One reason for this irregularity is noise near the actuator or chest
TABLE 2 Diagnostic criteria to assess the success of diagnostic
algorithms using DIET.

1. Unbiased diagnostic, unaltered by known tumor identification or symptoms

2. Full automation with no human interpretation of results required

3. Ability to diagnose tumors down to 7mm, the smallest tumors in this
clinical data

4. Robust to varying breast sizes and densities

5. Have AUC greater than mammography (>0.73)

6. Meet one of the following accuracy criteria:

a. Sensitivity (60%) and specificity (80%) similar to mammography

b. Sensitivity (80%) and specificity (65%) highly sensitive screening tool
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wall, the latter potentially due to issues of wave reflection. This

issue was removed by removing the top and bottom 5% of

points, as these areas tend to result in the most noise in both

cancerous and healthy breasts (30). While necessary to remove

these irregularities, acknowledging they are likely to be a source

of increased false positives, it is important to limit the number of

points discarded, to avoid tumors close to the nipple or chest

wall being missed. Tumors developing near the chest wall are

also an existing challenge in mammography due to difficulties in

obtaining sufficient breast compression close to the chest wall to

allow x-ray penetration (49).

Furthermore, irregular frequency composition could be the

result of irregular vibrations for points centred near breast

concavities, which are unable to be consistently removed in the

currentDIET imageprocessing.Alternatively, andmost importantly,

it could be a result of highly variable breast tissue properties, such as

stiff cancerous lesions, having a significantly large effect on frequency

composition, showinghighdiagnosticpotential. For the latter reason,

reference points with dominant frequency not equal to input

frequency were not excluded, and, in these cases, the dominant

frequency, rather than the second dominant frequency is used as the

frequency of interest. The result is a frequency of interest for each

reference point. Figure 1 shows a flowchart of this selection process.

Because reference pointswithdominant frequency not equal to

input frequency couldbe the resultof noise andbreast concavities, it
Frontiers in Oncology 05
was necessary to manage the number used in analysis. At higher

input frequencies, averagedominant frequencies in segments of the

breast differed to the input frequency (>2Hzdifference), suggesting

high numbers of irregular points. Thus, displacement data from

lower actuation input frequencies was used (20 to 23Hz) in this

analysis, as they resulted in less than 10% of segments exhibiting

this irregular trend, compared with 11-39% of segments in

frequencies above 23 Hz.
Breast segmentation and unbiased
diagnostic criteria

Three-dimensional (3D) colour plots of the breast showing

frequencies of interest are presented for three subjects at an input

frequency of 23 Hz to show more regions of high response

frequencies in cancerous breasts, demonstrating how comparison

of these values could provide useful diagnostic insight.

To implement an unbiased diagnostic algorithm utilising

this frequency of interest, the breast was segmented into four

radial segments and four vertical (z) segments, a total of 16

segments (Figure 2). Frequencies of interest were averaged for all

reference points in each segment and mean values averaged

across available frequencies from 20-23 Hz. Each z-band was

analysed separately and one of the four radial segments
FIGURE 1

Flowchart showing method to obtain frequency of interest for each reference point.
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identified as the control. The mean frequency of interest for this

control segment was plotted against the mean frequencies of

interest for the three other segments in the same z-band. This

process was repeated for each z-band, resulting in a total of 12

data points per breast. Occasionally, all reference points in a

segment were excluded, based on insufficient magnitude of the

second dominant frequency (Figure 1), resulting in less data

points per subject.

Different percentage tolerances were used to analyse the degree

of similarity between these averaged response frequencies in each

separate z-band. Healthy breasts are hypothesised to have similar

response frequencies remaining within the tolerance. In contrast,

the presence of any one segment outside tolerance levels suggests a

cancerous diagnosis. This diagnostic criteria is shown in Figure 3.

To test robustness to tumor location 12 breast configurations were

trialled with different control segments. Figure 2 shows these 12

control segment configurations for the left breast. The right breast

segmentswere the inverse of these configurations to compare outer

and inner breast properties, consistently.

This segmentation process provides a method for each breast

to be diagnosed independently, removing issues of highly

variable breast properties across the population, within breasts

of the same women and due to breast changes over time (50–55).

Segmentation both radially and vertically is expected to improve

diagnostic outcomes for smaller tumors, whose properties may

be more easily distinguishable in a smaller segment.
ROC curve and bootstrapping

ROC curves presenting different percentage tolerances were

used to test the sensitivity of this method to predefined

diagnostic tolerance levels and assess whether the criteria

outlined in Table 2 could be met. ROC curves were used to

find both optimal breast configuration and tolerances, which

result in criteria being met for sensitivity and specificity of this
Frontiers in Oncology 06
method. The discrete ROC curve for two opposite breast

configurations are shown, as well as bootstrapped curves for

all configurations.

Bootstrapping is used to up-sample data and involved

selecting 50 breasts with replacement from the 26 breast

cohort. This selection was repeated 200 times and the varying

sensitivity and specificity recorded for a number of percentage

tolerance thresholds for each trial. A line of best fit was fit to the

compounded points of every trial using y=1-e-ax using total least

squares. This equation form is able to capture the linear (50:50

chance) line and, with a very large exponent, the perfect square

ROC curve, as well as all likely shapes in between. It thus

provides a good approximation of the diagnostic performance

of each configuration in an ideally larger cohort of data and can

be used to assess the performance of this algorithm against the

criteria in Table 2. Optimal accuracy, as well as 80% sensitivity

and specificity points used to assess accuracy criteria, are marked

on the ROC curves. ROC curve AUC was also assessed to ensure

it meets the criteria (AUC>0.73). Figure 4 shows a flowchart of

the combined methods used to generate the results presented in

this paper.

The results in the following section show:
1. 3D plots showing frequency of interest for three breasts

at actuator input frequency of 23 Hz, showing proof of

diagnostic theory with larger discrepancies and regions

of high response frequency in cancerous breasts

2. Unbiased, clinically feasible diagnosis with percentage

tolerance used to determine the degree to which more

dominant frequencies are different amongst segments in

the same breast for both healthy and cancerous breasts

for breast configurations 1 and 6

3. Identification of breast and tumor characteristics of false

negative subjects

4. Identification of patient age and breast size for false

negative and false positive subjects
FIGURE 2

Schematic of breast segmentation including vertical (z) segmentation into four bands for a total of 16 segments (left) and diagram of 12 control
segment configurations for left breast used to test robustness (right).
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5. A discrete ROC curve with sensitivity and specificity shown

for eachpercentage tolerance forbreast configurations1and

6 across all subjects

6. Smooth bootstrappedROCcurves for all breast configurations

showing optimal sensitivity and specificity and points at 80%

specificity and 80% sensitivity (points of interest for assessing

diagnostic success against specified criteria)

7. Table outlining optimal sensitivity, specificity and

assessment of each configuration against diagnostic criteria

8. Table assessing this diagnostic method against all

criteria outlined in Table 2
Results

Frequency response distribution

Figure 5 shows 3D plots of the distribution of frequencies of

interest identified in Section 2.4 for three subjects, showing high

frequencies, twice the input frequency and above. The plots

clearly show a distinguishable difference in terms of frequency

components of healthy and cancerous breasts on the left and

right, respectively.

It is important to note, while these images show a significant

contrast in frequency, and could potentially provide successful

diagnosis based on image observation, direct image observation

would result in human assessment of results and a lack of

automation. Equally, such observation could be used to
tiers in Oncology 07
reinforce or check any automated diagnostic. Thus, these

images show a proof-of-concept justification for using

frequency composition to infer diagnosis, but require further

development of unbiased, algorithm automation shown in

consequent sections of this paper, to be clinically feasible.
Unbiased, clinically feasible diagnosis

Figure 6 shows the diagnostic result of applying optimal

percentage tolerance 34% using optimal configuration 6 and

optimal percentage tolerance 33% for breast configuration 1 for

both cancerous and healthy breasts. This figure shows false negatives

maybe dependent on configuration orientation, likely due to varying

tumor locations and tumors effecting segments on either side. These

two configurations, positioned in the upper outer and lower inner

portions of the breast, respectively, demonstrate using the result of

two separate configurations ensures all cancer is diagnosed.

Figure 7 shows breast and tumor characteristics for the false

negative subjects identified in configurations 1 and 6. The figures

show tumor size compared to breast volume and depth

(normalised by volume), respectively for each configuration.

Figure 8 shows patient age and breast size for false negatives

and false positives, respectively.

Figure9 showsdiscreteROCcurves fordiagnosticperformance

at different percentage tolerances for configurations 6 and 1.

Figures 10, 11 show the bootstrapped ROC curves for all breast

configurations with optimal points shown and Table 3 shows the

resulting AUC and assessment against diagnostic criteria.
FIGURE 3

Tumor acceptance criteria showing simple diagnostic method.
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Assessment against diagnostic criteria

The performance of this algorithm was assessed against the

diagnostic criteria in Table 2, as shown in Table 4. All criteria were

met and each 7 mm tumor was correctly diagnosed in one of the

breast configurations analysed. Diagnosis using this algorithm is

unbiased and completely automated and diagnostic accuracy

exceeds mammography, showing significant diagnostic efficacy

across this varied cohort.
Discussion

Proof of concept

Figure 5 shows a visual representation of how the frequency

of interest is higher and more varied in cancerous breasts.
Frontiers in Oncology 08
Healthy breasts generally show more areas of purple,

suggesting lower frequencies and less sections of high

frequency content. In contrast, cancerous breasts are generally

seen to exhibit larger areas of high frequency response, which is

expected based on stiffer materials vibrating at higher

frequencies and cancerous tissue having stiffness 4~10 times

greater than healthy tissue (24, 56–58). The examples in Figure 5

were typical for most subjects at low frequencies (<26 Hz).

Despite this significant contrast, observationof stiffness plots

alone cannot quantify diagnosis, as it would fail the criteria of

being automated and unbiased. These results provide proof-of-

concept for the governing theory of this algorithm, but require

development to prevent reliance on human interpretation,

which would increase bias and error.

Furthermore, the notable differences seen here were not

consistent throughout all frequencies. In general, higher

frequencies (>26 Hz) resulted in much noisier and varied
FIGURE 4

Flowchart showing full method to obtain results.
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FIGURE 5

Three-dimensional (3D) plots showing areas of high frequency of interest for healthy (left) and cancerous (right) breasts at input frequency,
fe=23 Hz.
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frequency content across all breasts, likely due to a higher

incidence of wave reflection causing an increase in vibration in

certain areas. As mentioned, higher frequencies tended to result

in more atypical vibration with dominant frequency not equal to

the input frequency in many cases. Thus, lower frequencies (20-

23 Hz) were used for this frequency response analysis. Averaging

the frequency of interest across the available frequencies from

20-23 Hz is unbiased and generalisable, although it should be

noted, with more subject information, such as breast density,

able to be found prior to screening, more optimal breast-specific

testing frequencies may possibly be obtained.
Frontiers in Oncology 10
Unbiased diagnostic technique

Figure 6 shows how this frequency of interest can be used as

an indicator for cancer in an unbiased and clinically feasible way,

by using a segmentation methodology and comparing

frequencies of interest in different segments of a breast.

Figure 6 shows the diagnostic result for two breast

configurations (1 and 6 in Figure 2) situated on opposite sides

of the breast at their respective optimal tolerances, 33% and 34%.

This figure shows considerable variation in frequency

composition of segments in cancerous breasts compared to
FIGURE 6

Diagnostic criteria for cancerous (top) and healthy (bottom) breasts for configuration 6 with 34% tolerance applied (left) and configuration 1 with
33% tolerance applied (right). Any one point lying outside the percentage tolerance shown results in a cancerous diagnostic.
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healthy breasts. This clear, observable difference supports the use

of this diagnostic segmentation methodology, demonstrating

how tissue properties in a healthy breast tend to be more

similar, as expected. The large variation in average frequencies

of interest for both cancerous and healthy breasts in Figure 6

further demonstrates breast properties are unique, and vary even

between breasts of the same women, showing set diagnostic

thresholds or comparison between breasts is likely to result in

inaccurate diagnosis and poor overall performance.

Of particular interest is the varying performance of

configurations 1 and 6 in diagnosing specific subjects.

Configuration 6 was the optimal configuration and resulted in

two false negatives, P10 and P13 (85% sensitivity), and three
Frontiers in Oncology 11
false positives, P5, P11 and P12 (77% specificity), already

meeting Criteria #2 for a highly sensitive diagnostic algorithm

in Table 2. In contrast, configuration 1 resulted in three false

negatives, P1, P6 and P11 (77% sensitivity) and three positives,

P5, P12 and P14L (77% specificity). Thus, while false positives

P5 and P12 were diagnosed incorrectly in both configurations,

all false negative diagnoses were diagnosed correctly in one of

the two configurations.

Differing diagnostic success for different subjects in each

configuration shows tumor location potentially affects the

efficacy of diagnosis in certain configurations. Fitzjohn et al.

suggests tumor presence can often affect the properties of

segments either side (30), and, as such, using these segments
FIGURE 8

False negative (left) and false positive (right) ages and breast volumes for configurations 1 and 6.
FIGURE 7

False negative tumor and breast sizes (left) and tumor depth and diameter normalised by breast volume (right) for configurations 1 and 6.
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as the control may result in less distinguishable properties

compared to a segment far from the tumor, where a greater

difference will result in a more prominent cancer diagnostic.

Configurations 1 and 6 are situated on opposite sides of the

breast and, when combined, result in all cancer being diagnosed

in at least one segment. Therefore, there is potential for two

opposite segments to be used to ensure diagnosis of all cancers. If

diagnosis in either configuration was to result in positive

diagnosis, the diagnostic result would be zero false negatives

(100% sensitivity) and four false positives (69% specificity),

meeting Criteria #2 in Table 2, with perfect sensitivity and still

acceptable specificity (>65%). This outcome shows a significant

diagnostic using a computationally efficient algorithm. Further

metrics could be designed to potentially combine with other

DIET diagnostic methods and reduce false positive results.

Combining results may improve sensitivity but increase false

positives and unnecessary biopsies, which already impact almost

20% of women (59). Clinical breast examination or other breast

screening tools may also be utilised to ensure unnecessary breast

biopsies are reduced. In particular, positive DIET results could be

immediately followed up with skilled manual palpation or

ultrasound to reduce this risk and reduce the time taken to

women receiving diagnostic outcomes and consequent treatment.

Figure 7 shows different patient, breast and tumor

information for the false negatives in both configurations 1

and 6. It shows all false negatives are less than 20 mm, which

is associated with lower stage cancer (60) and expectedly

considered more difficult to diagnose. Two of the false

negatives are the two smallest tumors in this cohort, at 7mm.

Most importantly, all cancers are detected in one of the

configurations, showing the capability of detecting both 7mm

tumors, depending on breast configuration.
Frontiers in Oncology 12
Figure 7 also shows all five false negatives across each

configuration are five of the six smallest tumor to volume

ratios, expected to be more difficult to diagnose in methods

comparing average breast segment properties. Additionally, P10,

P11 and P13 have unknown tumor depth, which, if deep, could

also cause diagnostic issues (30). Figure 8 shows patient age and

breast volume for false negative and false positive cases. False

negative results occur at a range of breast sizes and average ages

for this cohort. More importantly, the true positives are patients

with varied ages and breast sizes, suggesting there is no

diagnostic limitation of age or volume related breast properties

for this algorithm, showing an equitable diagnostic result.

Figure 8 also shows cancer found in two of the youngest

women diagnosed correctly, which is a significant result, given

mammography often performs worse in young women, who

tend to have higher breast density consisting of more glandular

tissue, which can mask the presence of a tumor (52, 61). False

positives in Figure 8 tend to occur in smaller breasts, perhaps

where differing breast structure has a more magnified effect due

to smaller segments overall. Thus, adjusting the number of z-

bands or segments used based on breast size could potentially

reduce false positives.

False positive results could be the result of some complex

internal tissue differences around the breast causing

distinguishing properties when using this breast segmentation

methodology. However, it is important to note a missed

diagnosis in mammography should not be ruled out.

Specifically, the false positive patients all have smaller breasts,

also associated with potentially increased breast density, and

thus, worse outcomes in mammography (62). Furthermore,

Patients P5 and P14L are the two youngest patients in this

cohort. Generally, breast density decreases with increasing age
FIGURE 9

Discrete ROC curve showing diagnostic method applied at different percentage tolerances for breast configuration 6.
frontiersin.org

https://doi.org/10.3389/fonc.2022.969530
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Fitzjohn et al. 10.3389/fonc.2022.969530
FIGURE 10

Bootstrapped ROC curves for breast configurations 1-6.
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FIGURE 11

Bootstrapped ROC curves for breast configurations 7-12.
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(52, 61), and, as such, these false positive patients may have

dense breasts, causing known issues for diagnosis using

mammography, as dense tissue masks the presence of a tumor

(63). Unfortunately, no follow up information is available with

this data set regarding each patient’s outcomes and consequent

screenings. Test information is given as a one-off and, as such,

we may never know this outcome.

Important to note is the right breast in patient P14R,whichwas

correctly diagnosed as healthy in both configurations. This subject

was originally diagnosedwith cancer inmammography, whichwas

later proven to be healthy tissue. Successful identification of this

breast using thismethod shows an instancewhereDIETdiagnostic

capabilitieswere able toout performmammography.This outcome

helps prove implementation of DIET into the breast screening

system could potentially improve overall diagnostic accuracy.

Patient P6’s right breast was also correctly identified as healthy in

both configurations, despite having a non-malignant cyst, again

showing the potential for DIET algorithms to distinguish between

tumors and non-malignant lesions based on tissue stiffness.

With current limited clinical data, the method is primarily

focused on the detection of tumor presence as a binary labelling

problem. Detecting the exact location and depth of tumor for

surgery and treatment purpose would require a much larger

cohort of data to build its non-linear correlation to tissue

properties and motion dynamics to avoid over-fitting issues.

However, the current result did imply the frequency of interest

for cancerous segments presented a notable contrast of response

to healthy segments, which could be used to provide a

preliminary estimation of location. Therefore, the benefit of

the method is the comfort and ease of screening and the
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automated results, which keeps running costs low, increases

breast screening equity and encourages screening participation.

While location around the breast segment could be achieved

with this algorithm, further clinical breast exam, ultrasound,

mammography or MRI would be recommended for confirming

the exact location and depth.
Algorithm robustness and
configuration selection

Figures 10, 11 show the bootstrapped ROC curves for all

breast configurations following bootstrapping with 50 breasts

selected with replacement and a repetition of 200 trials. Table 3

shows the AUC, optimal sensitivity and specificity, as well as

sensitivity and specificity for criteria in Table 2 for each

configuration. Bold values show configurations which meet the

accuracy and AUC criteria.

Nine configurations (1, 4–7, 9–12) met the criteria for AUC

over 0.73, which shows the algorithm is fairly robust to

configuration selection, although some configurations are

clearly more optimal. Four configurations (1, 6, 9, 11) met

criteria for specificity greater than 65% when a highly sensitive

(80%) diagnosis is achieved (Criteria #2). These configurations

and an additional configuration 5 also met criteria for sensitivity

at least 60% when specificity is similar to mammography (80%)

(Criteria #1).

In general, the most optimal breast configurations occurred

towards the top and bottom of the breast. The increased diagnostic

quality of these segmentsmight be attributed to the natural way the
TABLE 3 Area under ROC curve (AUC), optimal performance point and assessment of diagnostic accuracy criteria for bootstrapping of each
different breast configuration with bold values indicating the criteria is met.

Configuration 1 2 3 4 5 6 7 8 9 10 11 12

AUC 0.80 0.70 0.68 0.74 0.78 0.85 0.73 0.70 0.79 0.76 0.85 0.76

Optimal Sensitivity 76 67 66 71 74 81 70 67 75 72 80 72

Optimal Specificity) 71 65 64 68 70 75 67 65 70 68 75 69

Sensitivity (with 80% specificity) 63 47 45 53 60 74 55 47 60 55 73 56

Specificity (with 80% sensitivity) 68 50 46 58 64 76 62 50 65 60 75 61
frontiersin
The bold values show configurations, which meet the diagnostic criteria.
TABLE 4 Assessing frequency composition method against diagnostic criteria in Table 2.

Criteria Yes/No Values

Unbiased diagnostic Yes

Full automation Yes

Ability to diagnose tumors down to 7mm Yes

Robust to varying breast sizes and densities Yes

AUC greater than mammography (>0.73) Yes 0.85

Specificity 80%, sensitivity 60% or higher (1. similar to mammography) Yes 74%

Sensitivity 80%, specificity 65% or higher (2. highly sensitive) Yes 76%
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breast hangs. Breast tissue structure is inhomogeneous and its

complex structure and fibrous frame continually change with age

due to effects, such as gravity (58, 64). The DIET set up may also

distort surface motion in the natural hanging position due to pre-

tensioning and pre-compression of surface tissue. It is possible

using control segments at the top and bottom of the breast result in

maximum surface tension, including the presence of suspensory

(cooper’s) ligaments (64) and, thus provide the truest steady state

response for frequency analysis withminimumnon-homogeneous

tissue mechanics. Thus, these configurations result in optimal

diagnosis for this frequency dependent diagnostic algorithm.

The optimal configuration (6) well exceeded performance

criteria in Table 2 with optimal AUC at 0.85, optimal sensitivity

and specificity of 81% and 75%. Sensitivity was 74% when

specificity was similar to mammography (Criteria #1) and

specificity was 76% when a highly sensitive diagnostic was

achieved (Criteria #2). As mentioned, AUC of 0.85 is

considered excellent (>0.8) (41), and not only well exceeds

criteria (0.73), but exceeds all AUC values identified in studies

on mammography (0.54-0.84) (12, 31, 40, 42–46).

As shown in Figures 6, 7, a combination of configuration 1

and 6 could result in perfect sensitivity at 100% and specificity of

69% exceeding criteria for a highly sensitive diagnostic (>65% in

Criteria #2). This highly successful diagnostic outcome proves

diagnostic efficacy using DIET can be achieved, supporting

further research and investment in this technology.
Assessment against diagnostic criteria

All diagnostic criteria outlined in Table 2 weremet or exceeded

by the diagnostic method described in this paper. Table 4 shows

optimal AUC well exceeds criteria at 0.85 (>0.73), and both

accuracy criteria are well exceeded with Criteria #1 sensitivity at

74% (>60%) and Criteria #2 specificity at 76% (>65%).

Furthermore, both 7 mm tumors were able to be correctly

diagnosed in one of two configurations analysed, showing

diagnosis of tumors, below theaverage tumor size detected by

mammography at 10~14 mm (27, 65).
Limitations

The main limitation of this study is the limited clinical data

available. This study presents results based 26 breasts analysed

from 14 patients from a limited technical trial. Increased funding

would enable more clinical trials and thus increased data, greatly

improving validation of results and allowing for deep learning

techniques to be utilised. However, the data in this cohort

includes patients with a range of breast sizes and varying
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tumor sizes and depths (Table 1), which demonstrate the

success and potential of diagnostic algorithm across a varied

cohort. Lack of displacement data for some patients at relevant

input frequencies resulted in exclusion of one breast from each

of Patient P4 and P13 in the analysis presented in this paper. All

excluded breasts were healthy, so assessing the ability of this

algorithm to diagnose cancerous breasts was not affected.

It should be noted, machine learning methods have been

successfully applied for identification, diagnostic and analysis of

medical data (66, 67). However, training the models of machine

learning and deep neural networks normally require a very large

cohort of labelled data in the medical field, which is not available in

this case. Moreover, very detailed patient demographics and extra

examinations might be needed to construct efficient input features

to the training models, which may not necessarily be practical for a

quick and equitable screening implementation such as via the DIET

system. Therefore, a physics-based method and approach is

considered to be more appropriate for this technology and at this

time than machine learning methods, given the currently limited

data for the DIET screening system. In future, such approaches

could provide significant new diagnostic approaches.

Another limitation identified was the fitting of the ROC curve

equation y=1-e-ax for some configurations. This equationwas chosen

at it is able to represent the linear (50:50 chance) and,withavery large

exponent, the perfect square ROC curve,as well as all squares in

between.However, it is restrictedby theuseofonlyoneparameter (a),

meaning there is a fixed relationship between sensitivity and

specificity. Increasing the number of fitting parameters, such as

y=1-e-a(x-b)+c, would potentially over fit the data and may result in

not meeting the 0 to 1 bounds of the ROC curve.

For instance when comparing configuration 2 in Figure 10 and

configuration 8 in Figure 11, both have a similar bootstrapped ROC

curve shape. Table 3 show identical AUC, optimal sensitivity and

specificity and criteria values. Despite these similarities, the trend of

the curve differs. Configuration 2 tends towards higher specificity,

whereas configuration 8 appears more sensitive. These subtle

differences are not captured by the fitting of equation y=1-e-ax with

just one parameter. This issue is a limitation of this fit and

development of this ROC curve model may more successfully

capture the trade-off of sensitivity and specificity in some

configurations. In general, the equation was successful in

comparing configurations and most curves captured the general

trend of points.
Conclusions

This paper presents a computationally efficient diagnostic

algorithm, which meets identified criteria for comparable

accuracy to mammography and the ability to provide a highly
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sensitive diagnostic in breast screening. Three-dimensional plots

showing response frequencies demonstrate how cancerous

breasts exhibit higher and more varied frequencies of interest.

An unbiased diagnostic was developed using a segmentation

methodology, comparing second dominant frequencies in

various breast segments, with similar frequencies expected in

healthy breasts and more distinguishable differences indicating

potential tumors. This method allowed for each breast to be

diagnosed independently, removing issues of highly variable

breast properties on diagnostic success.

Patient data at frequencies analysed was available for a total of

26 breasts (13 healthy and 13 cancerous) from 14 patients. An

optimal breast configuration and diagnostic tolerance resulted in

85% sensitivity and 77% specificity. Using two configurations on

either side of the breast demonstrated how sensitivity could be

increased to 100% with only one additional false positive (specificity

69%), still meeting criteria for a highly sensitive diagnostic with

manageable false positives. All diagnostic criteria were well exceeded

showing potential for diagnosis using DIET to exceed diagnostic

accuracy of mammography, including one breast correctly

identified using this method, which was a false positive in

mammography. ROC curve AUC exceeded all identified AUC

values for mammography at 0.85 (0.54-0.84) and when specificity

was similar to mammography (80%) sensitivity far exceeded it at

74% (>60%). This study provides an unbiased, fully automated

diagnostic algorithm capable of detecting all tumors in this cohort,

with manageable false positives, proving the diagnostic potential of

the DIET technology, as a breast screening tool with many benefits.
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