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During the past decade, immunotherapy has dramatically improved the

outcomes of patients with non-small cell lung cancer (NSCLC). The

development of specific antibodies against the programmed death (PD1)

receptor and its l igand PD-L1 (programmed death ligand-1) has

demonstrated substantial efficacy in advanced NSCLC either in the first or in

the second line. However, the success of immune checkpoint inhibitors (ICIs)

as monotherapy did not reach all patients and long-term responders still

represent a small subset of cases. Under these circumstances, different

strategies have been and are being tested to optimize clinical outcomes.

Here, we reviewed the current evidence and the more promising

perspectives of ICI combination approaches, such as the addition of

chemotherapy, antiangiogenic agents, other co-inhibitory or co-stimulatory

checkpoints, and targeted therapies.
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Introduction

During the past decade, the advent of immunotherapy has dramatically changed the

outcomes of patients with non-small cell lung cancer (NSCLC) (1). The growing

understanding of the environment in which tumor and immune cells interact led to

the discovery of immune checkpoint inhibitors (ICIs) that block inhibitory pathways that

physiologically control the immune response driving to restore and sustain the immune

system against cancer cells (2).
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Under this circumstance, the development of specific

antibodies against the programmed death (PD1) receptor and

its ligand PD-L1 (programmed death ligand-1) has led to a change

of paradigm in the therapeutic strategies of advanced NSCLC

either in the first- or in the second-line setting. Importantly, these

drugs have unprecedented prolonged survival for a substantial

proportion of these patients (3). However, not all NSCLCs

respond appropriately to ICI as monotherapy, and long-term

responders still represent a limited group that is challenging to

find and predict. The objective response rate when using first-line

single-agent ICI treatment is below 45% in highly biomarker-

selected NSCLC patients such as PD-L1 expression (4).

Furthermore, 40% to 60% of patients experienced disease

progression within the first 6 months of treatment. Of note, this

situation differs substantially from those reported for the efficacy

of targeted therapy in oncogene-addicted NSCLC (5).

In this context, we are now in a race to find different strategies

to optimize the efficacy of immunotherapy in lung cancer. The

recent understanding of de novo or adaptive resistance, as well as

the mechanisms involved in the induction of an effective

antitumor immune response, provides the rationale for several

established and novel ICI combination approaches such as the

addition of chemotherapy, antiangiogenic agents, other

immunotherapy, or targeted therapies. Here, we reviewed the

current evidence and the more promising perspectives in this field.
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First-line combinations
with chemotherapy

It has been demonstrated that modulation of the immune

response through PD-1 inhibition may be enhanced by the

synergistic immunogenic effects of cytotoxic chemotherapy by

different mechanisms, including increasing the potential for

antigen cross-presentation by dendritic cells after the destruction

of tumor cells, induction of proinflammatory cytokines, inhibition

of myeloid-derived suppressor cells, and induction of PD-L1

expression on tumor cells (6–10). Following this rationale, the

combination of chemotherapy plus ICI has been tested in several

NSCLC phase III clinical trials in the first-line setting. Notably, this

approach has shown substantial efficacy when compared with

platinum-based chemotherapy in unselected PD-L1 expression for

both histology tumors among phase III clinical trials in the first-

line scenario (Figure 1) (11–22). The addition of chemotherapy to

ICI reported global overall response rates (ORRs) between 45%

and 75%. Across all the trials, the immune-chemotherapy strategy

significantly prolonged the median progression-free survival (PFS)

compared with chemotherapy, showing safety and a generally

manageable toxicity profile. However, overall survival (OS)

improvement was not consistent in all the studies. Impower-131

and Impower-132 trials did not demonstrate a statistically

significant difference in the intention-to-treat OS analysis,
FIGURE 1

Phase III trials assessing an immune checkpoint inhibitor + chemotherapy strategies in the first-line setting in nonsquamous and squamous
non-small cell lung cancer with outcomes. HR, hazard ratio; OS, overall survival; PFS, progression-free survival; ORR, overall response rate; NR,
not reached (overall survival). * Significant improvement.
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potentially explained by subsequent second-line treatments,

percentage of PD-L1 tumor expression, patient population

selection, overperformance of comparators arms, and possible

differences across PD-1 and PD-L1 treatments.
First-line immunotherapy
combinations

PD-1 and cytotoxic T-lymphocyte-associated protein 4

(CTLA-4) are complementary coinhibitory receptors that

modulate T-cell responses (23). Thus, using antibodies to

blockade both receptors simultaneously has been fruitful in

many tumor types, including melanoma, renal cell carcinoma,

malignant pleural mesothelioma, esophageal squamous cell

carcinoma, microsatellite instability-high colorectal cancer,

hepatocellular carcinoma, and NSCLC (24–30).

The promising results in phase I and II trials using anti-PD-1

plus anti-CTL-4 antibodies led to the evaluation of this dual strategy

alone or in combination with chemotherapy in the advanced

NSCLC first-line scenario (Figure 2). Phase III Checkmate 227

investigated the efficacy of nivolumab alone or in combination with

chemotherapy or ipilimumab as first-line therapy in stage IV or

recurrent patients with NSCLC. The randomization was performed

according to PD-L1-positive or -negative. In both groups,

nivolumab plus ipilimumab significantly improved OS compared

with chemotherapy alone. Of note, nivolumab plus ipilimumab
Frontiers in Oncology 03
showed numerically better efficacy compared with nivolumab

monotherapy in patients with tumors with PD-L1 expression ≥

1% and PD-L1 ≥ 50% (30). In this specific exploratory analysis,

tumors with PD-L1 ≥ 50% presented 4-year OS rates of 37%, 26%,

and 20% with nivolumab plus ipilimumab, nivolumab alone, and

chemotherapy alone, respectively.

Notably, in the phase III MYSTIC trial, the combination of

durvalumab (anti-PD-L1) plus tremelimumab (anti-CTLA-4)

could not improve OS against chemotherapy in PD-L1 ≥ 25%

first-line advanced NSCLC (31).

To mitigate the inferior outcomes during the first months

when using PD-1 plus CTLA-4 blockade, two trials evaluated the

addition of chemotherapy to this regimen. The phase III

CheckMate-9LA tested nivolumab plus ipilimumab plus two

cycles of chemotherapy demonstrating a significant PFS and OS

improvement versus chemotherapy alone in treatment naïve,

stage IV, or recurrent NSCLC (Figure 2) (32). Similarly, the

POSEIDON trial also reported superiority in terms of OS and

PFS with first-line durvalumab plus tremelimumab plus

chemotherapy versus chemotherapy alone in a recent press

release announced (33).
Combinations with antiangiogenics

Angiogenesis and immunosuppression are both physiological

mechanisms involved in nonpathological tissue repair that can be
FIGURE 2

Phase III trials assessing immune checkpoint inhibitor combination and antiangiogenic drug combination strategies in the first-line setting in
non-small cell lung cancer with outcomes. HR, hazard ratio; OS, overall survival; PFS, progression-free survival; ORR, overall response rate.
* Significant improvement. a Significantly improvement of PFS in patients with a high tumor mutational burden (≥10 mutations per megabase).
b Nivolumab + ipilimumab vs. chemotherapy. c Durvalumab vs. chemotherapy. d Atezolizumab + carboplatin + paclitaxel vs. bevacizumab +
carboplatin + paclitaxel. e Atezolizumab + bevacizumab + carboplatin + paclitaxel vs. bevacizumab + carboplatin + paclitaxel.
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taken advantage of by cancer development and progression

(34). Several pro-angiogenic molecules, such as the vascular

endothelial growth factor (VEGF), have been linked to a range

of immunosuppressive effects at successive steps in the

cancer immunity cycle, such as antigen presentation, T-cell

priming, T-cell trafficking, and T-cell tumor infiltration (35).

Although blood vessel formation within solid tumors is

necessary for cancer survival, tumor abnormal vasculature is

characterized by dilated and fragile vessels, which result in

leaking, hypoxia, acidosis, and high interstitial pressure. The

normalization of this vasculature by specific therapies, such as

chemotherapy, irradiation, or especially anti-VEGF antibody,

leads to increased T-cell infiltration and therefore enhances

tumor immunogenicity (36).

Otherwise, multi-kinase inhibitors such as lenvatinib,

cabozantinib, and axitinib, with a preferential antiangiogenic

activity, have reported efficacy in combination with anti-PD-1/

L1 ICI in some tumor models including renal cell carcinoma and

endometrial cancer (37–41). Additionally, bevacizumab plus

atezolizumab resulted in positive outcomes in systemic

treatment-naive and unresectable hepatocellular carcinoma

(42). Although all this evidence supports the combination of

ICI and antiangiogenic agents as a successful strategy for some

tumor models, previous limited phase I and II trials using this

approach reported modest activity in NSCLC (43, 44).

In NSCLC, some trials such as the phase III LEAP-006

evaluate the combination of chemotherapy plus pembrolizumab

and lenvatinib in first-line nonsquamous tumors. Preliminary

results of the open-label safety run-in (part 1) showed a

promising ORR of 69.2% among 13 evaluated patients (45).

Additionally, the phase II WJOG @Be study reported

encouraging results when testing atezolizumab with

bevacizumab for advanced treatment-naive nonsquamous

NSCLC with PD-L1 expression ≥50%. In this trial, ORR was

64.1% and median PFS was 15.9 months (46).

Moreover, the phase II Lung-MAP S1800A study testing

ramucirumab plus pembrolizumab versus standard of care

chemotherapy ± ramucirumab for advanced NSCLC

previously treated with immunotherapy demonstrated a

significant OS improvement with the combination, whereas no

differences were observed in PFS and ORR (22% vs. 28% in

combination and standard of care, respectively) (47). Similarly,

results from the phase Ib COSMIC-021 were modest when

comparing cabozantinib plus atezolizumab (cohort 7) or

cabozantinib alone (cohort 20) in patients with advanced

NSCLC previously treated with ICIs. In this study, ORR and

median PFS were respectively 19% and 4.5 months with the

combination, versus 6% and 3.4 months with cabozantinib

alone (48).

To date, the most promising was the combination of ICI with

antiangiogenic agents and doublet chemotherapy (Figure 2). The

phase III Impower-150 compared atezolizumab–bevacizumab

carboplatin–paclitaxel (ABCP) or atezolizumab–carboplatin–
Frontiers in Oncology 04
paclitaxel (ACP) versus bevacizumab–carboplatin–paclitaxel

(BCP) in nonsquamous metastatic NSCLC. In the intention-to-

treat populations, ABCP showed superior PFS and OS compared

to BCP (HR 0.57 [0.48–0.67]) and OS (19.5 months vs. 14.7

months; HR 0.80 [0.67–0.95]) (49). However, no differences were

observed between ACP and BCP arms. Interestingly, an

exploratory analysis showed an OS improvement with ABCP

versus BCP in special subgroups with low benefit from ICI

monotherapies, such as sensitizing EGFR mutations (HR 0.60

[0.31–1.14]), and patients with baseline liver metastases (HR 0.52

[0.33–0.82]) (50).
Newly emerging co-inhibitory and
co-stimulatory checkpoints

The positive clinical impact when using the combination of

anti-CTLA-4 and anti-PD-L1 has driven the investigation of other

promissory ICI combinations that may increase efficacy.

Importantly, resistance to immunotherapy is associated

with loss of immunogenic neoantigens, an increase of

immunosuppressive cells, and upregulation of alternate immune

checkpoint receptors (51). As a consequence, this provides a

potential opportunity for novel emerging co-inhibitory and co-

stimulatory immune checkpoints.
TIGIT

T-cell immunoreceptor with immunoglobulin and ITIM

domain (TIGIT) is an encouraging new target for cancer

immunotherapy. TIGIT is upregulated by immune cells,

including activated T cells, natural killer cells, and regulatory T

cells. TIGIT binds to two ligands (CD155 and CD112) that are

expressed by tumor cells and antigen-presenting cells in the tumor

microenvironment (52). Furthermore, TIGIT is coexpressed with

PD-1 on exhausted T cells supporting a strong rationale for the

dual blockade in restoring T-cell immunity (53). This double

inhibition synergizes the proliferation and function of antitumor

CD8 T cells, resulting in protective memory T cells and complete

tumor rejection (53–55).

Several anti-TIGIT candidate drugs are in development in

clinical trials, but tiragolumab is the most advanced. The phase II

CITYSCAPE study evaluated tiragolumab plus atezolizumab

versus placebo plus atezolizumab as first-line treatment in

patients with PD-L1-positive EGFR/ALK wild-type locally

advanced or metastatic NSCLC. A higher efficacy was shown

with the combination compared with atezolizumab

monotherapy (ORR 37% versus 21%, and PFS HR 0.58 [0.39

to 0.88]) (56). A particular benefit was observed in those tumors

with PD-L1 ≥ 50% (ORR 66% for combination versus 24% for

atezolizumab alone). These findings supported the ongoing

phase III SKYSCRAPER-01 with a similar drug arms design,
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for patients with PD-L1-high locally advanced or metastatic

NSCLC. Unfortunately, a recent press release revealed that this

trial did not meet the co-primary PFS end point (57).

In addition, a phase I study testing vibostolimab (other anti-

TIGIT) showed an ORR of 26% when combined with

pembrolizumab in anti-PD-1/PD-L1-naive patients with

NSCLC, but minimal efficacy in the anti-PD-1/PD-L1

refractory cohort (ORR 3%) (58).

These results highlight that single anti-TIGIT agents seem not

to be an effective strategy, whereas the coadministration with an

anti-PD-1/PD-L1 or especially with chemotherapy may be useful

and needs to be tested in ongoing clinical trials (NCT04619797,

NCT04513925, NCT0495881, NCT04738487, NCT04725188,

NCT05226598, NCT05298423, and NCT04165070).
LAG-3

The transmembrane protein Lymphocyte-activation gene 3

(LAG3, CD223) is an immune inhibitory checkpoint and is

expressed on the surface of lymphocytes, such as CD4+ T cells,

CD8+ T cells, natural killer (NK) cells, NK T (NKT) cells, and

regulatory T (Treg) cells, which appear when T cells are activated

(59–62). The intracellular signaling pathways of LAG3 play a

role in the regulation of immune cell function as the

coexpression of LAG3 with other inhibitory molecules,

including PD-1, TIGIT, TIM-3, 2B4, and CD160, inhibits the

tumor immune microenvironment by accelerating T-cell

exhaustion and blocking T-cell proliferation (63). The high

expression of LAG3 has been associated with unfavorable

clinical outcomes in various tumor types including NSCLC

(64–66). Furthermore, ICIs can induce resistance through

the activation of additional immune checkpoints such as

LAG-3 (67).

Since LAG-3 and PD-1 are complementary inhibitory

immune checkpoints, dual LAG-3/PD-1 blockade provided a

consistent rationale for predicting clinical benefits. In this sense,

the combination of the LAG-3-blocking antibody relatlimab and

nivolumab has recently revealed a greater benefit in metastatic or

unresectable melanoma in the phase II to III RELATIVITY-047

trial (68).

In lung cancer, the combination of eftilagimod alpha, a

soluble LAG-3 protein that mediates antigen-presenting cell

and CD8 T-cell activation, with pembrolizumab was tested in

PD-L1 unselected metastatic NSCLC in the first-line setting

(phase II TACTI-002 trial). Among the 36 patients included,

response rates by different PD-L1 subgroups were 27% for

patients with tumor proportion score (TPS) <1%, 39% for TPS

≥1%, and 54% for ≥50% TPS. Median PFS was 8.2 months while

the median OS was not yet reached (69).

Following the favorable evidence in melanoma, current

ongoing clinical trials are investigating safety and efficacy of

anti-LAG3 drugs in NSCLC (NCT04623775, NCT04205552,
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NCT04140500, NCT03219268, NCT03365791, NCAGN02385,

NCT03849469, NCT02750514, NCT02465060, NCT03780725,

NCT03516981, NCT02460224, NCT03250832, NCT01968109,

NCT03005782, NCT02966548, and NCT03459222).
VISTA

V-domain Ig suppressor of T-cell activation (VISTA) is a

protein capable of acting as both a ligand and a receptor. VISTA

suppresses T-cell proliferation and reduces cytokine production,

including IL-10, TNF-a, and IFN-g (70). Therefore, VISTA

blockade can potentially enhance antitumor immune

responses. In a phase II pan tumor trial, an oral dual blocker

anti-VISTA and PD-L1 agent (CA-170) showed a clinical benefit

of 75% and a median PFS of 19.5 weeks among eight previously

treated nonsquamous NSCLC patients (71). Of note, several

VISTA-targeting inhibitors are being tested in phase I and II

trials in patients with metastatic or unresectable solid tumor

malignancy including NSCLC (NCT05082610, NCT02671955,

and NCT02812875).
TIM-3

TIM-3 is another inhibitory immune checkpoint molecule

similar to CTLA-4 and PD-1. Interaction of TIM-3 with its

ligands has been shown to induce T-cell inhibition (72, 73).

Interestingly, TIM-3 overexpression has been associated as a

negative prognostic marker in NSCLC patients (74). Since

the discovery of the negative impact on the immune system

by upregulated TIM-3 and PD-L1 coexpression in melanoma, a

combination blockade strategy was proposed to restore the T-cell

exhaustion (75). The only current clinical data available are a

preliminary analysis from the phase I AMBER trial, which

included 39 patients with NSCLC who had progressed

following initial anti-PD-1 treatment and were tested to receive

the anti-TIM-3 antibody cobolimab alone, and in combination

with the anti-PD-1 dostarlimab. Of the 20 patients who received

the higher dose of cobolimab and were evaluable for response, 3

(15%) had confirmed partial responses and 8 (40%) had stable

disease. Notably, all objective responses were among patients with

PD-L1 TPS ≥1 (76). Other investigational agents targeting TIM-3

are presently being evaluated in ongoing phase I and II clinical

trials enrolling NSCLC patients (NCT03708328, NCT04931654,

NCT03652077, NCT03307785, NCT02608268, NCT03099109,

NCT03744468, and NCT02817633).
Co-stimulation

Co-stimulatory immune molecules promote T-cell

activation and antitumor immunity. Agonist antibodies against
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co-stimulatory molecules such as 4-1BB (CD137), OX40

(CD134), and ICOS (CD278) are being investigated in

combination with anti-PD-1 agents. However, to date,

prohibitive toxicity profiles and modest responses were

observed in phase I multi-tumor trials including advanced

NSCLC patients (77–82).
Oncolytic viruses

Oncolytic virus therapy is a novel strategy that promotes

immune activation via targeted immunogenic cell death. The

most developed oncolytic virus T-VEC demonstrated interesting

efficacy by injecting intratumorally in patients with melanoma in

a phase III study, which led to FDA approval in 2015 (83).

However, limited studies evaluated this strategy in lung cancer.

Phase Ib KEYNOTE-200 investigated the intravenously

delivered oncolytic virus Coxsackievirus A21 (CVA21,

CAVATAK) in combination with pembrolizumab in advanced

NSCLC and bladder cancer, demonstrating encouraging overall

responses of 23% and 33% in 31 ICI-naïve and 21 EGFR/ALK

mutation-negative NSCLC patients, respectively (84).
Targeted therapy

Primarily, the presence of specific oncogene-addicted driver

mutations and co-mutations, such as STK11 and KEAP1, has

been previously linked to a negative impact on ICI efficacy in

NSCLC (85–87).

Preclinical data demonstrated that KRAS-G12C inhibition

drives antitumor immunity by enhancing the tumor

microenvironment with CD8 T cells, macrophages, and CD103

cross-presenting dendritic cells (88). Consequently, the recent

development of direct KRAS-G12C inhibitors has gained

interest in the utility of combining KRAS inhibition with

immunotherapy, especially for PD-1 refractory KRAS-STK11

and KRAS-KEAP1 co-muta t ed advanced NSCLC .

As a consequence, multiple ongoing clinical trials are

evaluating KRAS-G12C inhibitors in combination with ICI

(NCT03600883, NCT04613596, NCT04449874, NCT04699188,

and NCT03785249).

Moreover, based on data from The Cancer Genome Atlas,

lung cancer exhibits high levels of homologous recombination

deficiency associated with particular mutational signatures.

Given these findings, several studies are evaluating PARP

inhibitors in combination with chemotherapy and PD-1

blockade in first-line NSCLC (NCT03976323, NCT03976362,

and NCT04475939) (89). However, the toxicity profile may still

represent a limitation for these combinations since grade ≥3

treatment-emergent adverse events occurred in 88.2% of cases in

the phase II JASPER trial evaluating first-line niraparib plus

pembrolizumab in patients with advanced NSCLC (90).
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Discussion

ICIs have opened a new era in cancer treatment and

particularly for lung cancer. The unprecedented efficacy in

NSCLC has begun to resonate with the question of whether the

possibility of a cure, at least for a still small subset of patients with

advanced disease, is closer. Strong progress has been made in this

field, and new challenges for the coming years will be the focus on

improving efficacy through a long-term durable response for a

larger group of patients. In the course of optimizing the clinical

outcomes of ICI in NSCLC, some important steps have

substantially impacted patients’ survival, such as the

combination of anti-PD-1/L1 with chemotherapy, another ICI,

and antiangiogenic agents. Today, multiple strategies are being

tested with promising results, from adding different co-inhibitory

and co-stimulatory checkpoints, to the combination of ICI with

targeted therapy to synergize the anticancer effect.

Altogether this progress was led by a deeper understanding of

the defects or alterations in the complex biological relationship

processes between the tumor, the microenvironment, and the

host, as well as broader insights into the mechanism underlying

the resistance of ICI. Regarding the tumor cell-intrinsic features,

some areas are of crucial interest beyond the PD-L1 expression as

the most studied biomarker in the immunotherapy field. In this

context, the study of somatic mutations in the cancer genome that

increase tumor mutational and neoantigen burdens has been

strongly related to the efficacy of ICI (91). Additionally, multiple

efforts are being made to properly characterize the deficiency in

neoantigen presentation, aberrations in oncogenes and tumor

suppressor genes that regulate immune response (e.g., KRAS,

STK11/KEAP1), and the study of genetic alterations in DNA

replication and repair genes, epigenetic modulation, and

alterations in the interferon-gamma (INF-g) signaling cascade

(92). Furthermore, the feature of the tumor microenvironment

is now of remarkable interest and is being associated

with ICI activity, including the investigation of the phenotype of

T-infiltrating lymphocytes, tumor-infiltrating B cells, tertiary

lymphoid structures, tumor-associated macrophages, cancer-

associated fibroblasts, and endothelial cells. Finally, active

investigations are focusing on a comprehensive understanding

of the host-related characteristics. Multiple studies have associated

the gut microbiome, patient concomitant medications, and

autoimmunity with ICI response and/or toxicity (92).

Certainly, as research grows rapidly in this field, the challenge

of designing rational and synergistic ICI combination approaches

will lead to a lower risk of resistance and prolonged benefits for

patient outcomes.
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