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In cancer diagnostics, a considerable amount of data is acquired during routine

work-up. Recently, machine learning has been used to build classifiers that are

tasked with cancer detection and aid in clinical decision-making. Most of these

classifiers are based on supervised learning (SL) that needs time- and cost-

intensive manual labeling of samples by medical experts for model training.

Semi-supervised learning (SSL), however, works with only a fraction of labeled

data by including unlabeled samples for information abstraction and thus can

utilize the vast discrepancy between available labeled data and overall available

data in cancer diagnostics. In this review, we provide a comprehensive

overview of essential functionalities and assumptions of SSL and survey key

studies with regard to cancer care differentiating between image-based and

non-image-based applications. We highlight current state-of-the-art models

in histopathology, radiology and radiotherapy, as well as genomics. Further, we

discuss potential pitfalls in SSL study design such as discrepancies in data

distributions and comparison to baseline SL models, and point out future

directions for SSL in oncology. We believe well-designed SSL models to

strongly contribute to computer-guided diagnostics in malignant disease by

overcoming current hinderances in the form of sparse labeled and abundant

unlabeled data.

KEYWORDS
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Introduction

In the daily routine of cancer diagnostics, an abundance of medical data in the form

of images, health records and genetic assays are gathered. Potentially, these data can serve

as training input for supervised machine learning classifiers, however, the availability of

large-scale labeled datasets represents a substantial bottleneck that limits the

advancement of supervised learning (SL) techniques for diagnostic purposes. As the
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currently most popular technique in ML-guided diagnostics, SL

requires data with high-quality labels to train a classifier that is

subsequently tested on previously unseen data and evaluated

based on its hit-rate to accurately predict labels in a test set that

is withheld from training. The major obstacle in this setting is

the disparity between overall available data and available data

with labels. The latter is the essential prerequisite for supervised

learning, however, obtaining a sufficiently large set of labeled

data is time- and cost-intensive, especially in highly specialized

domains as cancer diagnostics. The discrepancy between an

increasing number of cancer patients in an aging society and

the receding physician workforce as well as the correspondingly

ever-growing workload of radiologists, pathologists and

oncologists poses a further constraint on the labeling process

as their experience and knowledge is needed to provide high-

quality labels. Still, time and resources for the generation of such

large-scale labeled data sets is often missing (1, 2). Therefore,

strategies are needed that leverage the overall amount of

available data while imposing manageable needs for labeling.

Conceptually, Semi-Supervised Learning (SSL) can be

positioned at midway between Unsupervised Learning (UL),

where no labels are provided and algorithms deconstruct

patterns from unlabeled data e. g. for cluster analysis, and SL,

where a classifier is trained on labeled data to correctly map

labels to unseen data from the same distribution (3). Hence, SSL

offers the opportunity to leverage the vast amounts of unlabeled

medical data that are acquired in clinical routine to boost

classification performance in a diagnostic setting without the

need for fully-labeled extensive data sets. Nevertheless, there are

critical assumptions for SSL to function properly and models

have to be conceptualized and developed with diligence in order

to actually provide a performance boost compared to SL models.

In this review, we aim to provide medical professionals with

an outline of key concepts of SSL and how to apply it to medical

data with a focus on oncology. First, we introduce main

functionalities of SSL and delineate it from SL and UL.

Subsequently, we provide an overview of SSL techniques

applied to cancer diagnostics and care differentiating between

image-based and non-image-based use-cases. Finally, we discuss

pitfalls in SSL research design for medical applications and

provide an outlook on future prospects.
What is semi-supervised learning?

The key concept to delineate SL, SSL and UL is the labeling

process as well as whether at all and if so, how labeled data is

being processed. Labeling refers to the process of attaching

meaningful information for classification to raw data. One way

to do this is to have experts, e. g. medical doctors, evaluate the

raw data, e. g. medical images (4). For example, whole-slide

images (WSI) of tumor tissue can be labeled by pathologists or

chest CAT scans for potentially malignant lesions can be labeled
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by radiologists. Alternatively in SSL, a limited number of labels

can be used to self-train an algorithm iteratively to attach labels

to unlabeled raw data and subsequently train a classifier on these

self-labeled data (5). Conceptually, these labeled data provide the

basis for training SL algorithms (training stage) that are

subsequently supposed to apply previously learned patterns to

unseen data and assign correct labels (testing stage, Figure 1A)

(6). UL on the other hand does not use any labeled data at all. In

UL, unlabeled data is sorted according to inherent patterns that

delineate different clusters (7), e. g. UL can identify patient

clusters with co-occurring genetic variants (Figure 1B). SSL uses

both labeled and unlabeled data in the sense that labeled data are

used to train a classifier for a given use-case and the addition of

unlabeled data is intended to leverage information gain and thus

boost classification performance (Figure 1C) (8). It is therefore

advantageous when a large dataset is available for which only a

limited number of labels can be obtained, i. e. due to time or cost

constraints as is usually the case for medical data.

While the addition of unlabeled data can be advantageous, it

can also cause issues with model performance leading to

stagnation or even degradation if crucial assumptions of SSL

design are not met (9). For SSL models to work robustly, it is

necessary that the unlabeled data should contain information

that is relevant for label prediction. Therefore, it is crucial that

both labeled and unlabeled data follow the same distribution

(10). For example, if a classifier is trained on labeled

histopathological images of colorectal cancer, the unlabeled

data should ideally encompass the same tumor entity, same

staining procedure and same magnification. Hence, the

algorithm can infer that two samples that are close to each

other at the input level (according to their features) should also

be close to each other at the output level, i. e. should receive the

same labels (smoothness assumption) (8). If these high-

dimensional data points at the input level are mapped to a

lower dimension in Euclidean space, they are usually clustered

along low-dimensional structures, so-called manifolds. Data

points that lie on the same manifold should therefore be of the

same class (8). If both previous assumptions – inputs with

similar feature vectors will be close to each other in an n-

dimensional feature space and be located on the same

manifold if mapped to a lower dimensional space - are true,

the decision boundary for a classifier should then lie in an area

with low density, i. e. where data points are separate and of

different classes (8). Thus, the inclusion of unlabeled data (as

long as it is from the same distribution as labeled data) can

improve the designation of the decision boundary and therefore

boost classification performance (Figure 2).

As is the case for most machine learning applications, there

is no ‘one-size fits all’ approach and different methods and

algorithms have to be evaluated for any given use-case. What

further complicates model selection in SSL is a non-standardized

taxonomy of methodologies which makes it harder to reproduce

techniques proposed in the literature. Van Engelen et al. (3)
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recently proposed a taxonomy based on the distinction of

inductive or transductive methods. The former encompass

methods such as clustering with subsequent label assignment,

pseudo-labeling or self- and co-training, i. e. methods that assign

labels to unseen data and thus can potentially generalize, and the
Frontiers in Oncology 03
latter include graph-based methods that transfer information

along connections of dataset-specific graphs only including data

points in a given sample which then cannot be generalized to

other data outside the specific sample (3). As for medical

applications, the development of robust generalizable
A

B

C

FIGURE 1

Inputs and Outputs of supervised, unsupervised and semi-supervised learning. In supervised learning (A) all data is labeled. Labels are used to
train a classifier to map learned labels to previously unseen data. Unsupervised learning (B) does not use labels. Data is being clustered into
groups based on inherent patterns. Semi-supervised learning (C) uses both labeled and unlabeled data. Labels are used to train a classifier which
is augmented by unlabeled data of the same distribution to derive additional information in order to boost performance.
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FIGURE 2

How does unlabeled data boost classification performance? Consider a number of features n at the input level which corresponds to an n-
dimensional feature space. In such an n-dimensional coordinate system, every input is located according to its feature vector given by its n
features and can thus be sorted by similarities and differences in relation to other inputs which is represented by proximity or distance points in
the feature space. For clarity reasons, we only consider two features (x, y) in a two-dimensional feature space. When labeled data is sparse
(A), as is often the case in medical data sets, the decision boundary of a classifier is less constraint. This may lead to inaccuracies and poor
generalization on external data. If many labels are given, the decision boundary is more constraint and thus a more accurate classifier is given
that can potentially generalize better. However, manual labeling of such large data sets is often time- and cost-ineffective. Unlabeled data is
often available in abundance (C) and can be used to constrain the decision boundary of a classifier in a way as large labeled data sets could do,
however, without the need for excessive labeling. The decision boundary then lies in an area with low density. Nevertheless, as can be derived
from (B) and (C), the performance gap between supervised and semi-supervised learning shrinks as the amount of labeled data grows if no
further unlabeled samples are provided.
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algorithms is desirable for utilization in clinical practice and

hence most applied techniques in cancer diagnostics should be

developed as inductive methods.
Studies on semi-supervised learning
in cancer diagnostics

Research efforts in applying SSL for diagnostics and care in

oncology can broadly be divided data-wise by usage of images or

non-image data for model development. Naturally, image-based

use-cases most frequently stem from the fields of histopathology,

radiology and radiotherapy, while non-image-based applications

most frequently include genetic data.
Image-based semi-supervised learning
for cancer detection

Histopathology
In histopathology as a use-case, classification tasks using

computer vision have to be divided into patch- or image-level

diagnosis, i. e. whether areas with suspected malignancies should

be distinguished from normal surrounding tissue or whether the

sample as a whole should be labeled ‘malignant’ if any sign of

neoplastic tissue is present. Importantly for model building,

patch-level classification requires image segmentation a priori to

classification, i. e. different areas of the sample have to be

discriminated according to e. g. shapes, patterns and colors.

Using a multi-center dataset of > 13.000 colorectal cancer WSI,

Yu et al. (11) developed a mean teacher model to detect

malignant patches that achieves a comparable area under the

curve (AUC) compared to a multi-pathologist benchmark. They

report a substantial improvement of SSL over SL when only a

limited number of labels is available also validating their model

on lung cancer and lymph node samples, but add that with a

fully labeled set (with well above 10.000 labels) no difference

between SSL and SL was detected. Similarly, Shaw et al. (12)

deploy a student-teacher chain model where an iterative process

of training a student model that subsequently becomes the

teacher model for the following student and so on allows to

uti l ize only 0.5% labeled data to detect colorectal

adenocarcinoma from WSI. Wenger et al. (13) utilized

consistency regularization and self-ensembling in order to

detect and grade bladder cancer samples and report a 19%

higher accuracy over baseline SL using only 3% labeled data.

Jaiswal et al. (14) compared pre-trained models in detecting

neoplastic infiltration of lymph node WSI and reported a high

risk of overfitting after short training epochs which was tackled

using ensemble learning. Addressing the challenge of variation

within classes and similarities between classes, Su et al. (15)

propose association cycle consistency loss and maximal
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conditional association to optimize the loss function reporting

improved performance over learning by association on breast

cancer histopathological images. Comparing SL and SSL, Al

Azzam et al. (16) report similar accuracies for SSL when using

only half the number of labels needed for SL in breast cancer

prediction from fine needle aspirates. To grade breast cancer

samples, Das et al. (17) employ a Generative Adversarial

Network (GAN) where the discriminator uses an unsupervised

model that is stacked over a supervised model with shared

parameters to utilize both labeled and unlabeled samples. An

Auxiliary Classifier GAN that divides lung cancer samples into

malignant and benign patches which allows for subsequent

pixel-based PD-L1 scoring is reported by Kapil et al. (18) for

non-small cell lung cancer tissue needle aspirates. Both Marini

et al. (19) and Li et al. (20) address the challenge of Gleason

scoring prostate cancer samples. The former use a teacher-

student approach with different combinations of a pseudo-

labeling teacher training a student model utilizing both SSL

and semi-weakly supervised learning that are compared to a

student-only baseline (19). The latter use a pixel-based approach

on prostate WSI with expectation maximization by a fully

convolutional encoder-decoder net incorporating both

internally annotated and external weakly annotated image data

compared to a model trained on a fully labeled dataset alone

(20). Both report performance improvements for the SSL

methods using additional un- or weakly-labeled data. Lastly, to

detect melanoma, Masood et al. (21) train deep belief networks

in parallel to support vector machines that are supposed to

counteract misclassified data with adjusted weights and finally

compare their model to several SL-based models and report

superior performance for their SSL-based approach. Table 1

provides an overview of recent studies that use SSL

in histopathology.

Radiology and radiotherapy
The detection of lung nodules in computer-assisted

tomography (CAT) scans is a common theme in SSL-based

research in radiology. Khosravan et al. (22) use a multi-tasking

CNN to concomitantly learn nodule segmentation and false

positive nodule reduction on chest CAT scans incorporating SSL

to accommodate for unlabeled data in the segmentation process

and report high accuracies compared to baseline. Xie et al. (23)

address the task of differentiating between benign and malignant

nodules using a semi-supervised adversarial model with an

autoencoder unsupervised reconstruction net, learnable

transition layers, and a supervised classification net and report

high accuracies on a benchmark dataset for lung nodule

classification. Using a similarity metric function to iteratively

include unlabeled samples via SSL, Shi et al. (24) use a transfer

learning approach with a pre-trained network that differentiates

between nodules and nodule-like tissue to identify lung nodules

and report high accuracies in their initial dataset, but
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acknowledge performance drops in an independent validation

set. For breast cancer detection in mammogram images, both

Sun et al. (25) and Azary et al. (26) use a co-training approach.

In the former study, a three-step method of adjusting weights,

selecting features and co-training-based labeling is proposed and

a 7.4% performance gain for the combination of labeled and

unlabeled data compared to labeled data only is reported (25).

The latter study incorporates SSL in pixel-based tumor

segmentation and proposes co-training with support vector

machines and Bayesian classifiers (26). Using breast

ultrasound images for tumor detection in a joint dataset of

many weakly and few strongly annotated images, Shin et al. (27)

propose a self-training method and report similar accuracies for

only ten strongly annotated images joined by a large number of

weakly annotated ones compared to 800 strongly annotated

images only. Wodzinski et al. (28) aim to identify target volumes

for postoperative tumor bed irradiation in breast cancer using a

semi-supervised volume penalty via a multi-level encoder

decoder architecture and report a decrease in target

registration error and tumor volume ratio. For brain tumor

detection, Ge et al. (29), Chen et al. (30), and Meier et al. (31)

investigate brain magnetic resonance imaging (MRI) scans. Ge

et al. (29) utilize a graph-based approach to create pseudo-labels

and accommodate for moderate-sized data sets by generating

additional images with GANs. They use their model for glioma

grading and IDH-mutation status prediction (29). In a step-wise

approach, Chen et al. (30) deploy a student-teacher-based model

and extract hierarchical features using an adversarial network to

detect lesions in brain MRI scans that correspond to either

multiple sclerosis, ischemic stroke or tumor tissue. In a pre- and
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postoperative comparative setting, Meier et al. (31) investigate

residual tumor tissue in brain MRI scans of ten high-grade

glioma patients with semi-supervised decision forest and report

improved performance and computation time compared to

conventional segmentation methods. Lastly, Turk et al. (32)

address thyroid cancer detection in ultrasound texture data

with linked clinical scoring systems as additional features

using an autoencoder-based model and report a high

sensitivity despite their imbalanced dataset by using synthetic

minority oversampling. Table 2 provides an overview of studies

using SSL in radiology or radiotherapy.
Non-image-based semi-supervised
learning for cancer management

While the aforementioned image-based studies primarily

focus on detection of cancer, research efforts of SSL in

oncology that do not use images predominantly address the

task of estimating survival, predicting relapse and identifying

genetic subtypes. Examining gene expression data from patients

with breast, lung, gastric and liver cancer, Chai et al. (33) use a

semi-supervised self-paced learning framework with Cox

proportional hazard and accelerated failure time models to

classify cancer patients and predict censored data thereby

reporting improved separation of survival curves for their

model compared to baseline supervised models. Also using

gene expression data but in the context of colorectal and

breast cancer, Shi et al. (34) predict recurrence via low density

separation. They report increasing accuracies for SSL over
TABLE 1 Overview of Studies on Semi-Supervised Learning in Histopathology.

Authors and
Reference

Entity Objective Technique Publicly
Available Code

Yu et al. (11) colorectal and lung cancer as
well as lymph nodes

detecting malignant patches
in WSI

mean teacher yes

Shaw et al. (12) colorectal cancer detecting malignant patches
in WSI

student-teacher-chain no

Wenger et al. (13) bladder cancer detection and grading consistency regularization and self-ensembling no

Jaiswal et al. (14) metastasized tumors detecting metastases in
lymph node WSI

pseudo-labeling no

Su et al. (15) breast cancer detecting malignant
samples in WSI

combination of association cycle consistency loss and
maximal conditional association loss

no

Das et al. (17) breast cancer grading samples stacked semi-supervised GAN no

Al Azzam et al.
(16)

breast cancer cancer detection from
nuclei morphologies

comparison of 9 SL and SSL classifiers no

Kapil et al. (18) lung cancer PD-L1 scoring auxiliary classifier GAN and pixel-based quantification no

Marini et al. (19) prostate cancer Gleason scoring teacher-student chain and pseudo-labeling yes

Li et al. (20) prostate cancer Gleason scoring expectation maximization-based fully convolutional
encoder-decoder network

no

Masood et al. (21) melanoma detecting malignant
samples

Co-training of Deep Belief Network and advised SVM no
GAN, generative adversarial networks; SL, supervised learning; SLL, semi-supervised learning; SVM, support vector machines; WSI, whole-slide-images.
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baseline SL classifiers with increasing numbers of unlabeled data.

Addressing the same task in the same tumor entities, Park et al.

(35) resort to a semi-supervised graph regularization algorithm

to identify functionally similar gene pairs and thereby predict

recurrence in breast and colorectal cancer gene expression data

including labeled and unlabeled nodes. Hassanzadeh et al. (36)

designed an ensemble model based on decision trees and

boosting to predict survival for patients harboring kidney,

ovarian, or pancreatic cancer for whom only incomplete

clinical data was available and report improved accuracy for

SSL compared to SL baselines. Cristovao et al. (37) compared SL

and SSL in subtyping breast cancer using multi-omic data,

however, did not find any performance improvements when

comparing SSL to baseline logistic regression. Also investigating

multi-omics data, Ma et al. (38) developed affinity fusion

networks to cluster patients based on their specific omics

profile into lung, kidney, uterus or adrenal gland cancer

groups. The authors report a high predictive accuracy with

training on less than one percent of labeled data. Sherafat

et al. (39) developed a positive-unlabeled learning model using

auto machine learning to predict tumor-rejection mediation

neoepitopes from exome sequencing data in ovarian cancer.

The authors report improved performance over model-based

classifiers for somatic variant calling and peptide identification.

Both Camargo et al. (40) and Livieris et al. (41) propose novel

active learning models that are tested on either data of acute
Frontiers in Oncology 07
myeloid leukemia, E. coli, and plant leaves, or breast and lung

cancer, respectively. In both studies, the authors report higher

accuracies for their respective models, root distance boundary

sampling (40) and improved CST voting (41), compared to both

SSL and SL classifiers. Table 3 summarizes non-image-based

applications of SSL with relevance to cancer detection

and management.
Discussion

SSL represents a viable approach to the dilemma of big data

in cancer medicine, especially in the context of image data which

is usually acquired in abundance during clinical routine work-

ups, but adequate labeling by medical experts is often time

consuming and thus cost-ineffective. The main goal of SSL in

this context is to achieve classification performances that surpass

those of SL alone when labeled data is limited and at the same

time abundant unlabeled data is available. Crucially, SSL models

have to satisfy the above-mentioned assumptions: i) both labeled

and unlabeled data have to be drawn from the same distribution,

ii) similarity of data on the input level results in similarity of data

at the output level (smoothness), iii) hence data points on the

same low-dimensional structures (manifolds) receive the same

labels and thus, iv) the decision boundary runs through an area

of low density, i.e. where data points are separated and of
TABLE 2 Overview of Studies on Semi-Supervised Learning in Radiology and Radiotherapy.

Authors and
Reference

Entity Objective Technique Publicly
Available
Code

Khosravan et al.
(22)

lung cancer detecting malignant nodules in chest CAT
scans

SSL-based multi-task network no

Xie et al. (23) lung cancer detecting malignant nodules in chest CAT
scans

semi-supervised adversarial autoencoders, learnable
transition layers, and supervised classification

no

Shi et al. (24) lung cancer detecting malignant nodules in chest CAT
scans

transfer learning and semi-supervised feature matching no

Sun et al. (25) breast cancer detecting breast cancer in mammogram
images

co-training no

Azary et al. (26) breast cancer detecting breast cancer in mammogram
images

co-training no

Shin et al. (27) breast cancer detecting breast cancer in ultrasound
images

joint weakly- and strongly-supervised framework and
self-training

yes

Wodzinski et al.
(28)

breast cancer identifying target volumes for radiotherapy semi-supervised multilevel encoder-decoder yes

Ge et al. (29) brain tumor glioma grading and IDH-mutation
prediction in MRI scans

GAN-augmented networks in a graph-based
framework

no

Chen et al. (30) brain tumor, multiple
sclerosis, ischemic stroke

detecting pathological samples in MRI scans student-teacher chain combined with adversarial
learning

yes

Meier et al. (31) brain tumor detecting residual tumor tissue in
postoperative brain MRI

semi-supervised decision forest no

Turk et al. (32) thyroid cancer detecting thyroid cancer from ultrasound
textures and clinical scoring systems

autoencoders and synthetic minority oversampling no
CAT, computer-assisted tomography; GAN, generative adversarial networks; MRI, magnetic resonance imaging.
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different classes. Divergence from these key assumptions can not

only lead to performance stagnation, but also degradation as

unlabeled data is handled as noise that blurs information

abstraction of the classifier (42). Importantly, this is what

delineates SSL from transfer learning, where a classifier is first

trained on one use-case and subsequently transferred to another

similar use-case where it is supposed to perform a similar task

(43), e. g. a classifier trained by identifying alteration A in

immunohistochemistry on WSI in a supervised setting could

potentially be transferred to also identify alteration B if staining

is similar. Therefore, the most important question before

conducting SSL experiments is whether labeled and unlabeled

data are actually from the same distribution and if so whether an

inclusion of the unlabeled samples might lead to a performance

gain over baseline SL.

Several of the above-mentioned studies reported substantial

performance gains for SSL as long as the model was short on

labeled data, however, when the amount of labeled data was

increased or only labeled data was used the gap between SSL and

SL performance shrunk. However, the frequent lack of a

comparison between baseline SL and SSL classifiers further

complicates the evaluation of such studies and only few

studies do report baseline comparisons (11, 13, 19, 22, 33, 37)

and still even fewer report equal tuning of hyperparameters (11,

19) for SSL and SL classifiers to make results comparable. When

it comes to model design, it is essential to note that different

algorithms may perform differently with regard to different tasks

(9). While this sounds obvious, it is still the case that often only

the use of a single algorithm is reported which either may be due

to a lack of comparative testing or due to publication bias as only

the successful algorithm is selected for a given manuscript.

However, to evaluate suitable model designs for different tasks,

we advocate for a full report on tested algorithms ideally

including a comparison between different SSL model set-ups,
Frontiers in Oncology 08
their SL baseline, adequate hyperparameter tuning for both SSL

and SL, and the models’ individual performance in comparison.

Further, varying the amount of labeled and unlabeled data for

both training and testing sets seems warranted to find the

equilibrium of optimal performance for different tasks in

future studies of SSL in oncology. The lack of reproducibility

in research on artificial intelligence in general (44) is also likely

to be a future issue in biomedical use-cases of SSL as

unfortunately only a minority of studies provide publicly

accessible code to support their results (11, 19, 27, 28, 30, 38,

40). As is evident from previous studies on SSL in oncology, use

cases mainly include tumor entities with high prevalence such as

breast (15–17, 25–28, 33–35, 37, 41), lung (18, 22, 23, 33, 34, 38,

41), and colorectal cancer (11, 12, 34, 35) where single centers

can amass sufficiently sized data sets to conduct SSL

experiments. This is also reflected in the overwhelming

absence of studies on SSL in hematology with only one single

study (40) including any hematological neoplasm at all.

Therefore, data-sharing is crucial in order to expand use-cases

to rare tumor entities. Slight differences between centers in how

training data is handled – e.g. differences in imaging devices used

and thus consecutive differences in image format, shape,

contrast, resolution and brightness – may also influence

individual models. A model trained solely on single center

image data may therefore significantly drop in performance if

it is introduced to data of another source. Hence, pooling

heterogenous data of different sources for initial model

training is useful in order to obtain classifiers that can be

widely generalized beyond in-house use for single institutions.

Not only may the crowd-sourcing of research in biomedical SSL

vastly enlarge the pool of unlabeled (and possibly labeled) data,

but it may also help identify and modify promising models for

multi-center prospective validation. The latter is another key

shortcoming of previous studies that were often confined to
TABLE 3 Overview of Studies on Semi-Supervised Learning using non-image-based data.

Authors and
Reference

Entity Objective Technique Publicly Avail-
able Code

Chai et al. (33) breast, lung, gastric and liver
cancer

predicting survival self-paced learning with Cox proportional hazard and
accelerated failure time models

no

Shi et al. (34) colorectal and breast cancer predicting relapse low density separation no

Park et al. (35) colorectal and breast cancer predicting relapse graph-based regularization no

Hassanzadeh et al.
(36)

kidney, ovarian and
pancreatic cancer

predicting survival ensemble learning with robust boost and decision trees no

Cristovao et al. (37) breast cancer subtyping, model comparison comparison of different SL and SSL algorithms no

Ma et al. (38) lung, kidney, uterus and
adrenal gland cancer

predicting primary tumor site Affinity Network Fusion yes

Sherafat et al. (39) ovarian cancer predicting tumor-rejection
mediating neoepitopes

Positive-unlabeled Learning using Auto-ML no

Camargo et al. (40) acute myeloid leukemia, E.
coli, plant leaves

model comparison root distance boundary sampling yes

Livieris et al. (41) breast and lung cancer model comparison self- and co-training with ensemble learning no
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single centers and retrospective evaluation. Thus, publicly

available code, data-sharing for both labeled and unlabeled

data and prospective collaborative research efforts will be key

to evaluate models for future clinical applicability. Shared data

and models may then also enable the evaluation of a variety of

tumor entities in the same diagnostic modality, i. e. differential

diagnosis of tumor entities in histopathological WSI.

This, however, leads to a frequent problem of artificial

intelligence in general that is even more pronounced in the

sensitive context of oncology where diagnostic accuracy is

essential to provide high quality care to patients with life-

threatening diseases: explainability of ML models. ML and

especially deep learning has often been referred to as a ‘black

box’ (45) and the path of decision making within a model is hard

to interpret. While this is already a key issue in SL, SSL adds to

the confusion as information is also derived from unlabeled

samples. The apparent lack of interpretability when it comes to

clinical validation of model outputs stresses the urgent need to

incorporate mechanisms of explainability into SSL models that

make outputs or even intermediate steps such as label

assignment on unlabeled samples traceable for clinical experts.

The virtual lack thereof in previous studies signals a discrepancy

between what is technologically possible and what is clinically

acceptable for routine use as ‘black box’models will likely have it

harder to be included in routine clinical workflows due to a lack

of acceptance in diagnostic specialties and ethical concerns in

cancer management (46). Still, given large unlabeled data sets

that often are routinely acquired in cancer diagnostics combined

with the trend of a shrinking physician workforce that is

occupied with complex tasks that have to be performed in

increasingly shorter periods of time (1), SSL provides a low-

cost and potentially high-benefit solution to develop clinically

meaningful ML models for diagnostic tasks in oncology.
Conclusion

While SSL provides a possible solution to the vast

discrepancy between available labeled and unlabeled data in

cancer diagnostics, it should not be considered a silver bullet in

the development of accurate classifiers for cancer detection.

Adequate selection of labeled and unlabeled data of the same

distribution as well as comparisons to baseline SL, among others,
Frontiers in Oncology 09
are crucial to build robust SSL models. While previous research

efforts of SSL in oncology have mainly comprised retrospective

single-center studies, future research is warranted in multi-

center prospective model evaluation to design robust and

explainable classifiers for implementation in the clinical

routine of cancer diagnostics.
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