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Objective: We aimed to develop a Radiological-Radiomics (R-R) based model

for predicting the high-grade pattern (HGP) of lung adenocarcinoma and

evaluate its predictive performance.

Methods: The clinical, pathological, and imaging data of 374 patients

pathologically confirmed with lung adenocarcinoma (374 lesions in total) were

retrospectively analyzed. The 374 lesions were assigned to HGP (n = 81) and

non-high-grade pattern (n-HGP, n = 293) groups depending on the presence or

absence of high-grade components in pathological findings. The least absolute

shrinkage and selection operator (LASSO)methodwas utilized to screen features

on the United Imaging artificial intelligence scientific research platform, and

logistic regression models for predicting HGP were constructed, namely,

Radiological model, Radiomics model, and R-R model. Also, receiver operating

curve (ROC) curveswere plotted on the platform, generating corresponding area

under the curve (AUC), sensitivity, specificity, and accuracy. Using the platform,

nomograms for R-R models were also provided, and calibration curves and

decision curveswere drawn to evaluate the performance and clinical utility of the

model. The statistical differences in the performance of the models were

compared by the DeLong test.

Results: The R-R model for HGP prediction achieved an AUC value of 0.923

(95% CI: 0.891-0.948), a sensitivity of 87.0%, a specificity of 83.4%, and an

accuracy of 84.2% in the training set. In the validation set, this model exhibited

an AUC value of 0.920 (95% CI: 0.887-0.945), a sensitivity of 87.5%, a specificity

of 83.3%, and an accuracy of 84.2%. The DeLong test demonstrated optimal
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performance of the R-R model among the three models, and decision curves

validated the clinical utility of the R-R model.

Conclusion: In this study, we developed a fusionmodel using radiomic features

combined with radiological features to predict the high-grade pattern of lung

adenocarcinoma, and this model shows excellent diagnostic performance. The

R-R model can provide certain guidance for clinical diagnosis and surgical

treatment plans, contributing to improving the prognosis of patients.
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Introduction

Lung cancer represents the leading cause of cancer-

associated morbidity and mortality worldwide (1). Non-

small cell lung cancer (NSCLC) constitutes over 80% of

lung cancers, of which lung adenocarcinoma (LUAD) is

known as the most common histological subtype (2).

According to the 2015 World Health Organization

Classification, LUADs are categorized into three prognostic

subsets on the ground of the predominant histological

pattern: low-grade (lepidic-predominantly), intermediate-

grade (acinar- or papillary-predominant), and high-grade

(solid or micropapillary-predominant) (3). However, prior

studies have indicated that the actual prognosis varies largely

even among LUADs presenting the same predominant

pattern (4–6). The latest study has reported that even

among early-stage LUAD patients, patients with a minimal

high-grade pattern (HGP) (micropapillary or solid) have

poorer outcomes (7).

Generally, radical resection has been the optimal treatment

for LUAD (8). However, the presence of micropapillary or solid

component (HGP) is considered an independent predictor of

postoperative local recurrence (9, 10). LUAD patients with an

HGP may require extensive surgical resection and more

aggressive adjuvant chemotherapy (11–13). Although an HGP

correlates with a worse prognosis, it is difficult to identify the

presence of HGP prior to surgery. Owing to the extensive

he terogene i ty o f LUAD, LUAD subtypes may be

underestimated by either preoperative puncture pathology or

intraoperative frozen pathology limited by sampling (14). In

addition, there are rare cases presenting a predominant HGP in

our clinical practice; instead, more cases have a pathology

containing an HGP, which leads to greater difficulty in

pathological examination of the high-grade components.

Therefore, determining the presence of any HGPs in LUAD
02
both preoperatively and intraoperatively is a clinically

meaningful and challenging task.

To predict the presence of a high-grade patterns in lung

adenocarcinoma, Choi’s study (15) showed that the CT values

of the tumors were meaningful and lower HU (Hounsfield)

values were associated with a lower-grade histological pattern

(OR = 6.15, p = 0.005). Additionally, SUVmax of the tumor

was associated with high-grade patterns (OR = 1.14, p = 0.012).

However, our study used the radiomics method for further

accurate prediction of high-grade patterns. Radiomics analysis

is a fast-rising powerful tool in the field of medical image

analysis in recent years. It is a robust and objective method that

quantifies the high-dimensional tumor features undetectable

with the naked eye, as compared to subjective imaging

evaluation (16, 17). It is also a non-invasive, quantitative

method for tumor heterogeneity assessment that can be

applied to quantify intratumoral heterogeneity. Recent

studies have employed radiomics-based methods to predict

high-grade components of LUAD (18–20), whereas, the

present study used a larger sample size and added traditional

radiological features to develop a model for comparison, and

combined with radiomics features, constructed an integrated

model to predict the HGP of LUAD. In this study, we aimed to

develop and evaluate the value of a radiological-radiomics

model for predicting the HGP in LUAD less than or equal to

3 cm.
Materials and methods

Clinical data

The clinical, pathological, and CT data of patients with

LUAD who underwent surgical resection in the department
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of thoracic surgery, Zhongshan Hospital Affiliated to Fudan

University from February 2019 to March 2021 were

retrospectively analyzed. Inclusion criteria: 1) patients did

not receive any chemoradiotherapy or needle biopsy before

computed tomography (CT) examination; 2) patients had

h i gh - r e s o l u t i o n compu t ed t omog r aphy (HRCT)

examination images (slice thickness ≤ 1 mm) within 1

month before surgery. Exclusion criteria: 1) severe

respiratory motion artifacts; 2) the longest diameter of the

lesions > 3 cm (3); minimally invasive adenocarcinoma and

invasive mucinous adenocarcinoma. Ultimately, 374 lesions

from 374 patients (123 males and 251 females) were

enrolled. The patients were aged 25-87 with a mean age of

(56 ± 11) years. When multiple lesions were present in the

patient’s postoperative specimens, only the main lesion (the

one with the largest diameter) was chosen for this

experiment. The patient enrollment flowchart is described

in Figure 1. The clinical and pathological data of patients

contained age, gender, smoking history, tumor location,

tumor stage, presence/absence of lymph node or pleural

metastasis, and presence/absence of tumor spread through

air spaces (STAS), etc. Tumor node metastasis (TNM)

staging was based on the IASLC TNM staging system for

lung cancer, 8th edition (21). The 374 lesions were sub-

grouped into HGP (HGP) and non-HGP (n-HGP) groups in

the presence or absence of HGP in pathological findings.

This study was approved by the Ethics Committee of

Zhongshan Hospital Affiliated to Fudan University.
Frontiers in Oncology 03
Examination methods

The Siemens SOMATOMDefinition AS+128-slice spiral CT

scanner and Philips Brilliance 64-slice spiral CT scanner were

applied for scanning. Scanning parameters of the Siemens CT

scanner were set as follows: tube voltage 120 KV, tube current

250 mA, pitch 1.1, reconstruction slice thickness 1 mm,

reconstruction interval 1 mm. Philips CT scanner parameters:

tube voltage 130 KV, tube current 200 mA, pitch 0.64,

reconstruction slice thickness 1mm, reconstruction interval

1 mm. All patients underwent breath-holding training before

scanning. During the scanning, breath-holding was required

under free-breathing. The scan range was from the apex of the

lung to the base of the lung, covering the axilla and chest wall

on both sides . The bone algorithm was employed

for reconstruction.
Radiological analysis

CT images were independently retrospectively analyzed by

two radiologists with 8 years and 25 years of chest CT

experience, blinded to the pathological results. A consensus

will be reached after a discussion on disagreement. Based on

CT images, the lesions were described in terms of lesion location,

size, density, shape, spiculation, lobulation, vacuole, air

bronchogram, and pleural indentation. The definitions of

specific CT features are outlined in Table 1.
FIGURE 1

Schedule of patient enrolment.
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Radiomics analysis

Lesion segmentation: lung window image sequences of

patients were imported into the uAI artificial intelligence

scientific research platform (uAI Research Portal; United

Imaging Intelligence, Shanghai, China) in DICOM format.

Initially, preprocessing such as anonymization and image

normalization was performed, followed by automatic detection

and segmentation of lung nodule volume of interest (VOI) with

the platform built-in models. This model is a VB-Net deep

learning model based on its own intellectual property rights.

Using an integrated two-level network based on images and

feature pyramid networks (FPN), this model has been trained

and tested on multi-center datasets (its intelligent auxiliary

detection software for lung nodules taking this model as the

core has attained the NMPA Class III certificate). The

segmentation results of pulmonary nodules were output with

the platform built-in deep learning model and jointly confirmed

layer by layer by two radiologists with 8 years and 15 years of

lung cancer imaging diagnosis experience for necessary

modifications (radiologists did not refer to the pathological

results). The VOI was delineated depending on the tumor-

lung interface, and the structures such as blood vessels and

bronchi were excluded as much as possible during the

delineation process.

Radiomics feature extraction: the radiomics features of

tumor tissue within the VOI were calculated using the feature

extraction function of the platform, in which the PyRadiomics

toolkit (https://pyradiomics.readthedocs.io/en/latest/index.

html) was embedded. The images were resampled with the

pixel spacing of the images in the three anatomical directions

as 1.0 mm, to eliminate the interference caused by the spatial

resolution inconsistency attributable to different CT models. The

original CT images were preprocessed with high-pass or low-

pass wavelet filters and Laplacian Gaussian filters with different

l parameters, generating 8 wavelet-based preprocessed images

and 5 Laplacian filters-based preprocessed images. The radiomic
Frontiers in Oncology 04
features of the original CT images and the preprocessed images

were extracted, including first-order features based on CT values

or pixel values of the preprocessed images, morphological

features describing tumor morphology, and gray-level co-

occurrence matrices (GLCM) describing tumor interior and

surface texture, gray-level run-length matrix (GLRLM), gray-

level size zone matrix (GLSZM), and gray-level difference matrix

(GLDM) texture features. Ultimately, 2600 radiomics features

were extracted for each lesion and normalized by Z-score.

Establishment and evaluation of a machine learning model:

After the feature extraction, the least absolute shrinkage and

selection operator (LASSO) method was applied for feature

dimension reduction. Accordingly, the image feature

dimension was reduced to less than 10% of the training data

volume. Then, the machine learning classifier was adopted to

build the models: the Radiological model was built using 7

radiological features, the Radiomics model was developed

using the radiomics features selected by LASSO. Finally, the

radiological features and the radiomics features were combined,

and an R-R model was constructed. Multi-variable logistic

regression method was selected as the classifier of the model,

and the parameters of which were optimized using the grid-

search method. Optimal parameters were reversely selected

according to the area under the receiver operating curve

(ROC) in the validation set. For each model, 5-fold cross-

validation was employed for training and validation. We

recorded the probability that the model could predict the

presence of HGP in the training and validation set data at

each iteration and calculated the mean values of the

probabilities recorded at each iteration when each datum

served as the training set or validation set, which were selected

as the results of the corresponding set. Based on this, multiple

indicators of the model in the training set and validation set were

calculated, encompassing the area under the curve (AUC),

accuracy, sensitivity, and specificity. Lastly, ROC, calibration,

and decision curves were drawn for model evaluation. The

aforesaid feature selection, model construction and evaluation
TABLE 1 CT features for lung adenocarcinoma.

Variable Definition

Density SN(solid nodule): Circular or quasi-circular increased density shadows in the lungs, the lesions are dense enough to cover the blood vessels and bronchial
shadows running in them; SSN(subsolid nodule):All pulmonary nodules with ground-glass density are called SSN. Ground-glass lesions refer to CT with
clear or indistinct borders, but the density of the lesions is not enough to cover the blood vessels and bronchi

Shape Indicated as lobulated, others (round, or oval)

Lobulation The surface of the tumor showed as multiple arc-shaped projections

Spiculation Evaluated in the lung window, and indicated as different degrees of spinous or burr-like protrusions at the tumor margin

Vacuole Single or multiple small punctate hypodense shadows less than 5mm in the tumor

Air
bronchogram

Tube like or branched air structure within the tumor

Pleural
indentation

Retraction of the pleura towards the tumor
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were all carried out on the United Imaging scientific research

platform. The flowchart of radiomics analysis is presented

in Figure 2.
Statistical analysis

The data were processed and statistically analyzed with SPSS

23.0 software (IBM, Armonk, NY, USA) and the United Imaging

artificial intelligence scientific research platform (Shanghai

United Imaging Healthcare Co., Ltd., Shanghai, China).

Enumeration data between the two groups were compared by

c2 test or Fisher’s exact test. Logistic regression models (Scikit-

learn software package) were constructed on the United Imaging

artificial intelligence scientific research platform, designated as

radiological model, radiomics model, and R-R model. ROC

curves were plotted on this platform (Matplotlib software

package), and the area under the curve (AUC), sensitivity,

specificity, and accuracy, were acquired. A nomogram for the

R-R model was also generated with the assistance of this
Frontiers in Oncology 05
platform. The model performance and its clinical utility were

evaluated by calibration curves together with decision curves.

DeLong test was performed on the ROC curves of the three

models with the utility of MedCalc software (Version 19.0.2) to

compare the differences in performance among the models, with

a p-value less than 0.05 regarded as statistically significant.
Results

Clinical and pathological data

Clinical and pathological characteristics of the enrolled

subjects are outlined in Table 2. Significant differences were

observed in terms of age, gender, smoking history, TNM stage,

Ki-67 expression, lymph node or pleural metastasis, and STAS

between the HGP group and the n-HGP group (p = 0.020,

p = 0.025, p = 0.027, p < 0.001, p < 0.001, p < 0.001, p < 0.001),

yet no remarkable difference could be detected in tumor location

and EGFR expression (p = 0.360, p = 0.586).
A B DC

FIGURE 2

Flowchart of radiomics analysis. (A) Platform built-in lung nodule detection and segmentation model for automatic annotation of lung nodule
VOI. (B) Features extracted from VOI, including tumor shape, intensity, and texture features. (C) Analysis of radiological, radiomics, and
radiological-radiomics features. (D) Model establishment and evaluation.
frontiersin.org

https://doi.org/10.3389/fonc.2022.964322
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Dong et al. 10.3389/fonc.2022.964322
Construction and verification of a
radiological feature-based
prediction model

Next, 7 radiological features were imported into the platform

to generate LASSOmaps and weighted graphs (Figures 3A, B). A

Radiological model was generated with the multi-variable

logistic regression method to predict HGP basing on

radiological features. This model in the training set showed an

AUC value of 0.867 (95%CI: 0.852-0.886), a sensitivity of 77.8%,

a specificity of 76.1%, as well as an accuracy of 76.5%; in the

validation set, its AUC value was 0.852 (95% CI: 0.811-0.886)

and its sensitivity and specificity were 73.8% and 75.1%,

respectively, with the accuracy of 74.9%. (Figures 4A, B).
Frontiers in Oncology 06
Construction and verification of a
radiomics-based prediction model

Additionally, 9 omics features were finally selected by the

LASSO method (Figure 3C), with the weighted graphs

depicted in Figure 3D. The Radiomics model was

generated with the multi-variable logistic regression

method to predict HGP basing on radiomics labels. In the

training set, this model had an AUC value of 0.911 (95%CI:

0.897-0.926), together with 85.2% sensitivity, 83.1%

specificity, and 83.6% accuracy; additionally, the above-

mentioned parameters in the validation set were 0.908

(95% CI: 0.872 - 0.934), 85.1%, 82.2%, and 82.8%,

respectively (Figures 4C, D).
TABLE 2 Clinical and pathological characteristics.

Variable Total (n = 37) HGP (n = 81) n- HGP (n = 293) p

Age(y) 0.020#

≤50 103 14 89

>50 271 67 204

Sex 0.025#

Male 123 35 88

Female 251 46 205

Smoking history 0.027#

No 345 70 275

Yes 29 11 18

Location 0.360#

LUL 91 24 67

LLL 55 15 40

RUL 126 23 103

RML 29 7 22

RLL 73 12 61

TNM stage <0.001*

I-II 370 77 293

III-IV 4 4 0

EGFR+ 0.586#

No 129 30 99

Yes 245 51 194

Ki-67 <0.001#

<20% 327 49 278

≥20% 47 32 15

Lymph node or pleural metastases <0.001*

No 370 77 293

Yes 4 4 0

STAS

No 370 77 293 <0.001*

Yes 4 4 0
frontie
LUL, left upper lobe; LLL, left lower lobe; RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; STAS, tumor spread through air spaces; # Chi-square test; * Fisher’s exact
probability test.
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Construction and verification of an R-R
prediction model

Finally, 10 features were selected by the LASSO method

(Figure 3E), with the weighted graphs depicted in Figure 3F. An

R-R model was generated with the multi-variable logistic

regression method to predict HGP basing on radiomics

features combined with radiological features. In the training

set, this model presented an AUC value of 0.923 (95%CI: 0.909 -

0.936), a sensitivity of 87.0%, a specificity of 83.4%, and accuracy

of 84.2%; meanwhile, the aforementioned values in the

validation set were 0.920 (95% CI: 0.885-0.944), 87.5%, 83.3%,

and 84.2%, respectively (Figures 4E, F).
Assessment and clinical application of
the R-R prediction model

The prediction performance comparison of the three models

is shown in Table 3. The results of the Delong test (Table 4)

revealed that the R-R model was superior to the Radiological

model and the Radiomics model in both the training and

validation sets. Furthermore, the Radiomics model was

superior to the Radiological model. Then, nomograms were

developed based on the R-R model (Figure 5). The calibration

curves for the probability of HGP illustrated the good agreement

between nomogram prediction and actual observation

(Figures 6A, B), indicative of a good calibration performance.
Frontiers in Oncology 07
The decision curves demonstrated the favorable clinical utility of

the R-R model (Figures 6C, D).
Discussion

In this study, we constructed an R-R model on the strength

of radiological features integrated with radiomics features to

predict the HGP of LUAD, which demonstrated an excellent

predictive performance superior to previously reported omics-

only models (18, 19). The AUC value of our R-R model in the

training set was 0.923, corresponding to a sensitivity of 87.0%, a

specificity of 83.4%, and an accuracy of 84.2%. While in the

validation set, the model also presented relatively good

sensitivity (87.5%) and specificity (83.3%) with an AUC value

of 0.920, demonstrating an accuracy of 84.2%. Furthermore, the

Decision Curve Analysis (DCA) substantiated the clinical utility

of the R-R model. Therefore, this model contributes to better

clinical assessment of patient prognosis and the development of

accurate clinical decisions.

There have been many reports on the prediction of LUAD

aggressiveness based on radiomics, showing a good accuracy

(22–24), yet fewer studies focus on the radiomics-based

prediction of advanced histological patterns (micropapillary or

solid) for LUAD. Ding H et al. have developed a model to predict

the micropapillary structure of LUAD (25); there exists,

however, a limitation that only micropapillary patterns are

predicted, rather than solid patterns. Wang et al. have
A B

D

E F

C

FIGURE 3

LASSO maps and feature weighted graphs for the three models. (A) LASSO map of Radiological model. (B) Weighted graph of Radiological model
features. (C) LASSO map of Radiomics model. (D) Weighted graph of Radiomics model features. (E) LASSO map of R-R model. (F) Weighted graph
of R-R model features.
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constructed a radiomics-based model to prognosticate the

existence of HGP in early-stage LUAD patients with ground-

glass opacity (GGO) (18). However, their study only focused on

the lesions with GGO. Our study included GGO and solid

nodules, which is more aligned with the actual clinical
Frontiers in Oncology 08
conditions. Yeonu Choi and He et al. have developed a

radiomics model to predict the micropapillary and solid

components of LUAD but only radiomics signatures are

contained in this model (19, 20). This study is the first report,

as far as we know, that HGP can be predicted by a model basing
A B

D

E F

C

FIGURE 4

ROC curve analysis results of the three models. (A) ROC curve of Radiological model in training set (average AUC = 0.889). (B) ROC curve of
Radiological mode in validation set (average AUC = 0.758). (C) ROC curve of Radiomics mode in training set (average AUC = 0.919). (D) ROC curve
of the Radiomics model in the validation set (average AUC = 0.884). (E) ROC curve of the R-R model in the training set (average AUC = 0.932).
(F) ROC curve of the R-R model in the validation set (average AUC = 0.88).
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on radiological features integrated with radiomics features in a

relatively large dataset. In this study, we constructed an R-R

model, which presented higher AUC values than the

Radiological and Radiomics models in either the training set

or the validation set.

The R-R model involved four radiological features, density,

lobulation, vacuolar sign, and air bronchogram. A study has

shown that the presence of solid nodules represents an

independent prognostic factor (OR = 1.74; 95% CI = 1.10-

2.79; p = 0.019) in early-stage LUAD patients (26). The

formation of the lobulation sign may be caused by uneven cell

growth surrounding the tumor or uneven cell differentiation at

the tumor margin. Early-stage invasive LUADs without lepidic

growth are more prone to lobulation signs (27). The pathological
Frontiers in Oncology 09
basis of the vacuolar sign is unoccluded small bronchi or alveoli,

which may be caused by tumor cells with lepidic growth, and

some alveoli and bronchioles are not filled by tumor tissues. An

existing study has exhibited a statistical difference in the vacuolar

sign among the lepidic, acinar, and papillary adenocarcinomas

(p = 0.032) (28). In the prediction model of this study, air

bronchus sign was negatively correlated with the presence of

HGP. Another study has demonstrated a better prognosis

of LUAD with air bronchus signs (29). The air bronchus sign

of early-stage LUAD is related to the shrinkage and traction

owing to intratumoral fibrosis, and the progression of the tumor

will compress or infiltrate the bronchus, resulting in the

disappearance of the intratumoral bronchi (30). Hence, the

negative correlation between HGP and bronchogram may be
TABLE 3 Predictive performance of Radiological, Radiomics and R-R model.

AUC Sensitivity Specificity Accuracy

Development

Radiological model 0.867 77.8% 76.1% 76.5%

Radiomics model 0.911 85.3% 83.1% 83.6%

R-R model 0.923 87.0% 83.4% 84.2%

Validation

Radiological model 0.852 73.8% 75.1% 74.9%

Radiomics model 0.908 85.1% 82.2% 82.8%

R-R model 0.920 87.5% 83.3% 84.2%
fro
TABLE 4 Delong test results of Radiological model, Radiomics model and R-R model.

Z SE 95%CI p

Development

R-R model VS Radiological model 6.029 0.00891 0.0362 - 0.0711 P < 0.0001

R-R model VS Radiomics model 4.509 0.00252 0.00641 - 0.0163 P < 0.0001

Radiomics model VS Radiological model 4.075 0.0104 0.0220 - 0.0627 P < 0.0001

Validation

R-R model VS Radiological model 3.415 0.0194 0.0283 - 0.104 P = 0.0006

R-R model VS Radiomics model 2.162 0.0054 0.00109 - 0.0223 P = 0.0307

Radiomics model VS Radiological model 2.416 0.0226 0.0103 - 0.0991 P = 0.0157
n

A B D EC

FIGURE 5

Nomograms of the R-R model. (A-E) Fold 1-5 nomograms for the R-R model in the training set. To evaluate the probability of HGP, on each
feature axis, a line perpendicular to the point axis was drawn to generate a corresponding point for each feature; the sum of all the points of all
features was obtained and then marked on the total score axis, generating a line perpendicular to the risk axis.
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attributable to the advanced tumors in the HGP group relative to

tumors in the n-HGP group, offering an explanation for all 4

stage III-IV adenocarcinomas in the enrolled cases in the HGP

group. In light of this finding, we speculated that the tumors

gradually developed an HGP during the growth process, which

requires verification in more pathological studies.

The three radiological features that were not selected in the

R-R model were shape, spiculation and pleural indentation.

The formation of the irregular shape of the lesion is related to

the inconsistent growth rate of the cells around the tumor, which

is also related to the pathological basis of the formation of the

lesion lobulation, so we think that the shape of lesions in the R-R

model was excluded as a confounding factor in the multivariate

logistic regression. The pathological basis of the formation of the

spiculation is the proliferation of tumor cells in all directions

of the lung parenchyma or the proliferation of the surrounding

pulmonary fibrous connective tissue caused by the tumor.

The pathological basis of the pleural depression sign is

the contraction and traction of the fibrous scar in the tumor.

The traction force of the tumor is caused by the reactive fibrosis

and scar formation in the tumor. The contraction force is

transmitted to the free visceral pleura through the fibrous
Frontiers in Oncology 10
scaffold structure of the lung. The pleural indentation is

related to the location of the lesions. Generally, lesions close to

the pleura are more likely to form pleural indentations.

Therefore, both the spiculation and the pleural indentation are

closely related to the contractile force of fibroblasts (CAF)

promoted by tumor cells. Our results also reflect that the

growth pattern of the tumor has nothing to do with the

contractility of the lesions.

The R-R model contained 6 radiomics features, comprising

autocorrelation, gray-level-nonuniformity (GLN), short-run-

high-gray-level-emphasis (SRHGLE), inverse-variance (IV),

small-area-high-gray-level-emphasis (SAHGLE), and zone-

percentage (ZP). Autocorrelation is a measure of the

magnitude of the fineness and coarseness of texture. GLN

measures the variability of gray-level intensity values in the

image. SRHGLE measures the joint distribution of shorter run

lengths with higher gray-level values. IV reflects the size of the

local change of the image texture. SAHGLE measures the

proportion in the image of the joint distribution of smaller

size zones with higher gray-level values. ZP measures the

coarseness of the texture by taking the ratio of number of

zones and number of voxels in the ROI. These radiomics
A B

DC

FIGURE 6

Calibration and decision curves of the R-R model. (A) The calibration curve of the R-R model in the training set. (B) The calibration curve of the
R-R model in the validation set. The fitness of the predicted probabilities of the R-R model to the actual results of the HGP was assessed. The x-
axis represents the probability of HGP calculated using the R-R model, while the y-axis represents the actual probability of HGP. The diagonal
line represents ideal estimates of the ideal model. (C) The decision curve of the R-R model in the training set. (D) The decision curve of the R-R
model in the validation set. The x-axis represents the threshold probability and the y-axis represents net income.
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features are all linked to texture heterogeneity, which may

correspond to tumor heterogeneity. The lesions in the HGP

group presented higher tumor heterogeneity.

These radiomics features are also enrolled in the omics

models in many studies. Giovanella et al. have illustrated

autocorrelation to be one of two independent predictors of

malignant thyroid nodules in a radiomics model basing on

FDG PET/CT images (31). Another study has pointed out that

GLN is one of the foremost features in omics models for the

prediction of high-grade gastric neuroendocrine tumors (32).

Zhang et al. have indicated the relevance of SRHGLE to

meningioma aggressiveness (33). The article of Wormald et al.

has expounded that a radiomics model composed of features

such as IV can predict postoperative recurrence of small-volume

cervical cancer with an AUC value of 0.808 (34). Chaddad et al.

have also stated that inverse-variance is correlated with the

survival time of glioblastoma patients (35). In another study,

Li has reported SAHGLE as an independent feature to

differentiate between primary ovarian granulosa cell tumor

and ovarian thecoma-fibrothecoma (OR = 1.034) (36). Weng

et al. have elucidated that ZP is one of 4 radiomics features,

which can differentiate the aggressiveness of solitary pulmonary

nodules that are characterized by part-solid nodules (37).

Our study also has some unexpected clinical and

pathological findings, such as the finding that male patients

with a history of smoking are more likely to develop HGP, which

is in keeping with the latest findings (38). The higher risk of male

patients developing an HGP may be relevant to the higher

prevalence of smoking in male patients. In this study, 4

patients (presenting TNM stage III-IV tumors) in the HGP

group developed lymph node or pleural metastasis. It has been

demonstrated that the adenocarcinoma subtype affects lymph

node metastasis (LNM) in small-sized lung cancers and that

patients with solid histological subtypes less than 1 cm are more

likely to develop LNM (39). Additionally, there were 4 cases of

STAS in the HGP group in this study, which indicated that

LUADs with HGP were more prone to STAS. A recent study has

proposed STAS to be a predictor of occult LNM in clinical stage

IA LUAD, which is conducive to preoperative selection of the

surgical types and of great significance to the improvement of

patient prognosis and determination of the surgical methods

(40). This study exhibited a higher level of Ki-67 in the HGP

group versus the n-HGP group (p < 0.001). Ki-67 antigen, a

nuclear-associated antigen pertaining to cell proliferation, can

reflect the proliferative ability of cells. A higher Ki-67 level

correlates with the stronger proliferative potential of tumor

cells and further unfavorable patient prognosis (41). Male

patients with early-stage LUAD that are manifested as solid

nodules show poor prognoses, higher KI-67 expression, and

poor differentiation (42), which is concordant with the results of

this study. No significant differences were detectable in tumor

location and EGFR expression between the two groups in

this study.
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Several limitations remain in this study. First, there may be

inevitable selection bias since this study is a retrospective study.

Also, the uneven samples may have a certain impact on the

modeling results. Additionally, external validation is not

performed for our model. In the future, we will try to

construct models with an expanded sample size in a multi-

center setting and conduct external validation to increase the

generalization ability and robustness of the model.

Taken together, preoperative HGP prediction for LUAD will

benefit clinical assessment of patient prognosis and accurate

clinical decision-making. The R-R model on the ground of CT

radiological features combined with radiomics features exerts

excellent diagnostic performance in the prediction of HGP in

LUAD less than 3cm in diameter. This potentially offers a

reference for clinical diagnosis and surgical therapeutic

regimens and aids in improving the prognosis of patients.
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