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Purpose: Pyroptosis exerts an undesirable impact on the clinical outcome of

breast cancer. Since any single gene is insufficient to be an appropriate marker for

pyroptosis, our aim is to develop a pyroptosis-related gene (PRG) signature to

predict the survival status and immunological landscape for breast cancer patients.

Methods: The information of breast cancer patients was retrieved from The

Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO)

databases. Quantitative real-time polymerase chain reaction (qRT-PCR) was

performed to verify the gene expressions of this signature in breast cancer. Its

prognostic value was evaluated by univariate Cox analysis, least absolute

shrinkage and selection operator (LASSO) regression analysis, receiver

operating characteristics (ROCs), univariate/multivariate analysis, and

nomogram. Analyses of Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) were performed to explore its potential

biological function in breast cancer. The potential correlation between this

signature and tumor immunity was revealed based on single sample gene set

enrichment analysis (ssGSEA), ESTIMATE and CIBERSORT algorithms.

Results: A PRG signature containing GSDMC, GZMB, IL18, and TP63 was

created in a TCGA training cohort and validated in two validation GEO

cohorts GSE58812 and GSE37751. Compared with a human mammary

epithelial cell line MCF-10A, the expression levels of GSDMC, GZMB and IL18

were upregulated, while TP63 was found with lower expression level in breast

cancer cells SK-BR-3, BT-549, MCF-7, and MDA-MB-231 using RT-qPCR
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assay. Based on univariate and multivariate Cox models, ROC curve,

nomogram as well as calibration curve, it was revealed that this signature

with high-risk score could independently predict poor clinical outcomes in

breast cancer. Enrichment analyses demonstrated that the involved

mechanism was tightly linked to immune-related processes. SsGSEA,

ESTIMATE and CIBERSORT algorithms further pointed out that the

established model might exert an impact on immune cell abundance,

immune cell types and immune-checkpoint markers. Furthermore,

individuals with breast cancer responded differently to these therapeutic

agents based on this signature.

Conclusions: Our data suggested that this PRG signature with high risk was

tightly associated with impaired immune function, possibly resulting in an

unfavorable outcome for breast cancer patients.
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1 Introduction

Breast cancer belongs to one of the most common cancer

diseases and ranks first or second inmortality rates among women

worldwide, with approximately 2,260,000 increasing cases and

almost 685,000 deaths according to the GLOBOCAN 2020

estimation (1). At present, a variety of anti-breast cancer

treatments are available, including surgical operations,

chemotherapeutic options, radiotherapeutic plans, hormone-

based strategies, targeted therapies and others. Appropriate

therapeutic measures are taken based on different breast cancer
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subtypes, such asHR+/ERBB2− (seven-tenths of the total), ERBB2

+ (one-fifth of the total) as well as triple-negative (one-tenth of the

total). Themedian overall survival (OS) for the first two subtypes is

5 years in comparison with approximately 1 year for the triple-

negative phenotype.Accordingly, themaingoal for treating thefirst

two subtypes is eradication of local breast tumors/regional lymph

nodes to prevent increasing risks of recurrence, while the

therapeutic value in treating triple-negative phenotype is to

prolong life span and alleviate patients’ suffering (2). Although

more than90%breast cancerpatients are initiallydiagnosedasnon-

metastatic phenotypes, 20–50% of them eventually develop into

advanced stages or distant recurrent phenotypes of breast cancer

(3). In addition, tumor progression is highly dependent on the

tumor niche or tumor microenvironment (TME). Immune

dysregulation always leads to ineffectiveness and even multidrug

resistance of clinical agents in cancer modality therapies (4). TME-

associated oncogenes and/or tumor suppressor genes have

potential value in determining tumor typing, gene sets, and

pathways as well as phenotype modeling for research into breast

cancer (5).Hence, it is urgent and essential todevelop andvalidate a

prognostic model to predict OS and immunological landscape in

patients with breast cancer.

Pyroptosis is a certain kind of programmable cell death

mediated by inflammasomes. It has been characterized by the

formation of inflammasomes, the activation of caspase and

gasdermin, as well as the release of pro-inflammatory

cytokines (5). In the canonical pathway, pyrolytic cells appear

light swelling with many bubble-like inflammasomes. The

inflammasomes then join together and recruit caspase-1 to

activate GSDMD within its N-terminal domain, and trigger

the abnormal expressions of IL1b, IL18, high mobility group
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box 1 (HMGB1) and others through necrotic membrane pores

formed by GSDMD-N. Alternatively, both pyroptosis initiation

and GSDMD cleavage are caspase 4, 5, 11-dependent by

combining with cellular lipopolysaccharides rather than

recruiting inflammasomes in the non-canonical pathway (6).

A variety of inflammatory factors are released into TME and

blood circulation to promote systemic inflammation during

pyroptosis. Therefore, a number of pilot studies have been

focused on pyroptosis to comprehend its association with

infectious diseases , nervous system disorders , and

atherosclerosis-associated diseases (7). Of note, it has also been

demonstrated that pyroptosis displays dichotomous behaviors

during oncogenesis possibly due to different cell types, genetics

and tumor stages. On one hand, tumors with abnormal GSDMD

expression, activated inflammasomes, and enhanced pro-

inflammatory cytokines belong to a more aggressive phenotype

by maintaining immunosuppressive cells, facilitating stromal

cell transformation from epithelial cells, and up-regulating

matrix metalloproteinases for extracellular matrix remodeling

(6). On the other hand, pyroptosis exerts anti-tumor function.

For instance, pyroptosis induced by NLRP3-mediated

inflammasomes could significantly delay the growth and

metastasis of hepatocellular carcinoma (7). Thus, it is

necessary to establish diagnostic and prognostic signatures for

pyroptosis in order to clarify its significance in breast cancer.

It appears that pyroptosis holds promise as a potential adjuvant

in tumor immunotherapy with a good prospect. According to

clinical findings, different tumor types respond differently to

immunotherapy. Tumors sensitive to immunotherapy are

classified as “hot tumors”, while tumors with poor reactivity are

called “cold tumors” (8). Thus, different treatment strategies should

be adopted for different tumors, and how to transform “cold

tumors” into “hot tumors” to improve the curative effect is

particularly critical. An exciting research reported the synergistic

effect of pyroptosis induction and PD-1 inhibitor could turn the

tumor from immune-silent “cold tumors” to “hot tumors” with

immune stimulation, suggesting the great potential of this

combination (9). Moreover, pyroptosis contributes to tumor

inhibition by stimulating anti-tumor immune response.

Activating GSDME could promote macrophage phagocytosis and

enhance the function of natural killer (NK) cells and CD8+ T cells

(10). The study of Tan et al. revealed that DRD2 polarized

macrophages to M1 by restricting NF-kB signaling, subsequently

resulting in GSDME-induced pyroptosis in breast cancer (11).

Overall, investigating the association between pyroptosis and

tumor immunity can bring new insights into the prognosis and

treatment of breast cancer.

Given the strong correlation between pyroptosis and cancer

diseases, it is worth investigating the specific functions of PRGs

(12). However, breast cancer-associated PRGs have not been

fully explored yet. Herein, this study described a comprehensive

analysis of breast cancer-associated PRGs, including their

prognostic value, biological function and pathways,
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immunological characterization, drug sensitivity as well as

genomic information. In particular, we developed a PRG-

based signature to evaluate its prognostic value for breast

cancer patients based on Kaplan-Meier and ROC methods.

Subsequently, ssGSEA, ESTIMATE and CIBERSORT

algorithms were also applied to clarify the relationship

between PRGs and immune cell infiltration in TME, which

would provide new targets for breast cancer immunotherapy.
2 Materials and methods

2.1 Data source and collection

We downloaded the RNA sequencing data of 1109 breast

cancer tumor tissues as well as 113 adjacent tissues, and the

related clinical information in the TCGA dataset (https://portal.

gdc.cancer.gov/repository). Counts value matrix was utilized to

screen out differentially expressed genes (DEGs) involved in

pyroptosis, while TPM value matrix was used for the rest of

analyses. Breast cancer patients with missing OS values or OS

≤30 days were excluded from the analysis to avoid statistical bias.

We also used the GEO database (GSE58812 and GSE37751)

(https://www.ncbi.nlm.nih.gov/geo/) to retrieve gene expression

data and clinical data.
2.2 Identification of differentially
expressed PRGs

The involved 52 PRGs were obtained from previous

studies (13) (Table S1). The DEG identification between tumor

tissues and adjacent tissues was conducted by the R package

“edgeR” (14). Adjusted P-value < 0.05 and |log2 (fold change) |

(log2 FC) > 1 were defined as the threshold. Protein-protein

interaction (PPI) networks were set up using screened DEGs

with the Retrieval of Interacting Genes (STRING) (https://

string-db.org/).
2.3 Construction of the PRG model in
breast cancer

To evaluate the prognostic value of this PRG model, both

Cox regression analysis and LASSO regression analysis were

utilized to evaluate the relationship between PRGs and the

survival status in the TCGA cohort. For Cox regression

analysis, genes that met P-value < 0.05 were further analyzed,

and 4 survival-related genes were found. A prognostic model was

then constructed using R package “glmnet” based on the LASSO

regression. Finally, 4 genes were maintained. The penalty

parameter (l) was determined by applying minimum criteria.

The risk score was calculated by the following formula:
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Riskscore =o
n

i=1
 CoefðXiÞ � ExpðXiÞ

For each gene Xi, coef (Xi) represented the coefficient, and Exp

(Xi) represented gene expression. Breast cancer patients were

classified into two groups (the high- and low-risk groups) based

on the median risk score. We used principal component analysis

(PCA) with “prcomp” R package and t-distributed stochastic

neighbor embedding (t-SNE) test using “Rtsne” R package (15) to

analyze two groups’ distribution. Then, Kaplan-Meier analysis was

applied to examine the interactions between risk value and the

survival time using R packages of “survival” (16) and “survminer”

(17), and ROC curve analysis was performed to evaluate their

diagnosis index with “timeROC” R package (18).
2.4 Validation of PRG signature

To further test and verify the 4-gene signature model based

on TCGA, its prediction accuracy was re-evaluated in the GEO

pool (GSE58812 and GSE37751). Kaplan-Meier curves implied

significant discrepancies between the two risk groups of patients.

Then ROC curves analysis was used to confirm the robustness of

our PRG prognostic model.
2.5 Cell culture

MCF-10A, BT-549, MCF-7 and MDA-MB-231 were

purchased from the American Type Culture Collection (ATCC,

Manassas, VA, United States). SK-BR-3 was obtained from Jiangsu

Kaiji Biotechnology Co., Ltd (Nanjing, Jiangsu, China). The cells

were cultured inmedium(DMEMfor SK-BR-3andMDA-MB-231

cells; RPMI-1640 for BT-549 and MCF-7 cells) and were added

with10% fetal bovine serum(Gibco,NorkYork,NY,United States)

as well as 1% penicillin and streptomycin (Gibco, Nork York, NY,

United States). BothDMEMandRPMI-1640were purchased from

Gibco company (Gibco, Nork York, NY, United States). MCF-10A

was maintained in DMEM/F12 (Gibco, New York, NY, United

States) supplemented with 5% horse serum (Hyclone, Logan, UT,

United States), 20 ng/ml epidermal growth factor (BD Bioscience,

Bedford, MA, United States), 10 mg/ml insulin (Sigma, St. Louis,

MO, United States), 0.5 mg/ml hydrocortisone (StemCell

Technologies, Vancouver, BC, Canada), 100 ng/ml cholera toxin

(Macgene, Beijing, China) and 1% penicillin and streptomycin

(Gibco,NewYork, NY,United States). All these cell lines were kept

at 37°C, with a humidified atmosphere of 5% CO2.
2.6 RNA isolation and qRT-PCR analysis

The primer sequences of GSDMC, GZMB, IL18, and TP63

were synthesized by WcGene Biotech (Shanghai, China), and
Frontiers in Oncology 04
b-actin was synthesized by Sangon Biotech (Shanghai, China)

(listed in Table S2). Total RNA was extracted with an RNA

extraction kit (DP419, Tiangen Biotech Beijing Co., Ltd., Beijing,

China), followed by reverse transcription reaction using

TAKARA reverse transcription kit (RR047A, Takara, Shiga,

Japan). Following qRT-PCR analysis was performed with TB

Green® Premix Ex Taq™ II (RR820A, Takara, Shiga, Japan) in

Bio-Rad CFX96. A comparative Ct method (2-DDCT) was used to

calculate the expression level of RNA normalized to b-actin.
2.7 Independent prognostic analysis

Univariate and multivariate Cox regression was

conducted to investigate whether the risk score could be an

independent prognostic factor. TCGA was used to obtain the

clinical information (age, T stage, N stage, and M stage) of

breast patients.
2.8 A predictive nomogram construction

A nomogram was established to predict the 1-, 3-, or 5-year

survival probability and accuracy performance of the model

assessed by calibration curves.
2.9 Functional enrichment analysis
of PRGs

Patients with breast cancer were stratified by a median risk

score into low- and high-risk groups from the TCGA and GEO

cohorts. The DEG analysis was performed between two groups

using the “limma” package (19). The threshold was set as

follows: FDR < 0.05, | log2 FC | > 1. GO (20, 21) and KEGG

(22) were performed by using “clusterProfiler” (23), and

“ggplot2” (24) R package. The venn diagram was drawn by

“VennDiagram” R package (25).
2.10 Assessment of immune status and
CSC index between two subgroups

SsGSEAwas performed to calculate the immune cell infiltration

based on “GSVA” R package (26). The R package “ESTIMATE”

was utilized to count the scores (immune/stromal/estimate score)

and tumor purity in TME (27). R package “CIBERSORT” was used

to reveal the intrinsic links between PRG score and immune cells

abundance in TCGA (28). Subsequently, we used Spearman’s

correlation analysis to analyze the relationship between the risk

score and the index of immune cells/cancer stem cells (CSCs).

Threshold P-value < 0.05 was considered significant.
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2.11 Drug sensitivity evaluation

An analysis of half inhibitory concentrations (IC50) of

common drugs was performed using “pRRophetic” R software

in TCGA (29). And we applied the Wilcoxon signed-rank test to

detect IC50 between two subgroups.
2.12 Data analysis using cBioPortal

cBioPortal (www.cbioportal.org) is a comprehensive web

resource for collection and analysis of cancer genomics data, such

as copy number alterations,DNAmethylation and soon (30). 2509

samples [Breast Cancer (METABRIC, Nature 2012 & Nat

Commun 2016)] were explored, and mRNA expression z-scores

(log microarray) were acquired using a z-score threshold of ± 2.0.

We also used cBioPortal web platform to analyze the relationship

between the TP63 gene expression and its methylation level.
2.13 Analysis of common genes between
pyroptosis and autophagy

The autophagy-related genes (ARGs) were collected from

Human Autophagy Database (http://www.autophagy.lu/) (Table

S3).An intersectionwas acquiredbyARGs andPRGs.The effects of

high and low gene expression on OS were investigated by Kaplan–

Meier curves using R packages of “survival” and “survminer” (17).
Frontiers in Oncology 05
2.14 Statistical analysis

Data analyses were completed by R software (v4.0.1) and

SPSS software (version 26). Statistical significance was defined

by P < 0.05.
3 Results

3.1 Identification of pyroptosis-related
DEGs in breast cancer

Figure 1 illustrated the flowchart of this study, including PRG

signature construction, validation and functional analysis aswell as

response evaluation to therapies.We compared expression levels of

52 PRGs with DEGs from 1109 breast tumors and 113 adjacent

tissues in TCGA, and identified 16 pyroptosis-related DEGs in

breast cancer. Among them, 12 genes were significantly

upregulated (BAX, BAK1, PYCARD, NOD2, GSDMD, IL18,

AIM2, NLRP7, NLRP6, GSDMC, GZMB, NLRP2), while 4 other

genes were obviously downregulated (IL6, TP63, ELANE, NLRP1)

according to volcanoes (P < 0.05, Figure 2A). The differential PRG

expressions were visualized by heatmaps in Figure 2B. To further

investigate their intricate correlation with each other, a PPI-

associated analysis was established in the light of a minimum

interaction score of 0.4 (Figure 2C), and their interactions were

also shown in a pyroptosis-based network (Figure 2D).
FIGURE 1

Schematic illustration of the study design, including PRG signature construction, validation and functional analysis and response evaluation
to therapies.
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3.2 Construction of a PRG-based
prognostic model in TCGA

In the search for the survival-related PRGs, a univariate Cox

regression analysis was conducted based on a threshold of

P < 0.05. As shown, 4 out of 16 aforementioned DEGs were

selected as the appropriate candidates for constructing a
Frontiers in Oncology 06
pyroptosis-related risk signature. In particular, 3 genes TP63,

IL18, and GZMB were shown as protective genes with hazard

ratios (HRs) < 1, while GSDMC was regarded as a risk gene with

HRs >1 (Figure 2E). In the following LASSO regression analysis,

a 4-gene risk model was built based on the LASSO optimal l
regression (Figure 2F). Accordingly, the risk score was calculated

as indicated: Risk score = (−0.120 * TP63 Exp.) + (−0.090 * IL18
A B

D E F

G IH

J K L

C

FIGURE 2

Identification of pyroptosis-related DEGs and construction of a PRG-based prognostic model using the TCGA cohort in breast cancer. (A) A volcano plot
displaying pyroptosis-related DEGs in breast cancer (P < 0.05, red: up-regulated genes; blue: down-regulated genes); (B) A heatmap of the 16 differential
PRG expressions between breast tumors and adjacent tissues (P < 0.05, blue: decreased expression; red: increased expression); (C) A PPI network
indicating the intricate interactions of the 16 PRGs (interaction score=0.4); (D) The connection network among PRGs (Pink: a positive association; blue:
a negative association.Green: a favorable factor; purple: a risk factor). (E) Univariate Cox regression analysis of survival-related PRGs (P < 0.05); (F) A 4-
gene risk model was built based on LASSO regression analysis; (G) The breast cancer patient distribution based on the median value of the risk score;
(H) PCA plot and (I) T-SNE analysis in the TCGA cohort; (J) Kaplan–Meier curve analysis for the OS of patients with either high or low risk; (K) The survival
status of each breast cancer patient (left dotted line: low-risk; right dotted line: high-risk); (L) ROC analysis curve for the signature of this 4-gene set.
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Exp.) + (0.194 * GSDMC Exp.) + (−0.164 * GZMB Exp.).

Patients with breast cancer were divided into two subgroups

i.e. one with high risk (n = 517) and the other with low risk (n =

517) distinguished by the median risk score in TCGA

(Figure 2G). In addition, the PCA and t-SNE analysis showed

a high-quality separation between the two subgroups

(Figures 2H, I). The Kaplan-Meier curve was used to reveal

the discrepancies between the two risk groups, and it was found

that breast cancer patients with high risk had shorter survival

periods than those with low risk (Figures 2J, K). ROC analysis

was then performed to validate the sensitivity and specificity of

this signature, and the areas under curve (AUC) were 0.722 (1-

year), 0.673 (3-year) and 0.617 (5-year), respectively (Figure 2L).
3.3 Signature validation with the GEO
cohorts and qRT-PCR assay

Data from GSE58812 and GSE37751 were utilized as two

independent validation sets to verify the prognostic value of this

model. In GSE58812, 58 breast cancer patients were annotated as

the low-risk populations and 49 were characterized by high risk

based on the median risk score in the TCGA cohort (Figure 3A).

In Kaplan–Meier analysis, a significantly lower survival rate was

observed in the high-risk group compared to the low-risk group

(P = 0.005, Figure 3B). The survival status in the indicated

groups was presented in Figure 3C. The 1-, 3-, and 5-year AUC

values were 0.720, 0.722, and 0.704 in GSE58812 (Figure 3D).

Furthermore, patients with different risks (27 in the high-risk

subgroup v.s. 34 in the low-risk subgroup) were assigned to two

clusters in GSE37751 (Figure 3E). In GSE37751, patients in the

high-risk group had shorter survival than those patients in the

low-risk group (P = 0.029, Figure 3F). Also, the survival status

was shown in Figure 3G, and the 1-, 3-, and 5-year AUC values

were 0.636, 0.702, and 0.738 (Figure 3H). We additionally

compared expressions of key genes between human breast

cancer cells and a human mammary epithelial cell line MCF-

10A using RT-qPCR assay. As shown, compared with MCF-

10A, the expression levels of GSDMC, GZMB and IL18 were

upregulated, while TP63 was found with lower expression level

in breast cancer cells SK-BR-3, BT-549, MCF-7, and MDA-MB-

231 (Figures 3I–L, P < 0.05).
3.4 Analysis of clinicopathological
relevance and functional enrichment

Both univariate (Figure 4A) and multivariate (Figure 4B)

Cox regression analyses proved that the PRG-based signature, as

well as N stage and M stage, were independent predictors for

poor prognosis of breast cancer patients (P < 0.05),

demonstrating the robustness and accuracy of our method.

The calibration curve for OS probability at 1, 3, and 5 years
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also suggested satisfactory consistency between the predicted

and actual survival probabilities (C-index value=0.69,

Figures 4C, D). Next, we continued to investigate the

clinicopathological correlation of breast cancer with this PRG

risk model in TCGA. As shown, the PRG signature in the high-

risk group was significantly correlated with poor survival in

older (≥ 40 years), M0 or M1, N1-N3, and T1-T2 or T3-T4

populations (P < 0.05; Figures 4E–H). Taken together, this PRG

signature with high-risk score was possibly an independent

prognostic marker linking to a poor clinical outcome for

breast cancer patients.

In addition, enrichment analyses were carried out to reveal

the molecular functions and underlying mechanisms associated

with pyroptosis in breast cancer. For GO functional analysis, the

terms existing in both the TCGA and GSE58812 cohorts included

T cell activation, regulation of T cell activation, mononuclear cell

differentiation, positive regulation of cell activation, lymphocyte

differentiation, immune response minus;activating cell surface

receptor signaling pathway, immune response−activating signal

transduction, positive regulation of leukocyte activation,

leukocyte cell−cell adhesion, positive regulation of lymphocyte

activation, antigen receptor−mediated signaling pathway and

regulation of leukocyte cell−cell adhesion (Figures 5A–C). For

KEGG analysis, bubble charts demonstrated that the involved

pathways co-existing in both cohorts were mainly associated with

immunological modulation and cancer interference, including

cytokine−cytokine receptor interaction, cell adhesion molecules,

hematopoietic cell lineage, Th17 cell differentiation, chemokine

signaling pathway, viral protein interaction with cytokine and

cytokine receptor, Th1 and Th2 cell differentiation, primary

immunodeficiency, T cell receptor signaling pathway, intestinal

immune network for IgA production, allograft rejection, and

autoimmune thyroid disease (Figures 5D–F).
3.5 Analysis of immunological status and
TME characterization

On this basis, ssGSEA was then performed to evaluate the

impact of this signature on immunological status, particularly

immune cell types and functions. As shown, high-risk score led

to lower levels of infiltrating immune cells, including active DCs

(aDCs), B cells, CD8+T cells, dendritic cells (DCs), immature

dendritic cells (iDCs), macrophages, neutrophils, natural killer

(NK) cells, plasmacytoid DCs (pDCs), T helper cells, T follicular

helper (Tfh) cells, Th1 cells, Th2 cells, tumor infiltrating

lymphocyte (TIL), and regulatory cell (Treg) in two datasets

(Figures 6A, B). In addition, the high-risk individuals presented

lower activities in 13 immune-related pathways, including

Antigen presenting cell (APC) co-inhibition, APC co-

stimulation, C-C chemokine receptor (CCR), check-point,

cytolytic activity, human leukocyte antigen (HLA),
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inflammation-promoting, major histocompatibility complex

(MHC) class I, parainflammation, T cell co-inhibition, T cell

co-stimulation, type I interferon (IFN) response, and type II

interferon (IFNg) response (Figures 6C, D). Overall, these data
suggested that high-risk conditions were largely associated with

impaired immune function in breast cancer, possibly resulting in

unfavorable outcomes for those patients.
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Moreover, we also investigated whether and how risk score

affected immune activities in TME. Firstly, CSCs are the roots of

breast cancer (31). In this investigation, breast cancer cells with

higher PRG score also yielded a higher CSC index, indicating

that it might be possible to eliminate CSCs through the use of

pyroptosis-related therapies by targeting these 4 PRGs (P <

0.001, Figure 7A). Next, we estimated TME score of breast
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FIGURE 3

Validation of the PRG model with the GEO cohorts and qRT-PCR results. (A) The distribution of breast cancer patients based on the risk score in
GSE58812; (B) Kaplan-Meier curves for OS in the low and high-risk groups in GSE58812; (C) The survival status for each breast cancer patient in
GSE58812; (D) ROC curve analysis in GSE58812; (E) The distribution of breast cancer patients based on the risk score in GSE37751; (F) Kaplan-
Meier curves for OS in the low and high-risk groups in GSE37751; (G) The survival status for each breast cancer patient in GSE37751; (H) ROC
curve analysis in GSE37751; (I–L) qRT-PCR results indicating the expressions of GSDMC, GZMB, IL18, and TP63 in the indicated cell lines, values
represented the mean ± SD. n=3, *P<0.05; **P<0.01; ***P<0.001.
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cancer samples with R package “ESTIMATE” in TCGA. The

goal of this algorithm was to retrieve stromal, immune and

estimate scores. In particular, both stromal and immune scores

were positively correlated to infiltration of stromal and immune

cells, while the estimate score (the sum of the stromal and

immune scores) was a negative indicator of purity of tumor cells

(32). Compared with the low-risk group, the high-risk group

with lower immune/stromal/estimate score exhibited higher

tumor purities (Figure 7B). Further analysis revealed that most

immune cells exhibited significant correlations with the four

PRGs GSDMC, GZMB, IL18, and TP63 (Figures 7C, D). Also,

the risk signature had a direct bearing on immune cell types
Frontiers in Oncology 09
determined by CIBERSORT algorithm. In particular, the PRG

score was negatively correlated with T cells CD4 memory

activated, T cells CD8, T cells CD4 memory resting, T cells

gamma delta, Macrophages M1, B cells naïve and Plasma cells,

while positively related to Macrophages M0, Macrophages M2,

Mast cells activated and NK cells resting (Figure 7E). We also

compared the immune-checkpoint markers between two

subgroups. As shown, patients in the low-risk group expressed

significantly higher levels of PD-1, PD-L1, PDL-2, CD80, CD86,

and CTLA-4, implying that immune checkpoint blockade (ICB)

therapies might be effective for the low-risk patients (P <

0.001, Figure 7F).
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FIGURE 4

Analysis of predictive independency and clinicopathological relevance of the PRG signature in breast cancer. (A) Univariate Cox regression
analysis; (B) Multivariate Cox regression analysis; (C) The nomogram for predicting OS probabilities for breast cancer patients with either high or
low risk; (D) The 1-, 3- and 5-year nomogram calibration curves; Subgroup analysis of (E) age (< 40 years and ≥ 40 years), (F) M stage (M0 and
M1), (G) N stage (N0 and N1-N3) and (H) T stage (T1-T2 and T3-T4).
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3.6 Evaluation of drug sensitivity and
genetic regulation

The risk signature was then used to predict whether breast

cancer patients could benefit from chemotherapeutic treatments

or targeted therapies. Wilcoxon’s ranked-rank test was utilized

to compare IC50 values between the high-risk and low-risk

groups. As shown, the low-risk individuals with breast cancer

had lower IC50 values for doxorubicin (Figure 8A), docetaxel

(Figure 8B), paclitaxel (Figure 8C), lapatinib (Figure 8D), while

IC50 values of drugs such as camptothecin (Figure 8E), embelin

(Figure 8F) were obviously lower in breast cancer patients with
Frontiers in Oncology 10
high PRG risk (all P < 0.001). Overall, it was suggested that this

signature was related to drug sensitivity and might provide

guidance for treating breast cancer in the clinical setting.

In addition, we also investigated the genetic regulation of the

four PRGs. An analysis of its molecular characteristics was

conducted by searching the dataset of Breast Cancer

(METABRIC, Nature 2012 & Nat Commun 2016) in

cBioPortal. In particular, the OncoPrint tab summarized

genomic alterations (including amplification, deletion,

upregulation, and etc.) of TP63, IL18, GZMB, GSDMC were

8%, 0.2%, 5%, and 26%, respectively (Figure S1A). Of note, it was

demonstrated that autophagy might play a crucial role in
A D

E

C F

B

FIGURE 5

GO and KEGG analyses of the PRG signature in breast cancer. (A) GO analysis of the TCGA cohort; (B) GO analysis of GSE58812; (C) The Venn
diagram of GO terms between the TCGA and GEO cohorts; (D) KEGG analysis of the TCGA cohort; (E) KEGG analysis of GSE58812; (F) The
Venn diagram of KEGG terms between the TCGA and GEO cohorts.
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keeping intracellular homeostasis by regulating pyroptosis (33).

By comparing 52 PRGs with 222 ARGs, 11 common genes TP53,

NLRC4, BAK1, CASP1, CASP4, CASP8, BAX, CHMP4B, TP63,

CASP3, and CHMP2B were identified, among which only TP63

exhibited further interactions with the established 4-gene

signature (Figure S1B). According to both the TCGA and

GEO cohorts, a decrease of TP63 level was an indicator for

poor survival status for breast cancer patients (Figure S1C–E). In

addition, a comparison between N0 and N1-N3 status of breast

cancer patients demonstrated that cases with lymph-node

metastasis had lower TP63 mRNA expression (P = 0.017,

Figure S1F), which might be due to its hypomethylation

(Figure S1G).
4 Discussion

It is always important to seek and decipher pyroptosis-

associated targets in breast cancer. For instance, GSDME

methylation at high frequency contributed to lymph node

metastasis and a poor prognosis for breast cancer patients (34,
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35). Pizato et al. revealed that omega-3 docosahexaenoic acid

had robust facilitation of pyroptosis-mediated cell death in

triple-negative breast cancer, improving the understanding of

DHA as nutriment and adjuvant treatment against breast cancer

(36). The study from Liang et al. pointed out that

trichlorobendazole triggered GSDME-dependent pyroptosis of

breast cancer cells and clarified the involved mechanism was

associated with augment of ROS/JNK/Bax-mitochondrial signal,

suggesting the potential therapeutic use of this drug for treating

breast cancer patients with high GSDME expression (37).

Cisplatin induced anti-breast cancer effects at least partly by

activating MEG3/NLRP3/caspase-1/GSDMD pathway (38). In

light of these findings, it is crucial to develop a PRG-based

prognostic signature to clarify the significance of pyroptosis in

breast cancer. Herein, the PRG-based risk model containing

GSDMC, GZMB, IL18, and TP63 was established in the TCGA

cohort, followed by further validation with the GEO cohorts and

qRT-PCR assay. Retrospectively, these targets could affect cancer

progression by regulating pyroptosis directly or indirectly. For

instance, GSDMC was initially recognized as an oncogene in

metastatic mouse melanoma. Pyroptosis could be induced by
A B

DC

FIGURE 6

Differences of infiltrating immune cells and immune-related pathways between different risk groups based on the TCGA and GEO cohort.
(A, B) Infiltrating immune cells between two risk groups; (C, D) Immune-related pathways between two risk groups (all **P < 0.01; ***P < 0.001).
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artificially truncated N-terminal GSDMC (GSDMCNT), but the

upstream signaling of GSDMC still remained unclear. A recent

study by Hou et al. supplied one possible explanation for such a

research gap. They demonstrated that tumor hypoxia induced

PD-L1 nuclear translocation, accompanied by activation of

GSDMC expression and pyroptosis induction (39). In

addition, GSDMC overexpression might be related to lung

cancer progression and poor survival (40). It was also worth

mentioning that TP63 was identified as a core target in various

cancer diseases. Lin et al. revealed that increased expression of

TP63 isoform TAp63 abrogated the invasive abilities of colon

cancer cells HT-29 and SW-620 (41). In murine model, TP63
Frontiers in Oncology 12
loss led to activation of MAPK-P-STAT3 (Ser727)-MMP15 axis,

resulting in metastatic spread of head and neck squamous cell

carcinoma (42). A decline in TP63 expression was related to

shorter survival times of patients with breast cancer, bladder

cancer, and lung cancer (43–45). However, the influence of TP63

on pyroptosis as a single gene was not well understood. Wang

et al. identified TP63 as an autophagy-related gene in breast

cancer (45). Given that pyroptosis could be controlled by

autophagy (33), TP63 might be an indirect factor affecting

pyroptosis. In addition, TP63 has two isoforms i.e. TAp63 and

DNp63 (46), making it hard for clarifying its specified role in

breast cancer. Breast cancer also contains several molecular
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C

FIGURE 7

Impact of the risk signature on immune activities in TME. (A) Relationship between PRG score and cancer stem cells; (B) Analysis of PRGs
related to immune/stromal/estimate score and tumor purity. The PRG signature correlated with (C, D) immune cell abundance, (E) immune cell
types, and (F) checkpoints (all *P < 0.05; **P < 0.01; ***P < 0.001).
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subtypes, including HR+/ERBB2−, ERBB2+ as well as triple-

negative (2). As such, it is not clear to identify which subtype of

TP63 exerts a dominant role based on the present information

retrieved from the bioinformatics database, and we will address

this frustrating issue in our future study.

Since any single gene was insufficient to be an appropriate

marker for pyroptosis, we investigated the 4 aforementioned PRGs

as a whole for breast cancer prognostic and immunological

evaluation in this study. Several studies also reported similar

pyroptosis-related models for breast cancer. The study of Wu

et al. retrieved 33 PRGs to evaluate their relation to breast cancer

progression (47). On this basis, our investigation expanded the
Frontiers in Oncology 13
number to 52 PRGs for initiating our model, and 4 out of the 52

PRGs were selected as the appropriate candidates for constructing

a pyroptosis-related risk signature. Of note, our study was partly

consistent with the findings of Wu et al., revealing the supporting

role of IL18 in breast cancer progression (47). In addition, Yu et al.

incorporated 15 candidate genes i.e. NLRC4, IRF3, ANO6,

GSDMC, TP53, FGF21, IL36B, DHX9, FOXO3, IL36G, IL18,

GJA1, MST1, GZMB and GBP1 for the development of a PRG

model related to breast cancer (48). Although several of these single

hub genes were indirectly related to pyroptosis, their combination

was demonstrated to be an accurate predictor of breast cancer

survival. Compared to the study of Yu et al., our predictive
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FIGURE 8

Evaluation of drug response between different risk groups. (A) Doxorubicin; (B) Docetaxel; (C) Paclitaxel; (D) Lapatinib; (E) Camptothecin;
(F) Embelin (all ***P < 0.001).
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signature had fewer genes, which might save costs for the

development of a corresponding diagnostic kit in future clinical

applications (48). Beyond the above findings, we additionally

revealed that TP63 was the common gene to associate pyroptosis

with autophagy. The decreased expression of TP63 might have

potential relation to hypomethylation, and predicted a poor OS

rate for breast cancer patients. Since autophagy contributed to

intracellular homeostasis by modulating pyroptosis (33), it is

interesting to investigate the role of methylation-induced TP63

reduction in breast cancer and whether the involved mechanisms

will be related to autophagic regulation by interfering with

pyroptosis in the next study.

Our study further indicated that the obtained signature was

highly relevant to immune response based on a combined analysis

of GO, KEGG, ssGSEA and CIBERSORT, indicating the profound

implication of pyroptosis in tumor immunity. In particular, GO

and KEGG analysis revealed the low-risk group was featured by

enhancementofTcell functionandregulationof cytokine-cytokine

receptor interaction. Then, ssGSEA and CIBERSORT methods

were to analyze the association between the PRG signature and

immune cell infiltration. According to the results of ssGSEA, the

low risk led to greater quantities of immune cells, including B cells,

T cells, dendritic cells, macrophages and so on. These results were

consistent with the findings of CIBERSORT algorithm, showing

that the low risk was correlated with subtypes of immune-

stimulating cells, such as activated T cells, M1 macrophages, and

dendritic cells, as well as B cells. In most cases, these cells might

activate the immune system, leading to a positive prognosis of

cancer diseases (49). Herein, it was confirmed by our results

showing that T cells, M1 macrophages, dendritic cells and B cells

were enriched in the low-risk group with a favorable prognosis in

breast cancer. Furthermore, blockage of the immune checkpoint

has become a trend in immunotherapy for breast cancer. Breast

cancer patients have greatly benefited from immune checkpoint

inhibitors by targeting PD-1 and PD-L1. A clinical trial revealed

that atezolizumab, targeting PD-L1 protein, combined with nab-

paclitaxel could be used to treat patients with metastatic triple-

negative breast cancer (50). Also, KEYNOTE-012 andKEYNOTE-

086 trials indicated that pembrolizumab was a PD-1 targeted

immune checkpoint blocker for TNBC (51). In our study, it was

shown that the low-risk patients had significantly higher levels of

PD-1, PD-L1, PD-L2,CD80,CD86, andCTLA-4 than thehigh-risk

patients, suggesting this low-risk subpopulation of breast cancer

patients might benefit more from immune checkpoint blockade

therapy. The above data suggested that the established PRG-related

signature was tightly related to immune activation and tolerance.

Clinical outcomes and efficacy are hampered by acquired drug

resistance in cancer diseases. In this study, itwas found that the low-

risk breast cancer patients were more sensitive to doxorubicin,

docetaxel, paclitaxel, as well as lapatinib, whereas the high-risk

populations were more responsive to camptothecin and embelin.

Among the above therapeutic agents, doxorubicin, docetaxel and

paclitaxel are common chemotherapeutic agents for breast cancer
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(52). There was evidence showing that paclitaxel could induce

pyroptosis by activating Caspase-3/GSDME (53). Lapatinib is one

of tyrosine kinase inhibitors targeting epidermal growth factor

receptor (EGFR/ErbB1) as well as HER2/ErbB2 specifically for

treating HER2+ subtypes of breast cancer (54). Moreover,

camptothecin targets the nuclear enzyme topoisomerase I

(TOP1) to treat endocrine-resistant breast cancer (55), and

embelin is capable of inducing apoptosis in MCF-7 breast cancer

cells (56). Individuals with breast cancer responded differently to

these therapeutic agents on the basis of our PRG-based signature,

and suchprediction is aimed todecidewhichpatientswouldbenefit

most fromcertain treatments. Inotherwords,wehope tobecapable

of predicting novel drugs, identifying new therapeutic targets, and

providing individualized treatment to breast cancer patients with

such a model in the future.
5 Conclusion

Taken together, our study identified a 4-gene PRG signature

tightly associated with survival status and immunological

landscape, providing basic guidance for immunotherapy and

individualized treatment in breast cancer.
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