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Current status of and progress in
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Malignant pleural effusion (MPE) is a common complication in the late stage of

malignant tumors. The appearance of MPE indicates that the primary tumor has

spread to the pleura or progressed to an advanced stage. The survival time of the

patients will be significantly shortened, with a median survival of only a few

months. There are a variety of traditional treatments, and their advantages and

disadvantages are relatively clear. There are still many problems that cannot be

solved by traditional methods in clinical work. The most common one is

intrapleural perfusion therapy with chemotherapy drugs, but it has a large side

effect of chemotherapy. At present, with the development of medical technology,

there are a variety of treatment methods, and many innovative, significant and

valuable treatment methods have emerged, which also bring hope for the

treatment of refractory and recurrent MPE patients. Several clinical trials had

confirmed that drug-carrying microparticles has less adverse reactions and

obvious curative effect. However, there is still a long way to go to completely

control and cure MPE, and the organic combination of clinical work and scientific

research results is needed to bring dawn to refractory MPE patients.
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1 Introduction

With advances in medical technology and in-depth research on the pathogenesis of

malignant pleural effusion (MPE), innovative drugs and treatment strategies have been

developed. MPE treatment has made many achievements. However, recalcitrant or recurrent

MPE currently does not have effective treatment options. Therefore, the treatment of MPE is

still a difficult clinical problem, and the current status and progress of MPE treatment are

reviewed as follows.

Lung cancer accounts for 18.0% of all cancer deaths according to the latest 2020 Global

Cancer Data Report from the World Health Organization’s International Agency for

Research on Cancer (IARC) (1). The data show that approximately 50% of malignant

tumors can present with malignant pleural effusion (MPE). MPE is more common in lung

cancer, breast cancer and lymphoma, with rates as high as 75%, and lung cancer has the
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highest rate (2). MPE is one of the common complications of

advanced malignant tumors, with a median survival of only 3-12

months (3–5).

Pleural fluid cytology is the easiest way to diagnose MPE and the

gold standard for diagnosis. However, its sensitivity is limited in cases

with few cancer cells, and the rate of positive detection (40%~87%) is

relatively low (6); the rate of positive detection can be improved by

testing pleural fluid samples multiple times or directly using pleural

biopsy to detect cancer cells. For patients with clear primary tumors

and asymptomatic MPE, no therapeutic intervention can be

performed for the effusion itself (7–10). Once the amount of pleural

effusion increases or if substantial pleural effusion is generated within

a short period of time, it will cause symptoms such as cough, chest

tightness, dyspnea and weakness, which will seriously affect the

quality of life of patients. For MPE patients with obvious clinical

symptoms, the primary aim of treatment is to relieve dyspnea, chest

tightness and other symptoms (11, 12). The presence of MPE

indicates that the primary tumor has spread to the pleura or has

progressed to an advanced stage, and the survival of patients is

significantly shortened. Once MPE is diagnosed in patients with

tumors, it should be actively treated; otherwise, the accumulation of

fluid will cause pulmonary atelectasis or recurrent lung infections and

even threaten the life of the patient (13). With advances in medical

technology and in-depth research on the pathogenesis of MPE,

innovative drugs and treatment strategies have been developed. For

example, the microparticles released by autologous tumor cells can be

used to encapsulate chemotherapeutic drugs to achieve antitumor

effects through two mechanisms: direct killing of tumor cells and

activation of the autoimmune system (14, 15). However, recalcitrant

or recurrent MPE does not currently have effective treatment options.

Therefore, the treatment of MPE is still a difficult clinical problem,

and the current status and progress of MPE treatment are reviewed

as follows.
2 Routine clinical treatment modalities

Conventional clinical treatment mainly includes simple chest

drainage, pleural fixation, thoracic thermal perfusion and

intrathoracic drug infusion. Different treatment options have

different indications and contraindications and different advantages

and disadvantages, and clinicians usually conduct a comprehensive

assessment to choose the most suitable treatment option for

each patient.
2.1 Simple thoracentesis for fluid aspiration
and tube placement for drainage

In patients with malignant tumors complicated with MPE, the

tumor cells have spread or metastasized to the pleura at an advanced

stage, and these patients have missed the opportunity for surgical

treatment; in this case, internal palliative treatment is most commonly

adopted in the clinic (16, 17). The primary task is to relieve

respiratory distress and pain, and many clinicians will prioritize

simple thoracentesis and aspiration or tube drainage. Thoracentesis

alone can quickly relieve the symptoms of dyspnea, but it is a
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temporary treatment measure. The reason is that the intrathoracic

pressure decreases significantly within a short period of time after

fluid extraction, which in turn leads to fluid reunion, a faster increase

in accumulated pleural fluid, and a higher recurrence rate (18).

Repeated drainage of a large amount of pleural fluid can lead to

hypoproteinemia, anemia, weakness, electrolyte disorders and other

systemic symptoms (19, 20). In severe cases, circulatory collapse and

death may occur. Therefore, simple chest puncture and drainage

cannot solve the problem of recurrent massive pleural fluid in MPE

and can actually accelerate the deterioration induced by the disease

and lead to failure of primary tumor systemic treatment or

poor efficacy.
2.2 Pleural fixation

Intrathoracic infusion of sclerosing agents, also known as pleural

fixation, involves the use of sclerosing agents to chemically irritate

and cause pleuritis, which causes adhesional atresia of the visceral and

mural pleura and eventually leads to loss of the pleural space, causing

a reduction in pleural fluid. The American Thoracic Society (ATS), in

its latest edition of its MPE treatment guidelines issued in 2018 (7),

recommends placement drainage or chemical pleural fixation as the

preferred treatment option to relieve dyspnea in patients with

symptomatic MPE without combined pulmonary atelectasis who

have never been treated for MPE. The previous guidelines only

recommended drainage as an option for patients with MPE

combined with pulmonary atelectasis (10). The application of

sclerosing agents under video-assisted thoracic surgery (VATS) is a

common clinical method. And VATS talc poudrage is recommended

for pleurodesis in patients with good performance status. The most

commonly used drug in clinical pleural fixation is talcum powder

(21–23). A randomized controlled trial has robustly demonstrated

that there is no additional clinical effectiveness or cost-effectiveness

benefit between talcum powder by thoracoscopy and talc slurry

intercostal drainage for MPE patients (24). Therefore, talcum slurry

and talcum powder have no difference in efficacy. It has the

advantages of low cost and a high success rate compared with other

sclerosing agents. The common side effects of talcum powder pleural

fixation are fever and chest pain, which can be relieved in most

patients but can cause serious adverse reactions in some patients, such

as pulmonary edema, acute respiratory distress syndrome (ARDS),

and acute respiratory failure (8, 25). In some cases, death can occur.

Therefore, the application of talcum powder for pleural fixation for

MPE has certain risks.
2.3 Thoracic thermal perfusion therapy

Thoracic thermal perfusion therapy takes advantage of the

different tolerances of tumor cells and normal cells to different

temperatures (26). Therefore, the key to successful thoracic thermal

perfusion is to control the intrathoracic temperature, and conversely,

if the temperature is not well controlled, the normal cells of the body

will suffer much irreversible damage. Clinically, the intrathoracic

temperature is usually maintained at approximately 43°C, which

can damage and kill tumor cells without much interference with
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and impact normal cell function (27). In addition, the increase in

intrathoracic temperature caused by thoracic heat perfusion can

significantly dilate blood vessels, promote the absorption of

chemotherapeutic drugs, significantly increase the concentration of

drugs in the thoracic cavity, and increase the ability of drugs to kill

tumor cells. Therefore, compared with intratoracic perfusion

treatment with chemotherapeutic drugs alone, intratoracic thermal

perfusion combined with chemotherapeutic drugs shows more

advantages (28–30). On the one hand, chemotherapeutic drugs can

directly kill tumor cells, resulting in a reduction in pleural fluid

production, and on the other hand, the increase in temperature can

expand the pleural blood vessels and promote the absorption of

chemotherapeutic drugs by tumor cells, which greatly improves the

drug utilization rate and chemotherapeutic drug efficacy. Within 24 h

after the end of perfusion, almost all patients showed profuse

sweating, hot flashes, elevated body temperature and increased

heart rate, which were relieved by symptomatic treatment.

However, thoracic thermal perfusion chemotherapy is generally not

recommended for patients with a very poor systemic condition or

those who are unsuitable for thoracic thermal perfusion, such as

patients with obvious liver and kidney failure, severe cardiovascular

or cerebrovascular diseases, poor healing of anastomosis after surgery,

and extensive adhesions in the thoracic cavity.
2.4 Intrapleural perfusion therapy

The most rapidly advancing and preferred treatment option is

intrapleural perfusion therapy (IPT), which is the most widely used

strategy in clinical practice due to its obvious efficacy, simplicity and

lack of serious adverse effects and is suitable for most patients with

MPE (31). It can prolong the survival time and improve the quality of

life for most MPE patients. Currently, there are many kinds of drugs

used for IPT treatment, including chemotherapeutic drugs,

immunomodulators, and Chinese patent medicines. Many

innovative drugs are in clinical trials or in the development stage,

giving new hope to patients with recalcitrant or recurrent MPE.

2.4.1 Chemotherapy drugs
The chemotherapeutic drugs commonly used in clinical practice

alongside thoracic infusion mainly include cisplatin, carboplatin, and

bleomycin. Cisplatin, as a first-generation platinum drug, has strong

antitumor activity and is thus more widely used in thoracic perfusion

(32). Cisplatin can not only directly induce a local antitumor effect but

also stimulate the pleura to cause pleurisy and pleural adhesions and

cause chest occlusion; in addition, cisplatin can also be absorbed into

blood circulation through the blood vessels on the pleura, which can

inhibit primary foci and metastases and reduce pleural fluid in many

ways (33). Moreover, this mode of drug delivery greatly improves the

concentration of drugs in the chest cavity, reduces the toxic side

effects caused by systemic chemotherapy, and is tolerated by most

patients with mild adverse effects, making it the preferred treatment

for MPE. Compared with the second-generation platinum drug

carboplatin, the adverse effects of cisplatin mainly include

gastrointestinal reactions and nephrotoxicity, with less bone

marrow suppression. Typically, only a single chemotherapeutic

agent is used clinically, but some investigators have combined
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multiple chemotherapeutic agents to enhance treatment efficacy by

taking advantage of the synergistic effect of various drugs (34, 35).

However, the toxic side effects of chemotherapeutic drugs, especially

for many patients with advanced tumors who cannot tolerate them,

for those who develop drug resistance after multiple doses, or for

those with recalcitrant or recurrent MPE with poor response, can lead

to the failure of local MPE treatment. Overall, chemotherapeutic

agents administered via transthoracic infusion are effective, but

resistance may occur after multiple doses, and there is limited

overall efficacy and a high rate of pleural fluid recurrence.

2.4.2 Biological response modifiers
The main mechanism of action of biological response modifiers is

to stimulate inflammation in the plasma membrane, causing fibrosis

of mesothelial cells and adhesions to occlude the pleural space,

leading to a decrease in pleural fluid production. The most

commonly used clinical biological response modifier is the

Nocardia rubra cell wall skeleton (N-CWS). On the one hand, it

can inhibit tumor cells and enhance the activity of macrophages, T

cells and natural killer (NK) cells (36, 37). On the other hand, it can

induce interferon, lymphokine-activated killer cell and tumor

necrosis factor production and anticancer effects. Therefore, N-

CWS has good clinical efficacy in patients with lung cancer with

MPE, can significantly improve the immune function and survival

rate of patients, and has mild toxic side effects, so it is worthy of wide

clinical application. However, it should be used with caution in

patients with MPE who already have high fever and allergic

reactions, as it may aggravate existing symptoms and cause

deterioration of the patient’s systemic condition.
3 Latest treatment advances

With the continuous development of tumor treatments and

advances in antitumor drugs, the MPE treatment paradigm is being

constantly modified, and an increasing number of new drugs and

technologies are being applied in the clinic, such as antiangiogenic

drugs, drug-carrying microparticles, and pleural bladder pumps. A

large number of preliminary clinical studies have shown

extraordinary efficacy and the ability to overcome some of the

shortcomings of traditional treatment modalities and greatly reduce

the toxic side effects caused by treatment, bringing new treatment

strategies and modalities for MPE, especially for patients with MPE in

whom existing treatments have been ineffective, for those with

relapsed MPE, and for those who are resistant to traditional

treatment methods. For patients with MPE who have relapsed or

failed various treatments, indwelling pleural catheters are now

clinically available.
3.1 Anti-angiogenic drugs

The generation, invasion and metastasis of malignant tumors and

tumor angiogenesis are closely related (38). Therefore, inhibition of

tumor neovascularization has become a new strategy for tumor

therapy. The main antiangiogenic drugs are bevacizumab and

recombinant human vascular endothelial growth factor (VEGF)
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inhibitors, both of which can be administered by transthoracic

perfusion. Both of these antiangiogenic drugs can be combined with

platinum agents, and this combination is more effective than

platinum agents or antiangiogenic drugs alone, producing greater

increases in the inhibition of tumor cells and better reducing the

formation of effusion.

3.1.1 Bevacizumab
VEGF is an important proangiogenic mediator, and VEGF/

VEGFR-2 is an important signaling pathway for angiogenesis (39–

44). The VEGF/VEGFR-2 axis mediates vascular endothelial cell

proliferation and neovascularization (45), which leads to the

production of pleural fluid (46). Bevacizumab, a human

recombinant monoclonal antibody that mediates VEGF signaling,

inhibits tumor angiogenesis, growth, and metastasis, reducing the

generation and growth of blood vessels in the pleura and ultimately

leading to a decrease in pleural fluid production. Tao et al. (47)

retrospectively studied 21 patients with lung adenocarcinoma with

MPE treated with bevacizumab combined with chemotherapy by

intravenous infusion, and the MPE remission rate (RR) was 81.0%.

The disease control rate (DCR) at 24 weeks was 89.5%, and 90.5% of

patients experienced lung re-expansion after treatment. These results

suggest that bevacizumab in combination with chemotherapy has

significant efficacy and safety advantages for treating MPE in lung

adenocarcinoma and is an option for patients with lung

adenocarcinoma with MPE. The results of a study of patients with

nonsquamous non-small-cell lung cancer with poorly controlled MPE

after drainage tube placement or pleural fixation receiving

bevacizumab in combination with chemotherapy showed a pleural

effusion control rate (PECR, defined as the percentage of patients with

no reaccumulation of MPE at 8 weeks) of 80%, pleural progression-

free survival (PPFS) of 16.6 months, and overall survival (OS) of 19.6

months, and patients’ quality of life significantly improved (48).

Many clinical studies (49–52) have also tried to explore the

efficacy and safety of intrathoracic injection of bevacizumab

combined with platinum-based drugs in the treatment of MPE, and

the results of the studies have shown that intrathoracic injection of

bevacizumab combined with platinum-based chemotherapeutic drugs

showed increased overall efficacy (the difference is statistically

significant, P<0.05) compared with administration of platinum-

based drugs alone; the RR of the bevacizumab combined with

cisplatin group can be as high as 83.33%, significantly higher than

the 50.00% of the cisplatin group. In addition, intrapleural injection of

bevacizumab reduced the level of VEGF in pleural fluid, with milder,

tolerable toxic effects. Single-agent anti-vascular therapy is not ideal

(53), and the combination of bevacizumab with platinum drugs in the

treatment of MPE significantly increases the therapeutic effect

compared with monotherapy. A meta-analysis (54) pooled data

from 71 patients with non-small-cell lung cancer with MPE and,

for the first time, evaluated the therapeutic effect of intrathoracic

injection of different doses of bevacizumab in patients with non-

small-cell lung cancer with MPE. The efficacy of low-dose

bevacizumab was not inferior to that of high-dose bevacizumab,

and the use of low-dose bevacizumab significantly reduced the

incidence of adverse events and toxic side effects, suggesting that

intrathoracic injection of low-dose bevacizumab can be a suitable

treatment for patients with non-small-cell lung cancer with MPE.
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Currently, there are no uniform standards for the administration,

dosing and duration of bevacizumab treatment in patients with MPE,

and there are many controversies regarding which specific regimen

should be used for the treatment of MPE. Some investigators (55)

believe that bevacizumab is effective whether administered

intravenously or by thoracic infusion, but the evidence for the use

of bevacizumab in the treatment of MPE remains flawed due to study

design biases and the small number of subjects.

3.1.2 Recombinant human VEGF inhibitors
Researchers have found that recombinant human VEGF

inhibitors can downregulate the expression of VEGF and receptors

(56), block VEGF and VEGFR tyrosine phosphorylation, and induce

MMP expression (57). A recombinant human VEGF inhibitor was

found to inhibit the production of blood vessels and lymphatic vessels

in animal models (58). In 2015, Wei et al. (59) found that

recombinant human VEGF inhibitors could only inhibit the

production of effusion but not cause apoptosis or inhibit tumor

growth. However, in recent years, investigators (60, 61) have

concluded that recombinant human VEGF inhibitors can also

inhibit tumor cell proliferation and induce tumor cell apoptosis.

The combination of recombinant human VEGF inhibitors with

platinum-based drugs exerts a synergistic effect, and combined

administration is better than administration of platinum-based

drugs alone (34). Combined administration can improve the quality

of life of patients. On the one hand, platinum drugs can directly act on

tumor cells and interfere with tumor cell DNA replication and

transcription, thus inducing tumor cell necrosis. On the other hand,

recombinant human VEGF inhibitors can promote the immune

response, improve the local tumor microenvironment (62, 63),

promote normalization of tumor vascular function (64), more

effectively promote the delivery of platinum drugs to the tumor

tissue (65, 66), and more effectively kill tumor cells. In a study

evaluating the clinical efficacy and safety of a recombinant human

VEGF inhibitor combined with chemotherapy for MPE in lung

adenocarcinoma, the treatment group was given chemotherapy and

recombinant human VEGF inhibitor via intrathecal administration,

and the control group patients were given the same chemotherapy as

the treatment group. The efficacy rates were 81.82% and 64.52% in the

treatment and control groups, respectively (statistically significant

difference, P=0.027). The MPE control rates (DCRs) were 93.94% and

79.03%, respectively (statistically significant difference, P=0.013).

Dyspnea symptoms were significantly improved in the treatment

group, and side effects were not significantly different between the two

groups (67).
3.2 Drug-carrying microparticles

Normally, cellular microparticles in the human body are used to

store, transport and digest cellular products and wastes and are

important carriers for the transport of various substances (68).

Researchers have used autologous tumor cell-derived microparticles

(ATMPs) as novel individualized drug carriers (69–73). In other

studies, ATMPs have been used as novel individualized drug carriers

to deliver chemotherapeutic drugs to tumor cells in a targeted manner

(74–76). These drugs can not only directly interfere with the
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proliferation of tumor cells but also activate antitumor immunity (14,

77–79). In addition, ATMPs can be used to overcome the killing of

normal cells by chemotherapeutic drugs and the resistance of tumor

cells to chemotherapeutic drugs. The mechanism by which ATMPs

encapsulating methotrexate (ATMPs-MTX) activate the neutrophil

response as a treatment for MPE has been studied (80). ATMPs-

MTX trigger neutrophil recruitment through activation of CXCL1 and

CXCL2 released from macrophages (15, 81, 82). ATMPs also reverse

drug resistance in cancer stem cells (CSCs). CSCs take up ATMPs-

MTX better than do differentiated cancer cells, leading to CSC death

(83). Guo et al. (84) demonstrated through mouse models and human

experiments that ATMPs encapsulating chemotherapeutic drugs have

almost no toxicity and have largely reduced toxic side effects compared

with chemotherapeutic drugs in clinical applications. The ORR of 11

patients with advanced lung cancer with MPE treated with ATMPs-

MTX was 90.91%, and the median survival time (MST) was 240 days,

demonstrating excellent efficacy and only minor side effects. The low

level of toxic side effects induced by ATMPs encapsulating

chemotherapeutic drugs makes them a promising option for MPE

treatment. Currently, many hospitals have used drug-carrying

microparticles for MPE treatment. Although their efficacy and safety

have been clinically validated, more subjects and clinical studies are

needed to further evaluate their efficacy. There are still some concerns

regarding the use of drug-carrying microparticles in oncology andMPE

treatment. Primarily, the safety of microparticles needs to be

determined; for example, ATMPs may contain oncogenic factors that

may contribute to tumor progression (85).
3.3 Pleural bladder pump

Astoul et al. (86) performed an in-depth study of a peritoneal

bladder pump for the treatment of ascites. The scholars first proposed

and designed the pleural bladder pump for the treatment of MPE and

named it the pleurapump system, whose specific mechanism is to

drive the transfer of accumulated fluid from the pleural cavity to the

bladder, from where it can drain from the body via the urinary

system. The pump has pressure and position sensors on it to regulate

the flow rate and drainage of the effusion and to monitor and record

the amount of pleural fluid drained, which is very useful. Previous

research on the peritoneal bladder pump (Alfapump system) has

yielded some results (87, 88). These successes have inspired

researchers to study pleural effusion. However, Astoul et al.

conducted only 2 clinical trials, and both subjects experienced

varying degrees of dyspnea after implantation of the pleural bladder

pump. The investigators suspect that these outcomes may be related

to pump dysfunction due to catheter obstruction (86). Studies of the

pleurapump system for MPE treatment are still in the exploratory

phase, and more subjects and clinical studies are needed to explore the

efficacy and safety of this system in the future.
3.4 Indwelling pleural catheter

The currently recommended approaches for recurrent

symptomatic MPE are indwelling pleural catheter (IPC) placement

and pleural fixation, but IPC placement is significantly superior to
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repeat thoracentesis or tube placement for drainage and has been

shown to be a powerful palliative treatment for patients with

recurrent or treatment-resistant MPE. IPCs can be inserted and

tunneled through the skin into the pleural cavity, allowing

intermittent drainage and promoting pleural fixation. IPC

placement is simple to perform and can usually be performed on

an outpatient basis (89). IPCs are an effective means of controlling

recurrent MPE, especially for patients with pulmonary atrophy and

atelectasis who wish to have a shortened hospital stay (90). Thomas

et al. (91) conducted a multicenter, randomized controlled clinical

trial that included 144 patients with MPE. The researchers showed a

reduction in the number of hospital days after IPC treatment

compared with after talc pleural fixation, and there was no

statistically significant difference in efficacy, in line with the findings

of Davies, Ost et al. (92, 93) The results of the study were consistent.

Data from a multicenter, randomized, open-label clinical trial suggest

that IPCs are more effective in facilitating spontaneous pleural

fixation and may improve quality of life (94). Significant

improvement of dyspnea symptoms and fewer complications after

IPC treatment were seen (95). Compared to talc pleural fixation, IPC

placement has a very high safety profile (96): the incidence of pleural

infection is <5% (patients usually respond to antibiotic therapy, and

catheter removal is usually not necessary); prolonged, intermittent

drainage of exudative pleural effusions or celiac disease may cause

significant protein loss, leading to systemic malnutrition; and fibrin

clots in the catheter lumen can lead to obstruction. In 2018, Bhatnagar

et al. (97) studied the treatment of MPE by outpatient IPC placement

combined with talcum powder and found that the odds of pleural

fusion were significantly higher than those associated with IPC

placement alone; in addition, serious adverse effects were rare and

generally well tolerated by patients.
4 Summary and outlook

In summary, MPE is a common complication of advanced

malignant tumors, and its appearance often indicates poor

prognosis and short survival, which seriously affects patient quality

of life. Furthermore, poorly controlled MPE can seriously affect the

primary tumor systemic treatment plan, so MPE treatment is

especially important in tumor treatment. At present, MPE is mainly

treated medically, and intrathoracic infusion is the main strategy.

With the continuous development of intrathoracic infusion drugs,

many kinds of drugs are available, including chemotherapeutic drugs,

immunomodulators, traditional Chinese medicines, antiangiogenic

drugs and drug-carrying microparticles. MPE patients have benefited

greatly from these novel therapies, which have shown good efficacy in

clinical application, and clinical symptoms such as dyspnea and

wheezing have been greatly improved. Currently, there are many

means of MPE treatment, but there is no standard treatment protocol,

especially for patients with recalcitrant or relapsed MPE, who suffer

from limited overall treatment efficacy, which seriously affects the OS

of patients. Therefore, although good results in the treatment of MPE

have been achieved, especially via the use of highly beneficial

antiangiogenic therapies and immunotherapies, the treatment of

MPE, especially recalcitrant or relapsed MPE, is still a clinical

challenge, and many issues remain to be solved in the future.
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Therefore, it is important to explore the pathogenesis of MPE and

combine treatment modalities and new therapeutic approaches to

improve the quality of life and prolong the survival of MPE patients.
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