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Summary: We built a deep-learning based model for diagnosis of HCC with

typical images from four-phase CT and MEI, demonstrating high performance

and excellent efficiency.

Objectives: The aim of this study was to develop a deep-learning-based model

for the diagnosis of hepatocellular carcinoma.

Materials and methods: This clinical retrospective study uses CT scans of liver

tumors over four phases (non-enhanced phase, arterial phase, portal venous

phase, and delayed phase). Tumors were diagnosed as hepatocellular

carcinoma (HCC) and non-hepatocellular carcinoma (non-HCC) including

cyst, hemangioma (HA), and intrahepatic cholangiocarcinoma (ICC). A total

of 601 liver lesions from 479 patients (56 years ± 11 [standard deviation]; 350

men) are evaluated between 2014 and 2017 for a total of 315 HCCs and 286

non-HCCs including 64 cysts, 178 HAs, and 44 ICCs. A total of 481 liver lesions

were randomly assigned to the training set, and the remaining 120 liver lesions

constituted the validation set. A deep learning model using 3D convolutional

neural network (CNN) and multilayer perceptron is trained based on CT scans

and minimum extra information (MEI) including text input of patient age and

gender as well as automatically extracted lesion location and size from image

data. Fivefold cross-validations were performed using randomly split datasets.

Diagnosis accuracy and efficiency of the trained model were compared with

that of the radiologists using a validation set on which the model showed

matched performance to the fivefold average. Student’s t-test (T-test) of

accuracy between the model and the two radiologists was performed.

Results: The accuracy for diagnosing HCCs of the proposed model was 94.17%

(113 of 120), significantly higher than those of the radiologists, being 90.83%

(109 of 120, p-value = 0.018) and 83.33% (100 of 120, p-value = 0.002). The

average time analyzing each lesion by our proposed model on one Graphics
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Processing Unit was 0.13 s, which was about 250 times faster than that of the

two radiologists who needed, on average, 30 s and 37.5 s instead.

Conclusion: The proposed model trained on a few hundred samples with MEI

demonstrates a diagnostic accuracy significantly higher than the two

radiologists with a classification runtime about 250 times faster than that of

the two radiologists and therefore could be easily incorporated into the clinical

workflow to dramatically reduce the workload of radiologists.
KEYWORDS

computed tomography, diagnosis, hepatocellular carcinoma, deep learning,
arificial intelligence
Highlights
1. The accuracy for diagnosing hepatocellular carcinomas of

the proposed model and two radiologists was 94.17%

(113 of 120), 90.83% (109 of 120, p = 0.018), and 83.33%

(100 of 120, p = 0.002), showing significant differences.

2. The average time analyzing each lesion by our proposed

model was 0.13 s, which was hundred times faster than

the two radiologists.

3. The proposed model can serve as a quick and reliable

“second opinion” for radiologists.
Introduction

Hepatocellular carcinoma (HCC) is the third most common

malignancy worldwide, with incidence rates continuing to rise

(1). CT slices often serve as an important assistive diagnostic tool

for HCCs (2). According to the American Association for the

Study of Liver Disease (AASLD) and the Liver Imaging

Reporting and Data System (LI-RADS) reported by the

American College of Radiology, the hallmark diagnostic

characteristics of HCC on multi-phasic CT slices are arterial

phase hyper-enhancement followed by washout appearance in

the portal-venous and/or delayed phases (3, 4). Four-phase CT

slices that contain non-enhanced, arterial, portal-venous, and

delayed phases are recommended as the clinical standard.
, hemangioma; ICC,
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EI, minimum extra
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However, ensuring the diagnosis performance of a computer-

aided system equivalent to that of radiologists with minimum

extra information (MEI) about the patients for instance

including only basic data about age and gender on a relatively

small dataset based on four-phase CT images is still challenging

in order to relieve the radiologists’ workload as well as to

improve the diagnosis throughout (5).

Machine learning algorithms have been widely applied in the

radiological classification of various diseases and may potentially

address this challenge (6–8). Recently, among different machine

learnings, deep learning with convolutional neural network

(CNN) have achieved state-of-the-art performances with

respect to pattern recognition of images for various organs

and tissues (9–15). It has been verified that CNN-based

methods show high diagnostic performance in differentiation

of tumors (16–20), but with most of them being limited to 2D

slices, which needs manual selection. Meanwhile, it does not take

advantage of 3D information that can potentially improve the

diagnostic performances (21–25). Moreover, previous works (16,

17, 19, 25) for liver tumor diagnosis use three-phase CT slices,

namely, non-enhanced phase, arterial phase, and transitional

phase, which is between the portal-venous phase and the delay

phase. However, hypointensity in the transitional phase does not

qualify as “washout”, which is considered a strong predictor and

major criterion of HCC (3, 4). Therefore, in this study, we

propose a 3D residual network (ResNet) as our basis network to

explore the 3D structural information with four-phase CT

images for tumor diagnosis (26).

Typically, high-performing CNN requires training on large

datasets, which unfortunately are difficult to obtain especially in

the medical field. As an alternative to large datasets, highly

complicated clinical data collected from multi-modalities are

incorporated to the CNNmodels (27, 28). Numerous works have

discussed the auxiliary role of clinical data for HCC diagnosis,

including, for example, alpha fetoprotein as a serological marker

for HCCs since the 1960s (29), hepatitis B virus infection (30),
frontiersin.org
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and medical record of having non-alcoholic fatty liver diseases

(31). However, those clinical data often require additional

examinations. Therefore, it would be better if one only needs

the patient’s basic information, such as age and gender, which is

crucial for liver tumor diagnosis (32–34) and makes full use of

the spatial morphological information of local lesions that may

be lost or downplayed in image processing.

In summary, our study aims to develop a fast-processing

deep learning algorithm that exploits 3D structural with

dynamic contrast information from four-phase CT scans and

requires minimum patient information, i.e., age and gender, as

well as automatically extracted lesion location and size from

image data based on a relatively small dataset. We name the

algorithm as the MExPaLe model (Model Fused with Minimum

Extra Information about Patient and Lesion). The main

contributions of this work are as follows:
Fron
• We propose a 3D model that feeds volumetric data as

input instead of 2D CT slices to improve the diagnosis

performance.

• We evaluate the diagnosis results of the basic model,

which only uses non-enhanced phase CT images as

input and enhanced model, which adds contrast-

enhanced phase images as additional inputs. We

experimentally confirm the necessity of using

enhanced contrast agents in clinical workflow.

• The MExPaLe model fuses CNN and multilayer

perceptron to incorporate two different modalities:

image data and text data. The text data contain only

information of patient gender and age, appended with

the spatial morphological information of local lesions.

• The MExPaLe model demonstrates high performance

and excellent efficiency. The accuracy and time

efficiency for liver diagnosis of the proposed model are

significantly higher than the two radiologists.
This paper is organized into four sections. In Section 2, we

first describe the data collected in our paper, then introduce

three models in this study, and finally the evaluation metrics

have been presented. Section 3 presents the results of our models

and the comparison with other models and two radiologists. The

discussion is provided in Section 4.
Materials and methods

This retrospective clinical study was approved by the review

board, and the requirement for written informed consent was

waived. Patients diagnosed as benign and HA through 1-year

follow-up in 2018 while diagnosed as HCC and ICC after surgery

or biopsy were enrolled between 2014 and 2017. Individuals

without four-phase CT images were excluded, shown in Figure 1.
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Ultimately, a total of 601 lesions (315 HCCs) from 479 patients

were selected. The details are presented in Table 1.
Data preprocessing

All CT slices were obtained with PHILIPS Brilliance iCT 256

scanner (Philips Healthcare, Netherlands). Contrast

enhancement materials (Ultravist 300-3440, Bayer Schering

Pharma AG, Germany) were injected. These four-phase CT

images, stored as DICOM files, have a size of 512×512, and

the thickness of each slice is 3 or 5 mm. The target lesions were

manually labeled with 3D bounding boxes by a radiologist with

10 years of experience (XM) using software designed by Peng

et al. (35) and revised if needed by a radiologist with 38 years of

experience (ZY). The images were further processed by code

written in the programming language Python 3.6 (https://www.

python.org). We first reshaped the four-phase images to 1×1×1

mm using the cubic spline interpolation method and extracted

the lesions and the surrounding 5-mm pixels by the bounding

boxes. Then, the cropped 3D images were resized to a resolution

of 64×64×64 voxels. The images were finally randomly selected

to comprise the test data using fivefold cross-validation with the

remaining images being the training data. Table 2 summarizes

the distribution of each experiment.

The gender and age of the patients are the basic information

recorded in the clinical system. Their contributions to HCC and

non-HCC including benign, HA, and ICC diagnosis were

evaluated in this study. In addition, the location and size of

the lesions are inevitably lost during the common data

preprocessing procedure. Therefore, we recorded the

maximum normalized size and the relative location of the

bounding box as our spatial morphological information during

the data preprocessing. We also evaluated the contribution of

spatial morphological information for HCC diagnosis.
Models

The model was built using Keras 2.2.4 (https://keras.io/) with

a Tensorflow backend 1.5.0 (https://www.tensorflow.org/). For a

baseline, we built a deep learning model based on the structure of

3D ResNet with 14 layers (13 convolutional layers and 1 global

average pooling layer). Filter size of the first convolution layer is

5×5×5, and the following filter sizes are 3×3×3. The filter size of

the global average pooling layer is 2×2×2. The basic model only

uses non-enhanced phase CT images as input while the

enhanced model adds contrast-enhanced phase images as

additional input. For the basic and enhanced model, a fully

connected layer is added following the 3D ResNet structure,

whose output value represents the probability belonging to the

corresponding class. The MExPaLe model contains two
frontiersin.org
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FIGURE 1

Flowchart of our study. Participant selection, model training, model testing and reader study are included in our study.
TABLE 1 Patient characteristics and demographics.

Patient characteristics HCC Cyst HA ICC Total

Number of patients 312 37 107 41 479

Number of lesions 315 64 178 44 601

Age at imaging (mean ± std) 58 ± 11 58 ± 7 50 ± 10 59 ± 10 56 ± 11

Gender

Male 268 28 41 29 350

Female 44 9 66 12 129
Frontiers in Oncology
 04
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HCC, hepatocellular carcinoma; HA, hemangioma; ICC, intrahepatic cholangiocarcinoma; std, standard deviation.
TABLE 2 Distribution of the fivefold cross-validation dataset.

Experiment E1 E2 E3 E4 E5

Training data 480 481 481 481 481

HCC 252 252 252 252 252

Non-HCC 228 229 229 229 229

Test data 121 120 120 120 120

HCC 63 63 63 63 63

Non-HCC 58 57 57 57 57

Total 601 601 601 601 601
rsin.
HCC, hepatocellular carcinoma; E1–E5 denote five sets of experiments.
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pathways: the CT pathway and the MEI pathway. The CT

pathway has the same design as the aforementioned 3D

ResNet structure but with the final classification layer

removed. The MEI contains the patient age and gender

exacted from the DICOM files and the relative size and

location of lesions exacted from the CT pathway. MEI is text

information; thus, we used a multilayer perceptron model

containing two fully connected layers for this pathway. In our

model, after the high-level features are flattened, image features

and the text features are concatenated together. Finally, the

concatenated feature vector is connected to a fully connected

layer for final classification. The overview of the proposed

method is shown in Figure 2.

All models use rectified linear units to help models learn

non-linear features. These are used in conjunction with batch

normalization and dropout to reduce overfitting. Each model

was trained with a stochastic gradient descent optimizer using

minibatches of eight samples. Each model was trained for 80

epochs. The training rate was initially set to 0.01, and it was

reduced by half every 10 epochs.

The performance of the MExPaLe model was compared

with two certified radiologists. The two radiologists (HY, with

21 years of imaging experience, and HC, with 16 years of

imaging experience) did not take part in the data annotation

process and were blinded to the lesion selection. For fair

comparison and to simultaneously mimic the real working

scenario as closely as possible, we provided four-phase CT

DICOM data and the corresponding lesion 3D bounding
Frontiers in Oncology 05
boxes to both the MExPaLe model and radiologists. The test

set for the reader study consisted of 120 randomly selected

lesions in total (63 HCCs), while the remaining lesions were

assigned to the training set. The time for the model from

reading CT phases until classification of the lesion

was recorded.
Statistics

Receiver operating characteristic (ROC) analyses were

performed to calculate the area under curve (AUC) for

evaluating model performance. The average accuracy,

sensitivity, specificity, positive predictive value (PPV), and

negative predictive value (NPV) for diagnosing each category

were calculated. Student’s t-test (T-test) using IBM SPSS

Statistics 26.0 was also performed to evaluate the statistical

significance of differences in comparative studies.
Results

Figure 1 shows the flowchart of our study, including

participant selection, model training, model testing, and reader

study. A total of 479 participants (350 men and 129 women)

were enrolled in our study. The mean age ± standard deviation at

enrollment was 56 years ± 11. Summaries of included

participants are described in Table 1.
FIGURE 2

Overview of the proposed method. The upper part is MEI pathway and the lower part is the CT pathway. The 3D ResNet in CT pathway contains
14 layers (13 convolution layers, and 1 global average pooling layer). Filter size of the first convolution layer is 5×5×5, and the following filter
sizes are 3×3×3. Filter size of the global average pooling layer is 2×2×2. The basic model and enhanced model only have the CT pathway.
The size of image input in basic model is 64×64×64×1 while the others are 64×64×64×4. MEI, Minimum Extra Information.
frontiersin.org
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Basic model and enhanced model

The diagnosis performances of the basic model and the

enhanced model are shown in Table 3. Compared with the basic

model, the enhanced model shows higher accuracy (17.30%

higher in average, 91.68% vs. 74.38%, p < 0.001), AUC

(18.47% higher in average, 95.79% vs. 77.32%, p < 0.001),

sensitivity (12.06% higher in average, 94.60% vs. 82.54%, p =

0.029), specificity (23.03% higher in average, 88.45% vs. 65.42%,

p = 0.001), PPV (17.34% higher in average, 90.03% vs. 72.69%,

p < 0.001), and NPV (15.45% higher in average, 93.77% vs.

78.32%, p = 0.008).

The ROC curves of the basic and enhanced models with the

corresponding AUC values are shown in Figure 3. The liver

masses misdiagnosed by the basic model or enhanced model are

shown in Figure 4. We present four-phase images of a 62-year-

old man with a hemangioma and a 54-year-old man with an
Frontiers in Oncology 06
HCC. The major criterion of HCC such as “wash out” cannot be

extracted by the model without the contrast-enhanced CT slices,

which leads to the poor performance of the basic model.
MExPaLe model

In order to further improve the diagnosis, we first extracted

the spatial morphological information of the local tumor

during the data preprocessing process. Then, we added the

patient ’s age and gender information, which were

automatically recorded in the medical system. We finally

compared the average diagnosis accuracy of models with

different extra information, as shown in Figure 5. The

average accuracy of the MExPaLe model was 94.18%, which

was higher than that of the enhanced model (91.68%), the

enhanced model with spatial morphological information
FIGURE 3

ROC curves of basic model and enhanced model. The lines reflect the average performances of the models, and the light-colored area reflects
the fluctuation of the models represented by the corresponding standard deviations.
TABLE 3 Performance of basic model and enhanced model.

Parameter (%) Basic model Enhanced model p-value*

Accuracy 74.38 (70.25–80.00) 91.68 (86.67–95.87) < 0.001

AUC 77.32 (69.08–83.65) 95.79 (92.93–98.09) < 0.001

Sensitivity 82.54 (69.84–95.24) 94.60 (90.47–100.00) 0.029

Specificity 65.42 (53.45–95.24) 88.45 (82.46–91.38) 0.001

PPV 72.69 (66.67–76.92) 90.03 (85.07–92.64) < 0.001

NPV 78.32 (68.85–92.31) 93.77 (88.67–100.00) 0.008
fron
AUC, area under curve; PPV, positive predictive value; NPV, negative predictive value. Data are median values in brackets and range in parentheses.
*p-value for differences between basic model and enhanced model, calculated with Student’s t-test.
The bold values show the significant differences between basic model and enhanced model.
tiersin.org
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(92.34%), the enhanced model with spatial morphological

information and age (92.68%), and the enhanced model with

spatial morphological information and sex (92.84%).

The diagnostic performance of the MExPaLe model

compared with other authors is shown in Table 4. The

MExPaLe model achieved an average accuracy of 94.18%,

which was 4.99% higher than 2D CNN, 3.34% higher than 3D
Frontiers in Oncology 07
CNN, and 2.50% higher than 3D ResNet. Particularly, the

MExPaLe model showed good performance in terms of

specificity and NPV. The ROC curves of models are described

in Figure 6A, and the confusion matrix of the MExPaLe model is

described in Figure 6B. The MExPaLe model achieved an

average AUC of 96.31%, which was 1.53% higher than 2D

CNN, 0.31% higher than 3D CNN, and 0.52% higher than 3D
FIGURE 5

The average accuracy and standard deviations of different models. Model 1, Enhanced model; Model 2, Enhanced model with spatial
morphological information; Model 3, Enhanced model with spatial morphological information and age; Model 4, Enhanced model with
morphological information and gender; Model 5, MExPale model.
A

B

FIGURE 4

The liver masses misdiagnosed by models. (A) shows four phase images of a 62-year-old man with a hemangioma (arrow) that was diagnosed
through one-year follow-up in 2018. The mass was correctly diagnosed as non-HCC by using enhanced model and our MExPale model. It was
misdiagnosed as HCC by using basic model. (B) shows four phase images of 54-year-old man with a HCC (arrow) that was diagnosed after
surgery. The mass was correctly diagnosed as HCC by using our MExPale model. It was misdiagnosed as HCC by using basic model and
enhanced model.
frontiersin.org
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ResNet. The average ratio of true positive was 98.10%, and the

average ratio of true negative was 89.85%.
Reader study

In the reader study, classification of 120 randomly selected

lesions by the MExPaLe model achieved an accuracy of 94.17%

(113/120). Diagnosis accuracies by radiologists from the First

Affiliated Hospital of Zhejiang University (radiologist 1) and

from the community primary hospital (radiologist 2) on the

same lesions were 90.83% (109/120) and 83.33% (100/120),

respectively (Table 5). We then randomly divided the lesions

into five equal parts using T-test for statistical comparisons

between the radiologists and our proposed MExPaLe model.

The p-values comparing the MExPaLe model and radiologists 1

and 2 were 0.018 and 0.002, respectively, suggesting significant

differences. The average runtime analyzing each lesion was 0.13

s for the MExPaLe model on one Graphics Processing Unit,

while for the radiologists, on average 30 s and 37.5 s were

needed. ROC curves of our MExPaLe model and two
Frontiers in Oncology 08
radiologists are shown in Figure 7. The misdiagnosed cases

of the model and radiologists are described in Table 6. The

coincidence degree between the MExPaLe model and

radiologist 1 was 16.67% for HCC masses and 10.00% for

non-HCC masses, while with radiologist 2, the coincidence

degree was 25.00% for HCC masses and 22.22% for non-HCC

masses. Our model showed a lower misdiagnosis rate for HCC

masses compared with the two radiologists. Moreover, the

performance of our model was more stable than those of the

radiologists, with radiologist 1 showing high misdiagnosis for

HCC masses and radiologist 2 showing high misdiagnosis for

non-HCC masses. Some representative masses with varying

diagnostic results from the MExPaLe model and the two

radiologists are shown in Figure 8. As shown in Figure 8B,

71.43% (5/7) of the misdiagnosed cases by the model were ICC

masses being misdiagnosed as HCC masses. This also

constitutes the majority of misdiagnoses by the radiologists

since it is hard to differentiate HCC from ICC especially owing

to the low incidence rate of ICC. Therefore, by increasing the

cases of ICC to balance the dataset, the model performance can

be improved in the future.
A B

FIGURE 6

Performance of models. (A) ROC curves of models, (B) The confusion matrix of our MExPale model. HCC, hepatocellular carcinoma.
TABLE 4 Performance of models.

Parameter (%) Accuracy AUC Sensitivity Specificity PPV NPV

2D CNN (16) 89.19 94.78 89.21 89.17 90.11 88.30

3D CNN (16) 90.84 96.00 91.75 89.84 90.90 91.06

3D ResNet (25) 91.68 95.79 94.60 88.45 90.03 93.77

MExPaLe model 94.18 96.31 98.10 89.85 91.45 97.70
frontiers
AUC, area under curve; PPV, positive predictive value; NPV, negative predictive value. The 3D CNN is generated from 2D CNN in (16).
The bold values show the best performance of models.
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Discussion

In this work, we built a deep learning-based model, MExPaLe,

for the diagnosis of liver tumor with typical images from four-

phase CT and MEI, demonstrating high performance and

excellent efficiency. The accuracy for diagnosing liver tumors of

the proposed model and the two radiologists were 94.17% (113 of

120), 90.83% (109 of 120, p = 0.018), and 83.33% (100 of 120, p =

0.002), showing significant differences. The average time analyzing

each lesion by our proposed MExPaLe model was 0.13 s, which

was close to 250 times faster than that of both radiologists.

We used volumetric 3D CT patches as inputs. The 3D model

can provide more relevant information to lesion classification,

minimizing model variability, and it was not dependent on

manual slice selection. Concerns for using the 3D model may

involve possible expensive computational cost and time

consumption. However, by focusing on local liver lesions and

a relatively shallow model structure, we achieved sub-second

runtime per case, taking four-phase CT volumetric scans as

input, and therefore, it no longer becomes a practical obstacle.

In real clinical conditions, critical diagnostic features, such as

hyper-enhancement and washout, are the main features used by
Frontiers in Oncology 09
radiologists. These features are obtained through the

comparison of multi-phase CT images, necessitating the use of

enhanced contrast agents to improve the diagnosis accuracy.

This is also verified by our results obtained from the basic model

and enhanced model, which had a median accuracy of 74.38%

(range, 70.25%–80.00%) and 91.69% (range, 86.67%–95.87%),

respectively, and by the statistical test.

Many works have confirmed that clinical data about the

patients can improve the performance of diagnosis. However,

the clinical data used in those works are often too complicated to

obtain, and their processing requires additional manpower and

material resources. More importantly, some clinical data can be

inaccurate at the time of collection, such as family genetic

history. Instead, our experiment requires only the basic

information of the patient, i.e., age and gender, and minimal

spatial morphological information lost during image

preprocessing, which does not increase the clinical workload;

therefore, it is of high practical value to be used in the clinics.

The proposed MExPaLe model showed a median accuracy of

94.18% (range, 91.67%–96.67%) and a median AUC of 96.31%

(range, 93.34%–98.22%). The MExPaLe model showed high

specificity and NPV, attributed to the usefulness of the MEI in
FIGURE 7

ROC curves of our MExPale model and two radiologists. Radiologist 1 comes from the First Affiliated Hospital of Zhejiang University, and
Radiologist 2 comes from a community primary hospital.
TABLE 5 Overall accuracy and times for model and radiologists’ classification.

Parameter MExPaLe model Radiologist 1 p-value* Radiologist 2 p-value*

Accuracy (%) 94.17 (113/120) 90.83 (109/120) 0.018 83.33 (100/120) 0.002

Time 0.13 s 30 s – 37.5 s –
fron
Radiologist 1 comes from the First Affiliated Hospital of Zhejiang University, and Radiologist 2 comes from a community primary hospital.
*p-value for differences between the MExPaLe model and radiologists, calculated with Student’s t-test.
The bold values show the best performance in terms of accuracy and time.
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predicting liver tumor, which made the MExPaLe model more

effective than others.

Furthermore, theMExPaLemodeldiffers frompreviousworks in

that it does not require complex-shaped ROI tracing boundaries of

tumors.The locationandsizeof a3Dboundingboxaround the target

lesion are enough in our work. We included 5-mm extra pixels

surrounding the lesions to learn more peri-tumoral information,

which is necessary for enhancing tumordifferentiation.Additionally,

it can reduce the possible subjective bias in the image capture process

and maintain tumor size information to a certain extent.

Thedirect comparisonbetween theMExPaLemodel and the two

radiologists suggests that the MExPaLe model can serve as a reliable

and quick “second opinion” for radiologists. In the diagnosis of

HCCs, the accuracy of the MExPaLe model was higher than that of

the chief radiologist at afirst-tier researchhospital and the radiologist

from a community primary hospital, both with statistical

significances. Furthermore, the runtime of the MExPaLe model per
Frontiers in Oncology 10
case for liver tumor diagnosis was close to 250 times faster compared

with the radiologists, suggesting that the use of the MExPaLe model

can greatly improve the diagnosis throughput in the clinics.

While these results are promising, several limitations should

be acknowledged regarding this study. Because of the limited

number of imaging studies, we were restricted to a cross-

validation experimental design. It would be better if we can

incorporate an additional test dataset, and ideally an external

dataset to consolidate the usefulness of our model in the clinical

diagnosis of HCCs. Another limitation is that only four typical

primary liver cancer types were available with the exclusion of

other relevant cancers types including metastatic liver cancers.

In conclusion, we proposed a model for the diagnosis of liver

tumor. The MExPaLe model, which has incorporated four-phase

CT volumes and the MEI, achieves the highest prediction accuracy

of 94.18% (range, 91.67%–96.67%) and an AUC of 96.31% (range,

93.34%–98.22%). It is superior to both the basic model and the
A

B

FIGURE 8

The liver masses misdiagnosed by model and two radiologists. (A) shows four phase images of a 59-year-old man with a HCC (arrow) that was
diagnosed after surgery. The mass was misdiagnosed diagnosed as non-HCC by and our MExPale model and both two radiologists. (B) shows
four images of a 64-year-old man with a ICC (arrow) that was diagnosed after surgery. The mass was misdiagnosed diagnosed as HCC by our
MExPale model and both two radiologists.
TABLE 6 Misdiagnosed images for model and radiologists’ classification.

Parameter MExPaLe model Radiologist 1 Radiologist 2

Misdiagnoses

HCC 1 6 4

Non-HCC 6 5 16

Coincidence degree

HCC - 16.67% (1/6) 25.00% (1/4)

Non-HCC – 10.00% (1/10) 22.22% (4/6)
Radiologist 1 comes from the First Affiliated Hospital of Zhejiang University, and Radiologist 2 comes from a community primary hospital. HCC, hepatocellular carcinoma.
The bold values mean the number of misdiagnosed masses for our model classification.
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enhanced model. It is about 250 times more time-efficient

compared with the radiologists for liver tumor diagnosis, taking

only 0.13 s. The architectural design of theMExPaLemodel may be

applicable to more multi-phase CT-based diagnosis projects to

provide high-quality patient care in a time-efficient manner.
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