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DNA damage repair (DDR) is essential for maintaining genome integrity and

modulating cancer risk, progression, and therapeutic response. DDR defects

are common among non-small lung cancer (NSCLC), resulting in new

challenge and promise for NSCLC treatment. Thus, a thorough

understanding of the molecular characteristics of DDR in NSCLC is helpful

for NSCLC treatment and management. Here, we systematically analyzed the

relationship between DDR alterations and NSCLC prognosis, and successfully

established and validated a six-DDR gene prognostic model via LASSO Cox

regression analysis based on the expression of prognostic related DDR genes,

CDC25C, NEIL3, H2AFX, NBN, XRCC5, RAD1. According to this model, NSCLC

patients were classified into high-risk subtype and low-risk subtype, each of

which has significant differences between the two subtypes in clinical features,

molecular features, immune cell components, gene mutations, DDR pathway

activation status and clinical outcomes. The high-risk patients was

characterized with worse prognosis, lower proportion and number of DDR

mutations, unique immune profile and responsive to immunetherapy. And the

low-risk patients tend to have superior survival, while being less responsive to

immunotherapy and more sensitive to treatment with DNA-damaging

chemotherapy drugs. Overall, this molecular classification based on DDR

expression profile enables hierarchical management of patients and

personalized clinical treatment, and provides potential therapeutic targets

for NSCLC.
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Introduction

Non-small cell lung cancer (NSCLC) is a malignant tumor

with a high clinical incidence and frequent cause of cancer death

(1, 2). Currently, the main methods for treating NSCLC include

surgery, chemotherapy, radiotherapy, targeted therapies,

immunotherapies, or combination cancer therapy (3). Despite

significant progress in NSCLC diagnostic and therapeutic

techniques, the outlook for NSCLC patients is still poor. So, a

reliable predictive biomarker is urgently needed to identify

patients at the highest risk in order to direct more

personalized treatment and prevention for NSCLC. Thus far, a

variety of studies utilizing genomic, transcriptomic, and

proteomic data have recommended molecular and immune

classifications of NSCLC (4, 5). These subtyping strategies

provide effective targeted therapy options for NSCLC by

revealing the molecular phenotypes. Nonetheless, the

molecular mechanisms involved with the poor outcome of

NSCLC remain unclear. Genomic instability is one of the most

remarkable characteristics of cancer cells. Many cancer-related

risk factors, such as smoking, ionizing radiation or exogenous

anti-cancer chemotherapeutic drugs, can cause DNA damage.

DDR is vital for maintaining the stability of the human genome

by regulating the cell cycle, chromatin remodeling, metabolism,

immunogenicity, and apoptosis. DDR defects are common

among advanced cancers; the functional loss of DDR may

result in the onset and progression of cancer, and it may

change treatment effectiveness (6, 7). Based on role of the

DDR pathway in cancer, targeting the DDR pathway is a

promising treatment option for cancers. For instance, the

classic DDR pathway drug, Olaparib, which is a poly (ADP-

ribose) polymerase (PARP) inhibitor, is a targeted drug in the

base excision repair pathway (BER) (8). Thus, an in-depth and

precise analysis of the molecular changes caused by DDR can aid

in the understanding of the development mechanisms of cancers

and contribute to explore new therapeutic targets.

Recently, a study based on DDR activity status has

characterized hepatocellular carcinoma (HCC) patients into

two classes, namely, DDR-activated and DDR-suppressed

subtypes, by mRNA expression profiling of DDR Genes,

implying that each DDR subtype has distinct clinical and

molecular characteristics (9). HCC patients with the DDR-

activated subtype exhibit aggressive clinical behavior and a

poor prognosis, whereas those with the DDR-suppressed

subtype have a positive prognosis (9); in addition, the immune

profiles and immunotherapy responses of the two DDR subtypes

also differ (9). Another recent study has reported that immune

checkpoint inhibitors (ICIs) provide longer OS for HCC patients

who have high expression of DDR-related genes (10). Therefore,

DDR-based molecular classification provides a fundamental

basis for implying clinical outcomes and selection of strategies

for HCC treatment. However, a thorough analysis of DDR-

relevant molecular classification is lacking in NSCLC.
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In this study, we explored the relationships of transcriptional

profile alteration of DDR genes with the prognostic value and

immune infiltration in NSCLC. Firstly, we identified 17

prognostic DDR-related genes from 222 DDR genes via a

univariate Cox proportional hazards model. Based on the 17

prognostic DDR-related genes, we successfully identified two

NSCLC subtypes via unsupervised consensus clustering. The

two NSCLC subtypes differ in clinical outcomes and molecular

characteristics. Based on prognostic DDR-related gene analysis,

we further demonstrated heterogeneity between the subtypes

and proposed a new method to predict immune treatment

outcomes. In the present study, we discuss the DDR

alterations in NSCLC, which may help guide immunotherapy

and determine the prognosis of NSCLC patients.
Materials and methods

NSCLC data collection and processing

The transcriptome data from RNA sequencing (RNA-seq) and

related clinical information, including gender, age, stage, and TNM,

of 986 NSCLC patients were acquired from The Cancer Genome

Atlas (TCGA) database via the University of California Santa Cruz

(UCSC) Xena database (https://xenabrowser.net/datapages/). The

mutation information of these NSCLC samples was downloaded

using the RTCGA and TCGA biolinks packages in R (11). Firstly,

the expression profiles of the two TCGA data sets (LUAD and

LUSC) were combined, and more than 70% of the genes not be

detected (NA) were filtered. In R, the SVA package was used to

remove heterogeneity, and the expression profiles of 27875 genes

×986 samples were obtained in the training set. Expression profiles

for genes were transformed into log2 [(FPKM) +1] for further

analysis in the training set. Validation testing was conducted using

the GSE68465 dataset downloaded from the Gene Expression

Omnibus (GEO) database, which included 442 NSCLC samples

(12). For further analysis, gene expression profiles were converted

into log2 (normalized read count + 1). The clinical characteristics of

these NSCLC patients are listed in Supplementary Table 1.
Prognostic DDR-related gene
recognition

First, we collected 276 DDR pathway-related genes and 80

DDR pathway key genes from previous studies by TCGA DDR-

AWG (13, 14). Based on MSigDB v5.0 and DDR pathway

knowledge, these genes were compiled. In total, 222 of the 276

DDR-related genes were expressed in both datasets (training set and

verification set). Based on the training set, prognosis significance

and the hazard ratio (HR) of 222 DDR- related genes were

conducted utilizing Cox regression analysis using the survival

package in R. We selected genes with a p<0.05 as prognostic
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DDR-related genes. To explore the biological functions of these

prognostic DDR-related genes, Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analyses were

conducted via the clusterProfiler package in R.
NSCLC subclass identification
and validation

Based on the above analysis, we obtained 17 prognostic DDR-

related genes that have prognostic potential to identify NSCLC

subclasses. The expression profiles of the prognostic DDR genes

were obtained for the above samples (Supplementary Table 1).

Unsupervised consensus clustering was used to discover intrinsic

NSCLC subtypes in the training set and testing set with the

following parameters: reps = 100, clusterAlg = “km”, distance =

“Euclidean” (15). The optimal cluster number (K) of unsupervised

consensus clustering was determined according to the proportion of

ambiguous clustering (PAC) method (16). The unsupervised

clustering analysis identified two principal clusters (cluster 1 and

cluster 2) for NSCLC samples in the training set. Using the same

procedure, we validated the results in the testing set. In addition,

principal components analysis (PCA) was used to demonstrate the

existence of the clusters and assess their reproducibility in the two

independent cohorts. The consensus clustering analysis was

performed by the ConsensusClusterPlus package in R (15). The

difference in OS between the two subgroups was compared via the

Kaplan-Meier method with log-rank testing.
Differentially expressed gene and GO
analyses of NSCLC subclasses

To explore biological features between the twoNSCLC subtypes,

gene set enrichment analysis (GSEA) was employed to identify

significantly enriched GO terms and KEGG subsets from canonical

pathways (c5.go.bp.v7.2.symbols.gmt). Differential expressions were

then identified using the limma package in R. The cutoffs of |logFC|

>0.3 and FDR<0.05 were utilized for GO terms and pathway sets to

establish statistical significance. Moreover, the Wilcoxon rank-sum

test was used to test for differences in the mean expression of 80 key

DDR pathway genes between the NSCLC subtypes. To better clarify

the two NSCLC subclasses, Fisher’s exact test was performed to

examine the relationship between the two NSCLC subclasses and

clinical features.
Mutation differences of
NSCLC subclasses

To distinguish biologically significant copy number variation in

all samples, the GISTIC algorithm (17) was used in the SNP6 Copy

Number segmented profiles using the MutSigCV module in
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GenePattern (https://cloud.genepattern.org/gp/pages/index.jsf).

The q-value cutoff for peak significance was 0.05, and the

confidence level for determining the peak interval was 0.90.
Immune infiltration estimation
and immunotherapy prediction
of NSCLC subclasses

To investigate the differences in molecular characteristics and

biodiversity patterns between the NSCLC subclasses, the

ESTIMATE algorithm was used to assess immune infiltration,

including immune score, stromal score, and tumor purity (18).

Single-sample gene set enrichment analysis (ssGSEA) was then used

tomeasure the level of immune infiltration in a sample by analyzing

the expression levels of immune cell-specific markers (19). The

marker genes for 28 types of immune cells were collected from a

previously published research (20). The c5.go.bp.v7.2.symbols.gmt

gene set was downloaded from the MSigDB database (https://www.

gseamsigdb.org/gsea/index.jsp) for the GSEA algorithm (21), and

the Wilcoxon rank-sum test was then used to estimate immune

profile differences between the subtypes. Furthermore, compared

the clinical effects of immune checkpoint therapy between NSCLC

subclasses via the TIDE tool (http://tide.dfci.harvard.edu/) (22, 23).

In addition to the differential analysis described above, a heatmap

was generated to visualize the data.
Prognostic DDR-related gene signature
development and validation for NSCLC

Because too many genes make clinical application difficult, it

is necessary to identify the crucial prognostic genes and

construct a prognostic model for NSCLC subtypes. Based on

the nine intersection genes between the prognosis-related DDR

genes and differentially expressed genes (DEGs), we developed a

six DDR-related gene prognostic model according to the

individual risk score as follows:

Risk score =o coefficient � expression of  signature geneð Þ

The effectiveness of the signature was determined using

PCA. Kaplan-Meier analysis was then used to compare OS

between patients with low and high risk. Lastly, univariate and

multivariate analysis assessed the prognostic values of clinical

information (age, gender, stage, T, N, M and EGFR mutation)

and gene expression with OS.
Quantitative real-time PCR

Total RNA was extracted via Trizol (TRIzol, Invitrogen),

and reverse transcription PCR was then performed using reverse
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transcription kits (Takara, RR047A). The PCR assays were

performed according to the manufacturer’s instructions

(Takara, RR091A). GAPDH was used as reference genes. The

relative mRNA expression levels were quantified with the 2−DDCt

method and determined with reference to GAPDH mRNA

levels. The primer sequences are listed below: CDC25C-

Forward Primer: ATGACAATGGAAACTTGGTGGAC;

CDC25C-Reverse Primer: GGAGCGATATAGGCCACTTCTG;

GAPDH - F o rwa r d P r ime r : ATGACAATGGAAAC

TTGGTGGAC; GAPDH-Reverse Pr imer : GGAGCG

ATATAGGCCACT TCTG.
Immunohistochemical analysis

The data from immunohistochemistry analysis of the

selected DDR-related factors (CDC25C, NEIL3, H2AFX, NBN,

XRCC5 and RAD1) in normal lung and NSCLC tumor tissues

were obtained from the Human Protein Atlas (HPA) database

(https://www.proteinatlas.org/).
Cell culture and lentiviral shRNA
knockdown of CDC25C

The A549 human NSCLC cancer cell line was obtained from

the Cell Bank of the Shanghai Chinese Academy of Sciences

(Shanghai, China) and cultured in RPMI 1640 cell medium

(Gibco) supplemented with 10% FBS, 100 μg/ml streptomycin,

and 100 U/ml penicillin. Cells were seeded in 6-well plates (1*105

cells per well) and allowed to reach 80% confluence. Cells were

then transfected with lentiviral vectors containing CDC25C

small hairpin RNAs (shRNAs) designed by Shanghai

Genechem Co., Ltd. (Shanghai, China). Two CDC25C shRNAs

and a control shRNA were used as follows: shRNA1, 5′-
CCGGGTCCCATTACTACTGTTCCAACTCGAGTTGGAAC

AGTAGTAATGGGACT-3 ′ ; shRNA2 , 5 ′ -CCGGGC

C T T G A G T T G C A T A G A G A T T C T C G A G A A T C

TCTATGCAACTCAAGGCTTTTTG-3′; and shRNA-NC, 5′-
C C G G T T C T C C G A A C G T G T C A C G T C T C G A

GACGTGACACGTTCGGAGAATTTTTG-3′.
Statistical analysis

Kaplan-Meier analysis and log rank tests were conducted to

assess survival. Comparisons between groups were performed

using Wilcoxon and t-tests. The Hazard-ratios (HR) and 95%

confidence intervals (CIs) were estimated utilizing univariate

and multivariable Cox regression model. In the graphical

displays, NS denotes P>0.05, * indicates P ≤ 0.05, ** represents

P ≤ 0.01, *** indicates P≤ 0.001, and **** indicates P ≤ 0.0001.

The mutation map generated the maftools package in R shows
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the mutation landscape of patients of different groups. P<0.05

was considered statistically significant and all statistical tests

were two sided.
Results

Identification of two NSCLC subclasses
based on prognostic DDR-related genes

The study design is illustrated via a flow chart in Figure 1,

and Supplementary Table 1 outlines the clinical characteristics of

the training and testing sets. In total, 986 NSCLC samples with

all clinical characteristics were used as a training set. Two TCGA

NSCLC datasets (LUAD and LUSC) gene expression profiles

were combined; genes that had undetectable expression or low

MAD (NA) in more than 70 percent of the samples were

excluded, and the genes were corrected in batches by using the

sva package in R. Finally, the expression profiles of 27,875 genes

in 986 samples were used for training set. To perform clustering,

we acquired matrix of mRNA expression for the 276 initial

DDR-relevant genes (Supplementary Table 3). Following

primary filtering, 222 of the 276 DDR-related genes were

expressed in both the training and validation sets. Finally, a

total of 222 genes related to DDR were selected for

further analysis.

To identify the prognostic DDR-related genes for

classification, the Univariate Cox proportional hazards

regression model was conducted, which demonstrated that

only 17 of the above DDR genes showed significant effects on

survival in the training set (Figure 2A). Of the 17 DDR genes

found to be related to prognosis of NSCLC patients, high

expression of 8 genes (ATRIP , DDB2 , REV1 , RPA2 ,

NFATC2IP, NSMCE4A, RAD1, and XAB2) contributed to

good overall patient outcome, and high expression of 9 genes

(RECQL, RRM2, XRCC5, CDC25C, DCLRE1B, GADD45A,

H2AFX, NBN and NEIL3) was indicative of poor prognosis.

For better visualization, we generated a forest plot and Kaplan–

Meier survival curves using the transcriptomic profiles of the 17

DDR genes to identify the subgroups (Figure 2B and

Supplementary Figure 1). To further investigate the potential

biological function and mechanism of the 17 prognostic DDR-

related genes, we analyzed the 17 potential signature genes by

GO and KEGG enrichment analyses. The 17 genes were mostly

enriched in nucleotide excision repair, homologous

recombination, cell cycle checkpoint process, DNA damage

checkpoint, DNA integrity checkpoint, TP53 signaling

biological, non-small cell lung cancer, and cellular response to

radiation process or pathways (Supplementary Figures 2A–D).

Based on the 17 prognostic DDR-related genes, cluster

analysis was performed on all NSCLC samples, which

indicated two unsupervised horizontal clusters. The proportion

of ambiguous clustering (PAC) method was performed to
frontiersin.org
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identify the optimal cluster number (K) of unsupervised

clustering (16). Based on the consensus score of the CDF

curve, k=2 was identified as the optimal number of clusters

(Figures 2C, E). Finally, in the training set, 986 NSCLC patients

were divided into two clusters, namely, cluster 1 (C1) and cluster

2 (C2), which contained 534 and 452 samples, respectively.

Furthermore, we performed PCA to identify the difference

between the two clusters and validate the subclass assignments.

It was found that the two clusters were positioned at different

corners of the two-dimensional coordinate systems (Figures 2I,

J). Moreover, we extracted the expression data for the above 17

DDR-related genes and obtained 442 eligible samples in the

testing dataset for further analysis. Similarly, k=2 was the

optimal number of clusters, NSCLC patients in the testing set

were classified into two distinct subclasses, which shared the

same distribution as the training set according to PCA and the

Z-score method (Figures 2D, F, J).

To investigate the differences between the two subclasses,

survival analyses were conducted, which demonstrated that C2

had a longer median survival time than C1. The comparison of the

training and testing sets for both subclasses indicated that the OS

probability was significantly different (p=0.012 and p=0.0053)

(Figures 2G, H). In addition, the heatmaps indicated that the

expression levels of the above selected 17 genes involved in the
Frontiers in Oncology 05
NSCLC subclass signature showed large differences between the

two groups (Supplementary Figure 2E, F). Thus, these findings

clearly demonstrated that the two subclasses have different

molecular and prognostic characteristics.
Prognostic DDR gene-based NSCLC
subtypes show distinct clinical and
molecular characteristics

For better discrimination between the two NSCLC

subclasses, Fisher’s exact test was used to evaluate the

relationship between the clinical features of the two subtypes.

Among two subtypes, there were significant differences in age,

smoking, gender, T staging, and N staging, but not in M staging

and EGFR mutation (Figures 3A–H).

Gene mutation status is also of vital importance for

tumorigenesis (24), disease-free survival (25), drug efficacy (26,

27), and immunotherapy response (28). As part of the analysis of

genomic alterations, we also evaluated gene mutation differences.

The mutated genes in each subgroup were ranked by mutation

frequency. Altogether, 15 overlapping genes were identified between

these two subclasses in the top 20 mutation frequency genes, and

the median mutation frequency over all patients was plotted for
FIGURE 1

Study flow chart.
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each percentile in C1 and C2, and the proportion of mutations was

found to differ in two subtypes (Figures 3I, J). For example, the

TP53 mutation frequency in C1 subtype was 82%, while in C2

subtype was only 57% (Figures 3I, J). Additionally, the C1 subtype

exhibited more mutations than C2 subtype (Figure 3K). However,

there was no difference in copy number variation regions between

the two subtypes (Figures 3L, M). This observation implied that

individual tumor mutation status appeared to be important indexes

for personalized therapy for NSCLC patients.

Since this was a classification based on DDR related genes, we

further explored whether different subtypes have specific biological

processes and DDR molecular characteristics. Using the training

dataset, the DEGs were identified, and GO analyses were

performed. In total, 4905 DEGs (Supplementary Table 2) were

identified for the two subclasses with a threshold of adjusted P

value< 0.05 and |log2FC| > 0.2, and 9 of these DEGs overlapped

with the 17 prognostic DDR-related genes (Figure 4B). A heatmap

was generated to show the top 100 DEGs in each subclass
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(Figure 4A). Genes with a significant difference in expression

between the two classes of NSCLC were regarded as subclass-

specific genes. GO analysis further revealed that these subclass-

specific genes were largely enriched in the cell cycle, DNA

replication, base excision repair, homologous recombination,

mismatch repair pathways, and biological process, indicating that

different activated status among two NSCLC subtypes (Figures 4C,

D). Then, we further explore whether the molecular characteristics

varied between subtypes by GSEA analysis. With a threshold of |

log2FC| > 0.3 and adjusted P value< 0.05, a total of 526 significantly

differential biological processes were screened for the two subclasses,

and 17 of these belonged to DDR pathways (Figure 4E). We also

performed the Wilcoxon rank-sum test and the 80 key DDR

pathway genes have significant differences between the NSCLC

subtypes, such as XRCC5 and SHFM1 were significantly different

between the subtypes (Figure 4F). These data demonstrated that the

DDR gene-based NSCLC subtypes were characterized by unique

clinical and molecular characteristics.
A B

D

E

F

G I

H J

C

FIGURE 2

Identification of two NSCLC subclasses based on the prognostic DDR-related genes. (A) Forest map of prognostic DDR-related genes. (B)
Kaplan–Meier (KM) survival curves with transcriptomic profile of prognostic DDR-related gene. (C, D) Identification of NSCLC subclasses with
PAC clustering using 17 prognostic DDR-related genes in the training and testing sets. (E, F) The CDF plot shows a flat middle segment for K = 2
in the training and testing sets. (G, H) OS of both subclasses (C1 and C2) in the training and testing sets. (I, J) PCA showing the distribution of
the two NSCLC subclasses in the training and testing sets.
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Prognostic DDR gene-based
NSCLC subtypes characterize
different immune infiltration

It is well known that tumorigenesis and development depend

not only on gene mutations, which is also tightly connected with

tumor microenvironment (TME). Thus, we compared the

differences in immune infiltration between the two NSCLC

subtypes. To assess the tumor heterogeneity between the two
Frontiers in Oncology 07
NSCLC subtypes, ESTIMATE algorithms were used to calculate

the stromal score, immune score, and total score (Figure 5). It was

found that both subtypes had significantly different stromal scores,

immune scores, and total scores. The C2 subtype had higher stromal,

immune, and total scores than C1 (Figures 5A–C). According to the

results of the testing set, there were significant differences in stromal

score between two subtypes (Figure 5D), while immune score and

total score were not significantly different between subtypes

(Figures 5E, F). These results were a bit differently in the training set.
A B D

E F G

I

H

J

K L

C

M

FIGURE 3

The comparisons of the clinical features between two NSCLC subtypes. (A–H) Analysis of clinical features between NSCLC subclasses by
Fisher’s exact test. (I, J)Comparison of mutation alterations among subtypes in the training set. OncoPrint of mutation status of 15 shared genes
among the top 20 in C1 (I) and C2 (J). (K) Comparison of the absolute mutated number between NSCLC subclasses. Distribution of somatic
copy number alteration in C1 (L) and C2 (M).
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A B

D

E

F

C

FIGURE 4

Comparison of the molecular characteristics between the NSCLC subtypes. (A) Heatmap of top 100 DEGs expressed in NSCLC subtypes as
annotated by clinical features. (B) Venn diagram showing the intersection between the prognosis-related DDR genes and DEGs in the training
set. (C) KEGG and (D) GO analysis results of DEGs between the NSCLC subclasses in the training set. (E) Comparison of the DDR pathway and
key DDR pathway genes between the NSCLC subclasses. Heatmaps were generated to show the biological processes, in which red indicates
activation status and blue indicates inhibition status. (F) Comparison of expression differences of key DDR genes in the two subclasses.
*,P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; ns, no significance.
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Based on the significant differences in immune scores identified

between the subclasses, we investigated the immune infiltration

landscape of the two NSCLC subclasses. First, the ssGSEA

algorithm and rank sum test were conducted to assess the

proportion of immune cell infiltration based on the expression

levels of 28 types of infiltrating immune cells in the training set

(Figure 5G). It was found that 23 types of immune cell populations

were significantly enriched in both subtypes (Figure 5H).

Among the immune cell populations, 20 infiltrating immune

cell types, including activated B cells, activated cells, and central

memory CD8 T cells, were significantly up-regulated in the C2

subtype compared to the C1 subtype (Figure 5H). In contrast,

activated CD4 T cells, memory B cells, and type 2 T helper cells

were significantly down-regulated in the C2 subtype compared with

the C1 subtype (Figure 5H).

In addition, due to checkpoint being molecules are important

targets for immune checkpoint inhibitors (ICIs), the immune

microenvironment status is a crucial factor in the efficacy and

clinical benefit of ICIs in cancers. We next assessed the

immunotherapy response in patients in two NSCLC subtypes.

Firstly, we evaluated the expression level of several key immune

checkpoint molecules between the two subtypes. In the training set,

we analyzed the expression of CD4, LAG3, CD276, TGFB1, CCL2,

IL1A, CD274, CXCR4, HAVCR2, IL6, CTLA4, BTLA, PDCD1 and

PDCD1LG2. Compared to the C2 type, the C1 type had significantly

higher levels of immune checkpoint molecules, such as LAG3,

CD276, CD274, IL6, PDCD1 and PDCD1LG2 (Figure 6A). The

expression of the checkpoint molecules was similar to that in the

training set, except for CCL2, CTLA4, CXCR4, IL1A and

PDCD1LG2 (Figure 6B). Then, the response of ICIs was

predicted via the TIDE algorithm based on differences in

immune infiltration patterns and expression levels of checkpoint

molecules. The results showed that C1 had a significantly higher

TIDE score compared to C2 (Figure 6C). Additionally, we

calculated the score of IFNG, a CD8 T-cell signature gene, by the

TIDE algorithm. Similarly, it was showed that C1 had significantly

higher scores compared to C2 (Figures 6C, D). Thus, these results

suggested that patients in the C2 subtype may responded better to

immnotherapy compared to C1 subtype.
Establishment and validation of a
prognostic six DDR-related gene model
for NSCLC

To construct a genetic signature for clinical application, the

most representative genes of each subtype must be identified. Then,

the above 9 prognostic DDR-related DEGs (Figure 4B) were

analyzed by LASSO Cox regression analysis to build a prognostic

model. When log(l)=−4.4, the model exhibited the optimal

performance and the fewest number of independent variables

(Figures 7A, B). This illustrated that the model had optimal

performance when it included six prognostic factors.
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Consequently, the independent prognostic genes CDC25C,

NEIL3, H2AFX, NBN, XRCC5 and RAD1 were chosen to

establish a risk score model by LASSO regression analysis.

The risk score of each NSCLC patient was calculated as

follows: Risk score = (0.131288663692349) × CDC25C

expression + (0.044719985259839) × NEIL3 expression +

(0.0018724086315065) × H2AFX expression + (0.1354895390277)

× NBN expression + (0.166065772748599) × XRCC5 expression +

(-0.234655329481 268) × RAD1 expression (Figure 7C). Following

univariate Cox regression analysis, CDC25C [hazard ratio (HR):

1.26, 95% CI: 1.03-1.54, p = 0.022], NEIL3 (HR: 1.31, 95% CI: 1.07-

1.6, p=0.009),H2AFX (HR: 1.23, 95% CI: 1.01–1.51, p=0.038),NBN

(HR: 1.44, 95% CI:1.18-1.76, p=0.00), and XRCC5 (HR: 1.30, 95%

CI: 1.06-1.59, p=0.01) were risk factors for NSCLC prognosis

(Figure 7D). Moreover, RAD1 (HR: 0.79, 95% CI: 0.65-0.97,

p=0.023) was a protective factor for NSCLC prognosis

(Figure 7D). Using this model, we further calculated the risk

score of each sample and generated a heatmap. With an

increased risk score, the expression levels of CDC25C, NEIL3,

H2AFX, NBN and XRCC5 increased, indicating that they are

high-risk genes; the expression of RAD1 decreased as the risk

score increased, indicating that it is a low-risk gene (Figure 7E).

Furthermore, we separate the groups as low risk and high risk

based on the median-risk score (cutoff = 0.993466). In the training

set, the C1 subtype had higher risk scores than the C2 subtype

(Figure 8A). We observed that patients in the low-risk group had

significantly longer OS than those with high-risk scores

(Figures 8B–D). Then, univariate and multivariate Cox analyses

were performed to test the performance of the six DDR-related gene

model. Firstly, results of univariate Cox analysis showed that the

risk score was a risk factor for NSCLC prognosis (HR: 3.76, 95% CI:

2.25-6.27, p=0.000) (Figure 8E). Stage (HR: 1.49, 95% CI: 1.34-1.65,

p=0.000), T staging (HR: 1.43, 95% CI: 1.27-1.62, p=0.000), and N

staging (HR: 1.29, 95% CI: 1.16-1.43, p=0.000) were significantly

associated with NSCLC prognosis (Figure 8E). Multivariate Cox

regression-analysis results showed that the risk score was an

independent risk factor for NSCLC (HR: 3.18, 95% CI: 1.88-5.40,

p=0.000; Figure 8F). Along with the risk score, stage and T staging

were also independent prognostic predictors of NSCLC (HR: 1.33,

95% CI: 1.4-1.56, p=0.000; HR: 1.17, 95% CI: 1.01-1.34, p=0.034;

Figure 8F). Collectively, these data indicated that the six DDR-

related signatures could act as an independent prognostic factor for

NSCLC, highlighting the importance of the DDR landscape in

NSCLC patients.
Verification of six prognostic DDR-
related genes in NSCLC tissues

We further verified the expression level of the six prognostic

DDR-related genes in NSCLC tumor and control normal lung

tissues. Firstly, we evaluated the mRNA expression of six DDR-

related genes in NSCLC tissues in GEPIA, which demonstrated that
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FIGURE 5

Characterization of the immune infiltration landscape of the two NSCLC subtypes. (A–F) Box plots of immune score, stromal score, and total score
for NSCLC subclasses derived from ESTIMATE. The lines within boxes on box plots represent median values. The bottom and top lines represent the
minimum and maximum values, respectively. (G) Heatmap showing the proportion of 28 types of infiltrating immune cells in C1 and C2 by ssGSEA
algorithms. (H) Comparison of the proportion of 28 types of infiltrating immune cells between the subtypes by the rank sum test. NS denotes
P>0.05, * indicates P ≤ 0.05, ** represents P ≤ 0.01, *** indicates P≤ 0.001, and **** indicates P≤0.0001.
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CDC25C, NEIL3, H2AFX, NBN, XRCC5 and RAD1 were all

significantly higher expressed in NSCLC cancer tissues compared

to with normal lung tissues (Figure 9A). Further, we analyzed the

protein expression and distribution in clinical tissue specimens

from the HPA online databases (www.proteinatlas.org).

Immunohistochemistry and immunofluorescence analysis showed

that CDC25C, H2AFX, NBN, XRCC5 and RAD1 had positive

strong expression in NSCLC tumor tissues and negative weak

staining in normal lung tissues (Figure 9B) and mainly

distributed in nucleus and cytoplasm (Figure 9C).

Among the above 6 DDR prognostic genes, CDC25Cwas found

to have a good predictive effect on the treatment response of lung

cancer (Figure 10A). As an important cell cycle regulatory protein,

CDC25C participates in regulating G2/M progression and in

mediating DNA damage repair. To better understand the

function of six DDR-related gene Model, we selected CDC25C to

verify its biological function in vitro. CDC25C expression was

significantly reduced by shRNA-CDC25C in A549 and NCl-

H1299 cells (Figures 10B, C). After silencing CDC25C expression,

cell proliferation ability was significantly inhibited (Figures 10D, E).

CDC25C is a phosphatase family specific cyclin that acts at the G2/

M phase of mitosis. We further selected Paclitaxel, a cycle-specific

antitumor drug, to analyze the effect of CDC25C expression on
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chemotherapy reactivity. It showed that decreased CDC25C

expression resulted in increased Paclitaxel sensitivity of NSCLC

cells (Figure 10F). These experimental results further demonstrated

that CDC25C is a risk gene for NSCLC, it may contribute to the

occurrence and development of NSCLC by promoting cell

proliferation and affecting drug sensitivity.
Discussion

Despite progress in the detection and treatments for NSCLC,

the prognosis remains poor. Molecular heterogeneity is currently a

clinical challenge for NSCLC therapy and prevention. Monitoring

and understanding the molecular effects of a defined alteration (e.g.,

a gene expression alteration, a drug treatment, or a gene mutation)

has become key to addressing this challenge. Although some

previous studies on molecular typing of lung cancer have

provided novel insights into lung cancer precision medicine (29–

31), the applicability and accuracy of these indicators for diagnosis,

prognosis, and treatment response prediction of lung cancer are not

satisfactory. Recently, DDR functional abnormality has been

considered a promising anticancer target (32, 33), which

prompted us to focus on molecular subtyping in DDR to obtain
A B

DC

FIGURE 6

Comparison of immune checkpoint molecules expression and TIDE scores between subtypes. Comparison of the expression of immune
checkpoint genes in two subtypes in the training set (A) and testing set (B). (C) TIDE analysis. (D) The expression score of the response
prediction biomarker, IFNG, was computed using TIDE analysis. NS denotes P>0.05, * indicates P ≤ 0.05, ** represents P ≤ 0.01, *** indicates P≤
0.001, and **** indicates P≤0.0001.
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a better understanding of the molecular changes induced by DDR

in the treatment response and prognosis of NSCLC patients.

In the present study, we analyzed the relationship between

DDR gene expression and NSCLC prognosis, and we divided

NSCLC samples into two subtypes according to prognostic DDR

gene expression. Then, constructed a prognosis prediction model of

NSCLC, providing a basis for clinical treatment and survival

prediction of NSCLC. We first screened 17 genes related to

prognosis from 222 DDR-related genes. According to the

expression profiles of 17 prognostic DDR-related genes, 986

NSCLC patients in the training set were classified into two
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distinct DDR-relevant clusters (C1 and C2), and the

reproducibility of this subtyping was verified in a testing set.

There were significant differences in clinical features, molecular

features, immune cell components, gene mutations, and clinical

outcomes between the two subtypes. Finally, we constructed a

prognostic six DDR-related gene model based on CDC25C,

NEIL3, H2AFX, NBN, XRCC5 and RAD1 expression via LASSO

Cox regression analysis. In this model, a high risk score was

indicative of a poorer prognosis for NSCLC patients. Multivariate

Cox regression analysis suggested that the risk score could

independently predict survival in NSCLC. Among them,
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FIGURE 7

Construction of a prognostic-related signature by the LASSO regression model. (A) Selection of the optimal l-value through a 10-fold cross-
validation. (B) The fitting processes for LASSO Cox regression models were constructed from the six signature genes. The tuning parameter l
was derived from the partial likelihood deviance with a 10-fold cross-validation, and the coefficient was plotted against Log(l). The six gene
signature was identified based on the best fit profile. (C) LASSO coefficient profiles of the six key prognostic DDR-related genes. (D) Forest plot
of prognostic DDR‐related genes based on univariate Cox regression analysis. (E) The heatmap was scaled with the Z-Score using the log2
(FPKM+1) expression of signature genes. With the increase in the risk scores, CDC25C, NEIL3, H2AFX, NBN, and XRCC5 expression levels were
upregulated and RAD1expression level was decreased.
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CDC25C, NEIL3, H2AFX, NBN and XRCC5 were found to be risk

factors for NSCLC, while RAD1 was found to be a protective factor

for NSCLC.

As is well known, the functional status of DDR have close

relationships cancer onset and prognosis and impacts

treatment effectiveness. The above 6 DDR prognostic-related genes

mainly play roles in DDR by participating in homologous

recombination (HR), non-homologous end-joining (NHEJ) and

base excision repair (BER) pathways, and these repair pathways are

themain typesofDNAdamage repair. Previous studieshave reported

that NBN (also called NBS1) is a component of the DNA damage

sensing complex MRE11-RAD50-NBS1, playing key roles in HR,

NHEJ and BER pathways by binding to ataxia telangiectasia mutated

(ATM) kinase (34). Overexpression of NBS1 induces metastasis of

cancer cells by activating variouspathways (35).Moreover, high levels

of NBS1 are associated with poor prognosis and chemotherapy

resistance in cancer (36). When ATM DDR pathways is activated, a

number of proteins downstream of these kinases are phosphorylated.

The signature genes of CDC25C, XRCC5 and H2AFX (also called

H2AX) that we identified are also downstream genes of the DDR

pathway. CDC25C is an important cell cycle regulatory protein that

participates in the regulation of G2/M progression and the DDR

process. Many studies have shown that CDC25C is highly expressed

in lung cancer (37, 38).Abnormal expressionofCDC25C is associated

with tumorigenesis, development, metastasis, chemoradiotherapy

resistance, and poor prognosis (39–41). XRCC5 (also called Ku80

or Ku86) is an essential component of the NHEJ pathway, and it is
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highly expressed in lung adenocarcinoma and promotes cisplatin

resistance (42, 43). Studies have established that high expression levels

of XRCC5 are associatedwith poor prognosis in LUADpatients (44).

However,XRCC5 knockdown inhibits cell proliferation and increases

chemoradiotherapy sensitivity in esophageal squamous cell

carcinoma lines (45). As a central component of DDR signaling,

ATM phosphorylates histone H2A variant H2AX to generate g-
H2AX,which is considered tobeanearly indicator for the initiationof

DSBs and of DNA damage response. g-H2AX is used as a biomarker

of lung chemoradiotherapy (46–48), and its overexpression is an

independent prognostic indicator of poor OS inNSCLC patients (29,

49). Moreover, the g-H2AX promotes NBS1 expression at damage

sites, that it perhaps promotesHRorDNAcheckpoint signaling (50).

NEIL3 is acknowledged as a DNA base excision repair enzyme that

removesbulkybase lesions fromDNA,contributes to thechoiceof the

DSBrepairpathwaysbypromotingBER(51,52). It isoverexpressed in

LUAD, and its overexpression is related to LUAD stage, tumor size,

and poor prognosis (53). In LUAD, cell cycle and TP53 signaling

pathways are the two major pathways affected by NEIL3 (53). In

addition, several studies have shown that the loss of NEIL3 reduces

cellular proliferation and high expression of NEIL3 can promote

chemoradiotherapy resistance (54–57). RAD1 plays crucial roles in

DNA repair and cell cycle checkpoint control; however, the role of

RAD1 in cancer is not completely understood, and there may be

differences in its effects in different tumor types. The present study

demonstrated that RAD1was highly expressed in LUAD, and higher

expressionofRAD1 is correlatedwithpoor survival of LUADpatients
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FIGURE 8

Validation of six DDR-related signatures by the LASSO regression model. (A) Distribution of risk scores in NSCLC subclasses. (B - D) Kaplan-
Meier OS analysis of the prognostic DDR-related signature in NSCLC and NSCLC subtypes. (E) Evaluation of the prognostic values for different
clinicopathological characteristics (age, smoking_year, gender, stage, T staging, N staging, M staging, and EGFR_mutation) as well as a risk score
using univariate Cox regression analysis. (F) Multivariate Cox regression analysis was used to test the independence of the risk score and other
factors for predicting the prognosis of NSCLC.
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(58). However, some studies have reported differences regarding the

role of RAD1 in tumors. A previous study has reported that RAD1

knockdown decreases cell viability and increases cell sensitivity to

cisplatin, and they demonstrated that RAD1 acts as a BRCA-like

tumor suppressor in hereditary ovarian cancer (59). Another study

has reported that mouse RAD1 deletion enhances susceptibility for
Frontiers in Oncology 14
skin tumor development (60). However, the role of these six DDR-

related genes linked to NSCLC in tumor development and function

rema ins l a rge l y unknown . Then , RT- qPCR and

immunohistochemistry analyses demonstrated that these six genes

were all activated in NSCLC, which implied that the six signature

genes involved in DDR in NSCLC might not benefit prognosis and
A

B C

FIGURE 9

mRNA and protein expression levels of the prognostic DDR-related signature genes in NSCLC. (A) The mRNA expression of CDC25C, NEIL3,
H2AFX, NBN, XRCC5, and RAD1 in normal lung and NSCLC (LUAD and LUSC) tumor tissues via the GEPIA. *p < 0.05; **p < 0.01. (B)
Immunohistochemistry analysis showing the protein expression of the signature genes in normal lung and NSCLC tumor tissues obtained from
the HPA database (data for NEIL3 were not available). (C) Immunofluorescence images of CDC25C, H2AFX, NBN, XRCC5, and RAD1 in cells with
green, blue, and red indicating target proteins, nuclei, and microtubules, respectively.
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could even be resistance to the treatment with platinum-containing

regimens. Thus, these six genes in the classifier may provide new

insights into NSCLC complex etiology, and these findings may also

provide important clues in thedevelopmentoffuture therapies to treat

DDR-based cancers and even a promising therapeutic target in the

treatment of malignant tumors.
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Like most tumors, lung cancer is a multi-stage development

process that involves multiple genes and multiple factors.

Furthermore, we found that there were significant differences

between the two subtypes in clinical features, molecular features,

immune cell components, genemutations, DDR pathway activation

status and clinical outcomes. The high-risk patients (C2 subtype)
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FIGURE 10

Effects of CDC25C knockdown on proliferation and chemosensitivity in NSCLC cells. (A) Drug response analysis by Cancer Treatment Response
gene signature DataBase (CTR-DB). (B) Immunofluorescence was performed 72 h after transfection. (C) Expression of CDC25C mRNA by
qRT-PCR in A549 and NCl-H1299 cells transfected with shRNA-NC and shRNA-CDC25C. (D) Plate colony formation assay (n=3). (E) CCK8
detection of the proliferation of shRNA-CDC25C-transfected A549 and NCl-H1299 cells (n=4). And all data are illustrated as mean ± SD;.NS, no
significance; *p<0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001. (F) Drug sensitivity of Paclitaxel was represented by the half-maximal
inhibitory concentration (IC50) (n = 4).
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had more active DDR status, which indicated that activated DDR

pathway led to poor prognosis and resistance for

chemoradiotherapy. Another hand, a higher proportion of TP53,

TTN, CSMD3,MUC16, RYR2,USH2A, LRP1B, ZFHX4, XIRP2 and

SPTA1 mutations occur in C1 subtype compared to C2. Like,

approximately common 53% of NSCLC patients harbor activating

mutations in TP53 (data from cBioPortal), but the proportion of

TP53 mutations for C1 was up to 82%. Several studies have

demonstrated that TP53 mutations may accelerate the incidences

of therapy resistance (61–63). Immune infiltration analysis showed

that stromal score, immune score, and total score were significantly

higher at high-risk patients. In addition, immune checkpoint genes,

including CD4, IL6, CD274 (also known as PD-L1), LAG3, PDCD1

(also known as PD1) and TGFB1 were higher expressions in the

low-risk patients. Further, TIDE analysis demonstrated that the

high-risk patients had significantly lower score, implying that high-

risk patients may respond better to immunotherapy. These results

suggested that the unresponsiveness of the low-risk NSCLC patients

to ICB treatment may be caused by PD-1/PD-L1 expression or

combination with abnormal expression of other genes (64). For

example, TGFb attenuates tumor response to PD-L1 blockade by

contributing to exclusion of T cells (65) or other regulatory

mechanisms, such as alteration of DDR mutation.

Collectively, we identified six DDR-related prognostic genes,

namely, CDC25C,NEIL3,H2AFX,NBN, XRCC5, and RAD1, which

may be promising therapeutic targets as well as prognostic markers

for NSCLC. According to the prognostic six DDR-related gene

model, it suggested that low-risk NSCLC patients choose

chemoradiotherapy regimen, while high-risk patients choose

immune checkpoint inhibitors for further treatment may have a

better prognosis. However, the current study has several limitations.

First, the biological functions of CDC25C, NEIL3, H2AFX, NBN,

XRCC5 and RAD1 in NSCLC are not fully understood. Second, the

mechanisms of CDC25C, NEIL3, H2AFX, NBN, and XRCC5

serving as risk factors as well as RAD1 serving as a protective

factor for NSCLC prognosis are unclear and will require further

study. Third, Prospective clinical studies should be conducted to

validate the six DDR-related genes as predictive or prognostic

markers in patients with NSCLC.
Conclusion

In conclusion, we have established a six DDR-related gene

signature for prediction of NSCLC prognosis. This signature is

independently predictive of NSCLC patient survival. Among these

genes, CDC25C, NEIL3, H2AFX, NBN, XRCC5 and RAD1 were all

validated to be upregulated in NSCLC tumor tissues. All signature

genes demonstrated a positive association with unfavorable

prognosis of NSCLC patients, except for RAD1, which was

associated with better prognosis. In addition, there were close

interactions between the genes, and they regulate both DNA

damage response and anticancer efficacy. Therefore, CDC25C,
Frontiers in Oncology 16
NEIL3, H2AFX, NBN, XRCC5 and RAD1 may be potential

therapeutic markers in NSCLC. According to this risk model,

doctors can stratify NSCLC patients by risk score before

treatment, thus providing NSCLC patients with individual

management and optimal therapeutic strategies.
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