AUTHOR=Liu Jiajia , Zhou Zhihui , Kong Shanshan , Ma Zezhong TITLE=Application of random forest based on semi-automatic parameter adjustment for optimization of anti-breast cancer drugs JOURNAL=Frontiers in Oncology VOLUME=12 YEAR=2022 URL=https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.956705 DOI=10.3389/fonc.2022.956705 ISSN=2234-943X ABSTRACT=
The optimization of drug properties in the process of cancer drug development is very important to save research and development time and cost. In order to make the anti-breast cancer drug candidates with good biological activity, this paper collected 1974 compounds, firstly, the top 20 molecular descriptors that have the most influence on biological activity were screened by using XGBoost-based data feature selection; secondly, on this basis, take pIC50 values as feature data and use a variety of machine learning algorithms to compare, soas to select a most suitable algorithm to predict the IC50 and pIC50 values. It is preliminarily found that the effects of Random Forest, XGBoost and Gradient-enhanced algorithms are good and have little difference, and the Support vector machine is the worst. Then, using the Semi-automatic parameter adjustment method to adjust the parameters of Random Forest, XGBoost and Gradient-enhanced algorithms to find the optimal parameters. It is found that the Random Forest algorithm has high accuracy and excellent anti over fitting, and the algorithm is stable. Its prediction accuracy is 0.745. Finally, the accuracy of the results is verified by training the model with the preliminarily selected data, which provides an innovative solution for the optimization of the properties of anti- breast cancer drugs, and can provide better support for the early research and development of anti-breast cancer drugs.