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Integration of healthy
volunteers in early phase
clinical trials with immuno-
oncological compounds

Igor Radanovic1,2, Naomi Klarenbeek1, Robert Rissmann1,3,
Geert Jan Groeneveld1,2, Emilie M. J. van Brummelen1,
Matthijs Moerland1,2 and Jacobus J. Bosch1,2*

1Centre for Human Drug Research, Leiden, Netherlands, 2Leiden University Medical Center,
Leiden, Netherlands, 3Division of BioTherapeutics, Leiden Academic Centre for Drug Research,
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Aim: Traditionally, early phase clinical trials in oncology have been performed in

patients based on safety risk-benefit assessment. Therapeutic transition to

immuno-oncology may open new opportunities for studies in healthy

volunteers, which are conducted faster and are less susceptible to

confounders. Aim of this study was to investigate to what extent this approach

is utilized and whether pharmacodynamic endpoints are evaluated in these early

phase trials. We conducted a comprehensive review of clinical trials with healthy

volunteers using immunotherapies potentially relevant for oncology.

Methods: Literature searches according to PRISMA guidelines and after

registration in PROSPERO were conducted in PubMed, Embase, Web of

Science and Cochrane databases with the cut-off date 20 October 2020,

using search terms of relevant targets in immuno-oncology. Articles describing

clinical trials with immunotherapeutics in healthy volunteers with a mechanism

relevant for oncology were included. “Immunotherapeutic” was defined as

compounds exhibiting effects through immunological targets. Data including

study design and endpoints were extracted, with specific attention to

pharmacodynamic endpoints and safety.

Results: In total, we found 38 relevant immunotherapeutic compounds tested

in HVs, with 86% of studies investigating safety, 82% investigating the

pharmacokinetics (PK) and 57% including at least one pharmacodynamic (PD)

endpoint. Most of the observed adverse events (AEs) were Grade 1 and 2,

consisting mostly of gastrointestinal, cutaneous and flu-like symptoms. Severe

AEs were leukopenia, asthenia, syncope, headache, flu-like reaction and liver

enzymes increase. PD endpoints investigated comprised of cytokines, immune

and inflammatory biomarkers, cell counts, phenotyping circulating immune

cells and ex vivo challenge assays.

Discussion: Healthy volunteer studies with immuno-oncology compounds

have been performed, although not to a large extent. The integration of

healthy volunteers in well-designed proof-of-mechanism oriented drug

development programs has advantages and could be pursued more in the
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future, since integrative clinical trial protocols may facilitate early dose

selection and prevent cancer patients to be exposed to non-therapeutic

dosing regimens.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/

display_record.php?RecordID=210861, identifier CRD42020210861
KEYWORDS
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Introduction

The field of oncology is rapidly changing, with a major shift

from broad-acting cytotoxic chemotherapy to drugs targeting

specific molecular and immunological mechanisms (1–4). This

is reflected by an ongoing increase in number of immuno-

oncological agents in development, even during the COVID-

19 pandemic (5). Where traditionally early phase clinical trials

with oncological drugs were designed to find a maximum

tolerated dose, today’s oncological drugs require a clinical

development program based on pharmacologically active dose

(PAD) or minimal anticipated biological effect level (MABEL),

preferably guided by monitoring of the pharmacological activity

(6). Since these drugs have a well-defined molecular target, target

engagement and functional downstream effects can be quantified

by state-of-the-art molecular and cellular techniques (7). Such

an approach enables the evaluation of the relationship between

pharmacokinetic (PK) and pharmacodynamic (PD) effects, and

the selection of the biologically active dose for subsequent

studies. Ideally, this is already done at the earliest clinical

stages of drug development, in healthy volunteers (HVs) (8).

Traditionally, early phase clinical trials with non-specific

oncological compounds were performed in patients (9). The

mechanism of action of these broad-acting cytotoxic compounds

did not support evaluation of drug effects in HVs for the obvious

reason that the benefit-risk ratio was not acceptable. However,

for (certain members of) the new class of targeted

immunotherapies pharmacological activity can be evaluated in

HVs (9–11). An initial pharmacological evaluation of a novel

immuno-modulatory drug in HVs rather than in cancer patients

avoids interference of concomitant medication, altered immune

status or co-morbidities. Identification of the pharmacologically

active dose in HVs would facilitate initial patient studies at

selected dose levels and regimens that may translate into

clinically desired effects. As such, complicated, inefficient, and

time-consuming dose-finding studies in cancer patients could

be avoided.

Of course, the benefit-risk assessment for certain

immunomodulatory oncology drugs could be negative for
02
HVs. Checkpoint inhibitors, for example CTLA-4 and PD-1

blockers, release the brakes that block the action of the immune

system against the tumor. Unfortunately, these compounds also

bear the risk for development of immune-related adverse events

such as dermatologic, gastrointestinal, endocrine, or hepatic

autoimmune reactions. Therefore, this class of compounds is

commonly not evaluated in HVs. An alternative approach to

enhance the action of the adaptive immune system against

malignancies is via targeted stimulation of components of the

innate immune system, since a fully functional antigen-specific

response is dependent on efficient support by innate immune

cells and cytokines. This can be reached by specific challenges of

innate immune receptors and pathways, for example via

interleukin receptors or toll-like receptors (TLRs). Whereas

checkpoint inhibition theoretically may lead to wide-spread

inflammation, targeted stimulation of specific innate immune

pathways may result in desirable and well-controllable immune

enhancement, which could be evaluated in a safe manner in

HVs. We decided to review early phase clinical pharmacology

studies with immunomodulatory compounds for oncological

conditions addressing the following specific questions: which

drug classes have been studied in HVs, did these studies only

evaluate safety/tolerability and pharmacokinetics, or also

pharmacodynamics, and if so, which type of biomarkers were

used to evaluate the pharmacological activity. As a starting point,

we selected relevant modes of action based on previously

published literature (1, 2), and using the Landscape of

Immuno-Oncology Drug Development tool (12).
Methods

We limited our evaluation to oncological compounds with

an immunomodulatory mode of action, defined as modulation

of a molecular/cellular immunological target. Relevant modes of

action/targets were selected based on the recent drug overviews

(1, 2), and by using the Landscape of Immuno-Oncology Drug

Development tool (version 2020) (12). Drug targets selected are

presented in Table 1, grouped by mechanism.
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TABLE 1 Overview of the relevant oncology search targets, with their location of expression and intended effect of pharmacotherapy.

Mode of action in
oncology

Target Location of expression Intended effect of
pharmacotherapy

B cell function or proliferation

CD19 B lymphocytes Antagonistic

CD22 Mature B lymphocytes Antagonistic

BCMA Mature B lymphocytes Antagonistic

Chemotaxis

H4 Broad expression on immune cells Agonistic

CXCR4 Broad expression Antagonistic

CCL2/CCR2 Multiple cell types, monocytes, DCs, endothelial cells Antagonistic

Immune checkpoint

CD73 Broad expression Antagonistic

CTLA-4 Almost exclusively on CD4+ and CD8+ T cells Antagonistic

CD27 Naive and effector T cells, NK and B cells Agonistic

IDO Broad expression Antagonistic

A2AR Broad expression Antagonistic

Adenosine Broad availability Antagonistic

B7 family (H3) Broad expression Antagonistic

H5 VISTA Tumor infiltrating lymphocytes, Tregs Antagonistic

KIR NK cells Antagonistic

LAG3 Activated T cells, NK cells, Tregs Antagonistic

PD-1 Activated T cells, B cells, macrophages Antagonistic

PD-L1 Immune cells, especially macrophages and dendritic cells Antagonistic

TIGIT T cells, NK cells Antagonistic

TIM-3 Multiple immune cell types Antagonistic

ICOS Activated CD4 and CD8 T cells Agonistic

4-1BB Mainly activated CD4 and CD8 T cells Agonistic

GITR Mainly effector and regulatory T cells Agonistic

OX40 Broad expression Agonistic

Innate immune response

Dectin Macrophages, neutrophils, and dendritic cells (DCs) Agonistic

EP4 (PGE2) Broad expression; tumor cells, fibroblasts, and immune cells in tumor
stroma

Antagonistic

IFNaR Broad expression Agonistic

IL12R T-cells, B-cells, monocytes Agonistic

IL8R (CXCR1/CXCR2) Neutrophils, endothel, myeloid-derived suppressor cells Antagonistic

NLRP3 APCs, predominantly macrophages Unclear

NOD2 Broad expression Agonistic

TLR3 Mainly macrophages, dendritic cells Agonistic

TLR4 Myeloid cells Agonistic

TLR7 Mainly B cells, monocytes, pDCs Agonistic

STING Broad expression Agonistic

Regulation

- activity of immunomodulatory
drugs

CRBN (cereblon) Broad expression Agonistic

- angiogenesis VEGF-a/VEGF
receptors

Endothelial cells Antagonistic

- cell proliferation CSF1R Broad expression Antagonistic

CD123 (IL3Ra) Pluripotent progenitor cells Antagonistic

- epidermal growth HER1/EGFR Broad expression Antagonistic

(Continued)
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Search strategy

We conducted a comprehensive, electronic search to identify

articles indexed in PubMed, Embase, Web of Science and

Cochrane Library. The protocol was registered in the

international register of systematic reviews (PROSPERO), in

accordance wi th PRISMA guide l ines (PROSPERO

CRD42020210861) (13). Studies up to 20 October 2020 were

extracted. We searched for “healthy volunteers”, “healthy

subjects” and at least one of the drug targets as presented in

Table 1, or alternative synonyms in titles and abstracts. Targets

were grouped by their mode of action in oncology. Inclusion

criteria were: 1) articles reporting the results of at least one

clinical trial; 2) clinical trials conducted in healthy volunteers; 3)

a r t i c l e s r epor t in g the c l in i c a l e v a l ua t i on o f an

immunotherapeutic agent, and the immunotherapeutic agent

had a mode of action relevant for an oncological indication

(considered relevant if confirmed by a journal publication, in
Frontiers in Oncology 04
which the possibility of the target in question was investigated or

hypothesized), and 4) articles in English. Exclusion criteria were:

1) (systematic) reviews and metanalyses, or population PK

studies; 2) articles reporting the results of studies in patients;

3) articles reporting the clinical evaluation of therapies not

primarily acting through modulation of the immune system

(e.g., tyrosine kinase inhibitor or antibodies such as trastuzumab;

4) articles without full-text availability. Although studies in HVs

are primarily conducted during early phase (phase 1a) clinical

research, we did not limit our search to only such studies, in

order to conduct a more comprehensive review of the literature.
Data extraction

Relevant data were extracted from the included studies,

including treatment, target, study design, study objectives,

pharmacodynamic endpoints, number of enrolled subjects,
TABLE 1 Continued

Mode of action in
oncology

Target Location of expression Intended effect of
pharmacotherapy

- immune cell activity CCR5 Mostly T cells, macrophages, DCs, eosinophils Antagonistic

CD47 Broad expression Antagonistic

- myeloid cell activity CD200 Broad expression Antagonistic

- phagocytosis CD33 Broad expression on myeloid cells Antagonistic

T cell function or proliferation

IL-2R Effector T cells, Tregs Agonistic
(high dose)

CD3 T cells Agonistic

CD38 Plasma B cells, NK cells, B and T cells, other Antagonistic

CD40/CD40L Broad expression (mainly APCs) Agonistic

Tumor-associated antigens

CEA Broad expression Antagonistic

FLT3 Hematopoietic progenitor cells Antagonistic

MAGE Mostly tumor-specific Antagonistic

HER2 Tumor-specific overexpression Antagonistic

EpCam Epithelial tissues/tumor overexpression Antagonistic

GD2 Tumor-specific Antagonistic

Mesothelin Mostly tumor-specific Antagonistic

PSMA Mostly tumor-specific Antagonistic

Tumor cell migration, tumor microenvironment

TGFb Broad expression Antagonistic

CD155 Broad expression Antagonistic

Tumor cell survival

AXL Broad expression Antagonistic

JAK1 Broad expression Antagonistic

JAK2 Broad expression Antagonistic

STAT3 Broad expression Antagonistic
Targets are based on Tang et al. (1, 2) and Landscape of Immuno-Oncology Drug Development database (12) and were grouped by mode of action in oncology.
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safety/adverse events. Data were grouped and summarized per

therapeutic category.
Results

Literature search

A total of 1593 unique entries were identified. Out of those,

158 articles passed the screening and were included for a full-text

review. Finally, 73 articles fulfilled the inclusion/exclusion

criteria and were included in the review. Figure 1 shows the

PRISMA flow diagram with number of articles in each stage and

reasons for exclusion.
Compounds tested in healthy volunteers

A total of 38 different relevant compounds were evaluated in

HV studies in 2352 HVs, based on our search. Studies and

compounds are presented in Table 2, grouped by target mode of

action in oncology and compound’s target/mechanism of action.
Frontiers in Oncology 05
In terms of study endpoints, 86% of studies investigated the

safety, 82% investigated the compound pharmacokinetics and

57% included evaluation of the pharmacodynamic endpoints in

the study design. A full overview of the study design and

endpoints can also be found in Table 2.

Most studies investigated compounds acting on the innate

immune system (19 studies) (20–38), followed by compounds

w i th immunor egu l a to r y a c t i v i t y , c l a s s ifi ed in t o

immunomodulatory (cereblon [CRBN] modulators; 14 studies)

(39–44, 46–52) and mediators of immune cell functions (CCR5

antagonists; 14 studies) (54–59, 61–63, 65–67, 76). All the other

compounds were investigated in only one or two HV studies.

Overall, the studies included single doses, single ascending doses

(SAD) and multiple ascending doses (MAD). Most studies were

randomized controlled trials, although a substantial percentage

(29%) of articles described a non-randomized trial.
Safety and tolerability in healthy
volunteer studies

An overview of the safety findings in HV studies is provided

in Table 3. Most of the observed adverse events (AE) were Grade
FIGURE 1

PRISMA diagram showing the total number of studies found by the search, screened, excluded (with reasons for exclusion at screening and full-
text review) and included.
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1 and 2, which included gastro-intestinal side effects (nausea,

diarrhea, vomiting, constipation), flu-like symptoms (headache,

fever, malaise) and cutaneous side effects (pruritus, erythema,

dry skin).

Overall, there were no serious adverse events (SAE) which were

assessed to be related to the study drug. There was a single case of

dose-limiting Grade 4 leukopenia occurring in JAK1/JAK2

inhibitor ruxolitinib (75). Severe AEs were observed in the

chemotaxis category (asthenia and syncope with a CXCR4

antagonist) and with compounds eliciting innate immune

response (severe headache, flu-like symptoms and leukopenia

with interferons; increased heart rate, increased ASAT and ALAT

with TLR agonists; severe headache with dectin receptor agonist

Imprime PGG). There were no severe adverse events observed in

other categories, including immune checkpoint inhibitor, drugs

with regulatory/immunomodulatory activity, drugs acting on T cell

function or proliferation and drugs with presumed effect on tumor

cell migration and tumor microenvironment.
Pharmacodynamic effect evaluation in
healthy volunteer studies

Pharmacodynamic endpoints evaluated in studies with

compounds possibly relevant for immuno-oncology were

categorized by mechanism of action and summarized in

Table 4. In total, there were 27 compounds for which at least

one PD endpoint was investigated. All compounds except

imiquimod were administered systemically. An overview of the

studies evaluating PD endpoints per target group is presented in

the earlier discussed Figure 2. The majority of HV studies with

compounds targeting the innate immune response (consisting of

CXCR2 antagonists, dectin receptor antagonist, interferons TLR

agonists and P2X7 antagonist) included at least one PD endpoint

(18 out of 19 studies) (20–38). Overall, most studies aimed to

evaluate the effect of the investigational compound on

circulating cytokine/chemokine levels, immune and

inflammatory parameters and biomarkers in blood, cell counts,

immunophenotype of circulating immune cells, and on the

response to an ex vivo immune challenge.

All three studies with anti-chemotaxis agents (CXCR4

antagonists) (14–16) included PD markers, such as the

mobilization of immune cell subsets including CD34+

hematopoietic stem cells, and receptor and surface marker

expression (i.e., surface markers of mature immune cell

subsets such as T, B and NK cells, T cell subpopulations,

monocytes and plasmacytoid dendritic cell progenitors). For

the immune checkpoint compounds (adenosine antagonists),

positron emission tomography (PET) was used to investigate

adenosine A2a receptor occupancy (17). In another study target

engagement by a double adenosine A2a and A2b receptor

antagonist was determined by ex vivo challenge with a

synthetic adenosine agonist (5’-N-ethylcarboxamidoadenosine;
Frontiers in Oncology 06
NECA) and subsequent evaluation of the levels of the

phosphorylated cyclic AMP (cAMP) response element binding

protein (CREB) in CD8+ cells (19).

In the category of compounds affecting the tumor

microenvironment (TME), one study was identified

investigating a P2X7 antagonist. The compound’s peripheral

target engagement was demonstrated by an ex vivo immune

challenge, evaluating the LPS/BzATP-induced IL-1b release in

peripheral blood mononuclear cell (PBMC) cultures (72).

Studies with compounds targeting the tumor cell survival

pathways included JAK1/JAK2 and TYK/JAK1 inhibitors. One

study measured the levels of phosphorylated STAT3 (pSTAT3)

after ex vivo cell stimulation with IL-6 (75), whereas in the other

study markers downstream from JAK1 were evaluated

(circulating IP-10 and hsCRP levels and neutrophil and

lymphocyte count) (73).

Finally, of note was the observable lack of pharmacodynamic

endpo int s in HV stud ie s which inves t iga ted the

immunomodulatory drug thalidomide (and analogues) and

CCR5 antagonist maraviroc (and analogues), where almost all

of the studies only assessed the safety and pharmacokinetics of

the compounds.
Discussion

A review of literature on published early phase clinical

studies using immuno-oncology compounds in healthy

volunteers following PRISMA guidelines and PROSPECT

registration was presented in this article. In total, we have

found 73 published articles and included 38 different potential

immunotherapeutic compounds that have been conducted

in HVs.

The majority of the studies investigated immunomodulatory

compounds such as interferons, TLR agonists and drugs

targeting chemokine receptors. Studies evaluating oncolytic

viruses and T-cell based therapies were excluded from our

review, since the primary mechanism of action of these

compounds is based on an antigen-specific pharmacological

activity and not a general immunomodulatory effect.

Noteworthy was the lack of studies investigating immune

checkpoint inhibitors (other than adenosine antagonists) in

HVs, which might be explained by the potential immune-

related adverse events of such compounds, typically with a

delayed onset and prolonged duration, resulting in an

unfavorable benefit/risk ratio for a HV study (98). For

comparison, almost all the innate immune system targets

mentioned in Table 1 were investigated in HV studies, while

at the same time only one immune checkpoint target

was identified.

Thalidomide and analogues were investigated in 14 HV

studies (Table 2), but only one study included a relevant PD

endpoint investigating immunophenotype of circulating
frontiersin.org
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immune cells (Table 4) (49). Thalidomide is a drug with

troublesome history but remarkable revival decades later as an

anti-myeloma drug (99), and it has been discovered that

thalidomide and its newer analogues lenalidomide and

pomalidomide elicit multiple direct and indirect immune-

related anti-myeloma effects, among others by modulating the

ubiquitin E3 ligase cereblon (CRBN) (89, 100, 101). Although

their indirect immunomodulatory properties in multiple

myeloma have been clearly demonstrated (102, 103), previous

research might have been more focused on their direct anti-

tumor mechanism, requiring the drug effects to be investigated

mostly in patients. Similarly, the difference is also significant

when looking at CCR5 antagonist maraviroc and its analogues,

with 14 HV studies in total and no studies investigating relevant

PD, since these compounds are developed and approved as anti-

HIV drugs, and their importance for immuno-oncology has only

recently been uncovered (104).
Safety perspective

Overall, the adverse event profiles for the compounds

evaluated in HVs were acceptable and within the normal

range for HV studies, when compared to the available

literature. One such published review reported that among 475

phase 1 studies in 27185 HVs, 33% of studies reported at least

one severe AE, which is significantly more than what was

captured in our review, which was 6 (8%) of the included

studies (105). Although we did not directly compare the safety

findings in HV studies to the studies with same compounds in

patients, safety is expected to be comparable between two

populations with regards to drug-related adverse events.

From a safety perspective, drugs targeting proteins that are

widely present in healthy tissues inherently carry a higher risk

for (auto-immune) toxicity. Safety findings in the identified

studies were overall well acceptable, although there were some

expected higher-grade toxicities observed in studies with

compounds targeting the dectin receptor, CXC4 receptor,

JAK1/JAK2 and some specific components of the innate

immune pathways. The majority of the severe adverse events

of the latter subgroup mainly relate to their inherent ability to

boost the (innate) immune response, but also to the

immunosuppressive effects of interferon, which can lead to

interferon-induced neutropenia (106). Severe neutropenia

observed with ruxolitinib has been previously reported (107),

which can be explained by the drug’s mechanism of action: its

anti-JAK1/JAK2 activity decreases T cell activation and

neutrophil activity.

Notably, there were no severe adverse events observed in the

immune checkpoint group, where adenosine antagonists were

well tolerated up to the highest dose tested, while demonstrating

a robust target engagement (19). This points to the possibility of

investigating other immune checkpoint modulators in early
Frontiers in Oncology 07
proof-of-concept clinical trials in HVs. Obviously, a reason to

remain cautious is the risk of inducing late-onset immune-

related adverse events (irAEs) and autoimmunity in HVs.

However, future testing of such compounds in HV trials

should not be categorically ruled out, especially when

compounds with more controllable immune-mediated mode

of actions and favorable immune-related toxicity profiles can

be developed.
Pros and cons of healthy volunteer trials

There are numerous advantages of performing early phase

clinical trials in HVs before studies in patients are initiated. This

is a relatively homogenous population, void of any confounders

such as comorbidities or concomitant medications. Patient pre-

selection and strict inclusion criteria in early oncology trials may

lead to a selection bias, preventing the extrapolation of the

results to a general population (108). Practically, recruiting

HVs for early phase trials is easier, faster and less expensive,

with significantly lower drop-out rates and better compliance

which eventually leads to better data quality. Importantly, a HV-

based study including PD endpoints can assist in selecting a

pharmacologically active dose for the first phase 1B trial, which

avoids inefficient dose finding studies in the target population

and inclusion of patients in studies with pharmacologically

inactive doses (3). Specifically for immunomodulatory

compounds, the comparison of immunocompetent HVs with

immunosuppressed cancer patients in an integrative study

design may be advantageous. Our review shows that testing

selected immuno-oncological compounds in early phase clinical

trials integrating HVs is feasible from a safety perspective.

Furthermore, based on our findings, relevant PD effects were

evaluated in 57% of the identified studies, with studies testing

compounds targeting the innate immune system being more

likely to include at least one PD endpoint. With lack of efficacy as

the primary source of failure in later stage clinical research (109),

it is of paramount importance to demonstrate pharmacological

activity of a new compound early in clinical development in

double-blind randomized controlled trials with clear PD

endpoints, prior to moving to the more expensive and

significantly lengthier patient trials with clinical endpoints (110).

On the other hand, the critical point-of-attention for

evaluation of oncology drugs in HVs is the benefit/risk ratio,

with is obviously different between cancer patients and HVs.

Moreover, for certain compounds evaluation of effects in HVs is

not relevant because of low or absent target expression, which is

for example the case for tumor-associated antigens. For the

presented classes of immunomodulatory compounds this does

not represent a problem: these drugs have targets that are

expressed in healthy cells or tissues, and consequently there is

a possibility to study drug concentration versus effect in HVs.

HV trials evaluating JAK1 tyrosine kinase inhibitors (73–75) or
frontiersin.org
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TABLE 2 Overview of the included clinical studies conducted in healthy volunteers (HVs) with a compound possibly relevant for immuno-
oncology, with their corresponding study design and study endpoints, grouped by potential mode of action in oncology.

Mode of action
in oncology

Target/
MoA

Compound Study design Number
of HVs

Study end-
points

Year of
publication

Reference

Safety PK PD

Chemotaxis CXCR4
antagonist

BL-8040 randomized, double-blind, placebo-
controlled/open label (2 parts)

33 ✓ ✓ ✓ 2017 Abraham
et al. (14)

CXCR4
antagonist

Balixafortide open label, dose escalation 27 ✓ ✓ ✓ 2017 Karpova
et al. (15)

CXCR4
antagonist

Plerixafor three‐cohort, dose‐escalation, pilot study 21 ✓ ✓ ✓ 2011 Lemery
et al. (16)

Immune checkpoint Adenonise
A2a receptor
antagonist

Vipadenant
(BIIB014)

prospective, open-label, adaptive, multiple-
dose

15 ✓ ✓ 2010 Brooks et al.
(17)

Adenonise
A2a receptor
antagonist

Istradefylline single‐center, open‐label, 1‐sequence, 2‐
period crossover

20 ✓ ✓ 2018 Mukai et al.
(18)

Adenosine
A2a/A2b

receptor
antagonist

AB928 randomized, double-blind, placebo-
controlled, SAD and MAD

85 ✓ ✓ ✓ 2019 Seitz et al.
(19)

Innate immune
response

CXCR2
antagonist

SCH527123
(navarixin)

randomized, placebo-controlled, crossover 18 ✓ ✓ 2010 Holz et al.
(20)

CXCR2
antagonist

AZD8309 double-blind, placebo-controlled two-way
crossover design

20 ✓ ✓ ✓ 2013 Leaker et al.
(21)

Dectin
receptor
agonist

Imprime PGG SAD 30 ✓ 2019 Bose et al.
(22)

IFN inducer,
TLR3 agonist

Poly(I):poly
(C12U)

double-blinded, placebo-controlled, crossover 13 ✓ ✓ 1993 Hendrix
et al. (23)

IFNAR PEG-IFN a 2a
and 2b

randomized, crossover, double-blind, single-
dose

16 ✓ ✓ ✓ 2010 Garcia-
Garcia et al.
(24)

IFNAR AVI-005
(IFN-a 2b)

open label, single rising dose 28 ✓ ✓ ✓ 2007 Patel et al.
(25)

IFNAR Rh IFNa 2b randomized, double-blind, two-treatment 24 ✓ ✓ ✓ 2000 Rodriguez
et al. (26)

IFNAR rIFN aA randomized, placebo-controlled; viral
challenge

27 ✓ ✓ 1983 Sarno et al.
(27)

IFNAR rIFN aA randomized, placebo-controlled; dose-finding
in viral challenge

63 ✓ ✓ 1984 Sarno et al.
(28)

IFNAR PEG-IFN a open-label SAD 36 ✓ ✓ 2003 Shiomi,
Funaki (29)

IFNAR IFNa 2a double-blind, randomized, two-way crossover 24 ✓ ✓ 1995 Zhi et al.
(30)

IFNAR2B CIGB-128-A single-dose 9 ✓ ✓ 2016 Garcia-
Garcia et al.
(31)

Oral double
prodrug of
the TLR7‐
specific
agonist
(RO7011785)

RO7020531 randomized, sponsor‐open, investigator/
subject‐blinded, placebo‐controlled, SAD and
MAD

70 ✓ ✓ ✓ 2020 Luk et al.
(32)

TLR4 agonist LPS double-blinded, placebo-controlled, crossover 24 ✓ ✓ 2020 Hijma et al.
(33)

TLR4 agonist GSK1795091 randomized, double-blind, placebo-controlled 42 ✓ ✓ ✓ 2020 Hug et al.
(34)
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TABLE 2 Continued

Mode of action
in oncology

Target/
MoA

Compound Study design Number
of HVs

Study end-
points

Year of
publication

Reference

Safety PK PD

TLR7 agonist Imiquimod
(with
omiganan)

randomized, open‐label, evaluator‐blinded,
vehicle‐controlled, parallel‐cohort, dose‐
ranging

16 ✓ ✓ 2020 Niemeyer-
van der
Kolk et al.
(35)

TLR7/TLR8
agonist

Imiquimod single-dose, placebo-controlled 20 ✓ 2009 Pasmatzi
et al. (36)

TLR9
receptor
agonist

CPG 10101
(ACTILON)

randomized, double-blind, placebo-
controlled, dose escalation

48 ✓ ✓ ✓ 2007 Vicari et al.
(37)

Type I IFN
receptor

IFNb-1a and
IFNb-1b

single-blind, single-dose, crossover 13 ✓ ✓ 1999 Buraglio
et al. (38)

Regulation – activity
of
immunomodulatory
drugs

Cereblon
(CRBN)
modulation

Lenalidomide randomized, single dose, crossover; study to
determine effect on QTc interval

60 ✓ ✓ ✓ 2013 Chen et al.
(39)

CRBN
modulation

Lenalidomide open-label, single-center, single dose; study to
determine disposition of radioactively labeled
lenalidomide

6 ✓ ✓ 2012 Chen et al.
(40)

CRBN
modulation

Lenalidomide open-label, single-center, multiple dose; study
to determine distribution of lenalidomide in
human semen

24 ✓ ✓ 2010 Chen et al.
(41)

CRBN
modulation

Lenalidomide (1) randomized, single-blind, alternating
group, SAD, (2) a randomized, two-way
crossover FE (3), a randomized, double-blind,
two-group, within-subject, SAD; PK studies
(dose proportionality, FE, racial sensitivity)

58 ✓ ✓ 2012 Chen et al.
(42)

CRBN
modulation

Lenalidomide two phase I, crossover studies; DDI studies 50 ✓ ✓ 2014 Chen et al.
(43)

CRBN
modulation

Pomalidomide single center, open-label, non-randomized, 2-
part phase 1; DDI study

32 ✓ ✓ 2015 Kasserra
et al. (44)

CRBN
modulation

Pomalidomide phase 1, randomized, double-blind, placebo-
controlled; study to determine distribution of
pomalidomide in human semen

33 ✓ ✓ 2018 Li et al. (45)

CRBN
modulation

Pomalidomide 2 separate phase 1 open-label, single-dose
studies; DDI study

43 ✓ ✓ 2018 Li et al. (46)

CRBN
modulation

Pomalidomide open-label, randomized, three-period, two-
sequence crossover; bioequivalence study

28 ✓ ✓ 2018 Li et al. (47)

CRBN
modulation

Pomalidomide phase 1, single-center, randomized, crossover;
study to determine effect on QTc interval

72 ✓ ✓ ✓ 2016 Mondal
et al. (48)

CRBN
modulation

Thalidomide open-label, single-dose; study to determine
effects on WBC

2 ✓ 1992 Neubert
et al. (49)

CRBN
modulation

Thalidomide open label, single dose, randomized, three-
way crossover; FE study

13 ✓ ✓ 2000 Teo et al.
(50)

CRBN
modulation

Thalidomide open-label, single-dose, three-way crossover;
PK study

15 ✓ ✓ 2001 Teo et al.
(51)

CRBN
modulation

Thalidomide open-label, single-dose, three-way, crossover;
bioequivalence study

17 ✓ ✓ 1999 Teo et al.
(52)

Regulation –

angiogenesis
IL-3 receptor rhIL-3 parallel-group, open-label 19 ✓ ✓ ✓ 1997 Huhn et al.

(53)

Regulation –

immune cell activity
CCR5
antagonist

Aplaviroc open-label, two-part study 32 ✓ ✓ 2008 Adkison
et al. (54)

CCR5
antagonist

Maraviroc double-blind, placebo-controlled (3 studies);
phase 1 studies to assess PK and safety

132 ✓ ✓ 2008 Abel et al.
(55)

(Continued)
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TABLE 2 Continued

Mode of action
in oncology

Target/
MoA

Compound Study design Number
of HVs

Study end-
points

Year of
publication

Reference

Safety PK PD

CCR5
antagonist

Maraviroc double-blind, placebo-controlled, crossover (3
studies); DDI studies

39 ✓ ✓ 2008 Abel et al.
(56)

CCR5
antagonist

Maraviroc open, randomized, placebo-controlled (4
studies); DDI studies

80 ✓ ✓ 2008 Abel et al.
(57)

CCR5
antagonist

Maraviroc open, randomized, placebo-controlled,
crossover (2 studies); DDI studies

28 ✓ ✓ 2008 Abel et al.
(58)

CCR5
antagonist

Maraviroc open-label/combined double-blind and open-
label (2 studies); PK study using radioactively
labeled maraviroc

23 ✓ ✓ 2008 Abel et al.
(59)

CCR5
antagonist

Maraviroc open, randomized, placebo-controlled (2
studies); DDI studies

72 ✓ ✓ 2008 Abel et al.
(60)

CCR5
antagonist

Maraviroc single-dose, placebo- and active-controlled,
five-way crossover; study to determine the
effect on QTc interval

61 ✓ ✓ 2008 Davis et al.
(61)

CCR5
antagonist

Maraviroc open-label, single-dose; study to investigate
CYP3A5 genotype on PK

24 ✓ 2014 Lu et al. (62)

CCR5
antagonist

Maraviroc open-label, randomized, crossover (two
studies); DDI studies

32 ✓ ✓ 2012 Vourvahis
et al. (63)

CCR5
antagonist

Maraviroc two studies: double‐blind, randomized (1:1:1),
comparative, noninferiority; open‐label,
parallel‐group, multiple‐dose;
pharmacogenetic study

47 ✓ ✓ 2019 Vourvahis
et al. (64)

CCR5
antagonist

Maraviroc randomized, open-label, fixed-sequence,
crossover; DDI study

12 ✓ ✓ 2014 Vourvahis
et al. (65)

CCR5
antagonist

Vicriviroc randomized, open-label, parallel group; DDI
study

27 ✓ ✓ 2011 Kasserra
et al. (66)

CCR5
antagonist

Vicriviroc two studies (1): randomized, partially blind,
parallel-group (2), randomized, third-party-
blind, placebo-controlled, parallel-group;
study to assess CNS effects and effect on QTc
interval

200 ✓ ✓ 2010 O’Mara
et al. (67)

T cell function or
proliferation

Anti-CD38
monoclonal
antibody

TAK‐079
(mezagitamab)

randomized, double‐blind, placebo‐
controlled, SAD

74 ✓ ✓ ✓ 2018 Fedyk et al.
(68)

IL-1 receptor
antagonist

Anakinra double-blinded, placebo-controlled, crossover 23 ✓ ✓ 2015 Hernandez
et al. (69)

IL-10
receptor
agonist

rhIL-10 randomized, double-blind 54 ✓ ✓ ✓ 1997 Huhn et al.
(70)

Tumor cell
migration, TME

TGF-bR1
Kinase/ALK5
inhibitor

Galunisertib open-label 6 ✓ ✓ 2017 Cassidy
et al. (71)

P2X7
antagonist

JNJ-54175446 randomized, placebo-controlled, double-
blind, multiple ascending dose

64 ✓ ✓ ✓ 2020 Recourt
et al. (72)

Tumor cell survival TYK2/JAK1
Inhibitor

PF-06700841
(brepocitinib)

randomized, double-blind, placebo-
controlled, parallel-group SAD and MAD

54 ✓ ✓ ✓ 2018 Banfield
et al. (73)

JAK1/JAK2
inhibitor

Ruxolitinib open-label, multiple-dose, single-dose; DDI
study

31 ✓ ✓ 2012 Shi et al.
(74)

JAK1/JAK2
inhibitor

INCB018424
(ruxolitinib)

double-blind, randomized, placebo-
controlled, SAD, MAD; FIH study

23 ✓ ✓ ✓ 2011 Shit et al.
(75)

If the same compound is investigated in multiple studies, a brief description of study objectives is included under study design. MoA, mechanism of action; PK, pharmacokinetics; PD,
pharmacodynamics; FE, food-effect; SAD,single-ascending dose; MAD, multiple-ascending dose; DDI, drug-drug interactions; WBC, white blood cells.
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TABLE 3 Overview of safety findings in healthy volunteer studies of compounds with proposed mode of action for immuno-oncology.

Mode of action in oncology Safety findings per group Target/MoA Compound

Chemotaxis Mostly Grade 1AEs
Two Grade 3 AEs (asthenia, syncope)

CXCR4 antagonists BL-8040

Balixafortide

Plerixafor

Immune checkpoint Grade 1 and 2 AEs Adenonise A2a receptor
antagonist

Vipadenant (BIIB014)

Istradefylline

Adenosine 2a/2b receptor
antagonist

AB928

Innate immune response Grade 1 and 2 AEs CXCR2 antagonist SCH527123
(navarixin)

CXCR2 antagonist AZD8309

Grade 1 and 2 AEs
One Grade 3 AE (headache)

Dectin receptor agonist Imprime PGG

Fatigue, chills, headache, flu-like syndrome
(no grading reported)

IFN inducer, TLR3 agonist Poly(I):poly(C12U)

Grade 1 and 2 AEs
One Grade 3 AE (severe leukopenia)

IFNAR PEG-IFN a 2a and
2b

Headache, chills, myalgia, nausea
(no grading reported)

AVI-005 (IFN-a 2b)

Grade 1 and 2 AEs rhIFNa 2b

rIFN aA

IFNa 2a

IFNAR2B CIGB-128-A

Grade 1 and 2 AEs
Three Grade 3 AEs (two incidences of headache, flu symptoms)

Type I IFN receptor IFNb-1a and IFNb-1b

Grade 1 and 2 AEs TLR4 agonist LPS

Grade 1 and 2 AEs
Three Grade 3 AEs (increased heart rate, increased ASAT and ALAT)

TLR4 agonist GSK1795091

Grade 1 and 2 AEs TLR7 agonist Imiquimod (with
omiganan)

TLR7/TLR8 agonist Imiquimod

TLR9 receptor agonist CPG 10101
(ACTILON)

Regulation – activity of
immunomodulatory drugs

Grade 1 and 2 AEs Cereblon (CRBN)
modulation

Lenalidomide

Pomalidomide

Thalidomide

Regulation – angiogenesis Grade 1 and 2 AEs IL-3 receptor rhIL-3

Regulation – immune cell activity Grade 1 and 2 AEs CCR5 antagonist Aplaviroc

Maraviroc

Vicriviroc

T cell function or proliferation Grade 1 and 2 AEs Anti-CD38 monoclonal
antibody

TAK‐079
(Mezagitamab)

IL-1 receptor antagonist Anakinra

IL-10 receptor agonist rhIL-10

Tumor cell migration, TME (no adverse events reported) TGF-bR1 Kinase/ALK5
Inhibitor

Galunisertib

Grade 1 and 2 AEs P2X7 antagonist JNJ-54175446

Tumor cell survival Grade 1 and 2 AEs TYK2/JAK1 Inhibitor PF-06700841
(brepocitinib)

Grade 1 and 2 AEs
One discontinuation on active treatment due to Grade 4 neutropenia
(dose-limiting toxicity)

JAK1/JAK2 inhibitor Ruxolitinib
Frontiers in Oncology
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TABLE 4 Studies with pharmacodynamic endpoints possibly relevant for oncology.

Mode of action
in oncology

Target/MoA
[role in
immuno-
oncology]

Compound
(route of

administration)

Grouped relevant
pharmacodynamic

endpoint

Study pharmacodynamic endpoints – detailed

Chemotaxis CXCR4 antagonists
[ (77)]

Balixafortid
(i.v.)

Phenotyping of circulating immune
cells

Complete blood cell count, quantification of CD34+, other
immune cells subsets and plasmacytoid dendritic cell
progenitors (pro-pDCs)

BL-8040
(i.v.)

CD34+ and other WBC cell count, expression of CXCR4,
surface markers analysis

Plerixafor
(s.c.)

CD34+ cell mobilization; colony forming units (CFU) assay

Immune checkpoint A2aR and A2bR
antagonist
[ (78)]

AB928
(p.o.)

Ex vivo challenge assay pCREB levels in CD8+ cells in whole blood; NECA (adenosine
receptor agonist) challenge

A2aR antagonist
[ (78)]

Vipadenant
(p.o.)

Receptor occupancy Positron emission tomography (PET)

Innate immune
response

CXCR2 antagonist
[ (79)]

Navarixin
(SCH527123)
(p.o.)

Cytokine/chemokine levels,
immune parameters in blood and
cell counts

Sputum neutrophil counts, sputum IL-8 levels, peripheral
blood neutrophils

AZD8309
(p.o.)

Inflammatory cells and mediators in induced sputum and in
blood; spirometry

Dectin receptor
agonist
[ (22, 80)]

Imprime PGG
(i.v.)

Cytokine/chemokine levels,
immune parameters in blood and
cell counts

Serum IgG and IgM ABA, complete blood counts, circulating
immune complex (CIC) levels, complement activity plasma,
cytokine and chemokine measurement

IFNAR
[ (81, 82)]

PEG-IFNa 2a and
2b
(s.c.)

Cytokine/chemokine levels,
immune parameters in blood,
phenotyping circulating immune
cells

Neopterin and b2-microglobulin (b2M) concentrations in
serum, induction of 2’,5’ oligoadenylate synthetase (2’,5’ OAS)
mRNA expression, serum IFN antiviral activity

IFN-b 1a and 1b
(s.c.)

PBMC proliferation, CD markers expression, biomarkers (b2-
microglobuline, neopterin)

IFN-a 2b
(i.m.)

Neopterin and b2-microglobuline, mRNA expression of the
interferon-inducible protein kinase (PKR) and 2’5’
oligoadenylate synthetase (OAS), TNF-a levels

PEG-IFNa 2a
(s.c.)

2’, 5’-OAS levels

IFNAR/IFNGR
[ (81, 83)]

IFN a-2b and IFN-µ
(i.m.)

Cytokine/chemokine levels,
immune parameters in blood

Serum neopterin, b2-microglobulin (b2M) and 2′–5′
oligoadenylate synthetase (2′–5′ OAS)

TLR3 agonist
[ (82)]

poly(I):poly(C12U)
(i.v.)

Phenotyping circulating immune
cells; cytokine/chemokine levels in
blood

IFN levels, neopterin, T cell subsets, lymphocyte proliferation,
NK cell activity

TLR4 agonist
[ (84)]

LPS
(i.v.)

Cytokine levels, inflammation
parameters, phenotyping of
circulating immune cells

Cytokines, cortisol and CRP levels; pain tests

GSK1795091
(i.v.)

White blood cells count, cytokine levels, leukocyte
phenotyping

TLR7 agonist,
double prodrug
[ (85, 86)]

RO7020531
(p.o.)

Cytokine/chemokine levels,
immune parameters in blood

Cytokine/chemokine levels (IFN‐a, TNF‐a, IL‐12p40, IL‐6, IL‐
10, and IP‐10) and neopterin levels

TLR7/8 agonist
[ (85, 87)]

Imiquimod
(topical)

Phenotyping circulating immune
cells; cytokine levels in blood;
immunohistochemistry

Peripheral blood lymphocytes subpopulations, cytokines
biomarkers, immunohistochemistry

TLR9 agonist
[ (88)]

CPG 10101
(Actilon)
(s.c.)

Peripheral blood count;
autoimmune diagnostic biomarkers

Cytokine levels, leukocyte count, ANA, anti-dsDNA and RF

Regulation – activity
of
immunomodulatory
drugs

CRBN modulation
[ (89, 90)]

Thalidomide
(p.o.)

Phenotyping circulating immune
cells

White blood cells CD surface markers expression

Regulation –

angiogenesis
IL-3 agonist
[ (91)]

rhIL-3
(s.c.)

Peripheral blood cell counts Blood cells and CD34+ progenitor cells count

(Continued)
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an adenosine receptor antagonist (19) included evaluation of

cell-based target engagement. Adenosine has been identified as

one of the key immunosuppressive molecules reducing effector

immune cell activity in TME, which subsequently led to

development of inhibitors of the adenosine pathway (78). An

example of a successful early phase program in HVs with a

compound targeting an immune checkpoint is that of the double

adenosine receptor antagonist AB928 (etrumadenant) which is

currently undergoing phase 1b/2 trial in cancer patients

(ClinicalTrials.gov identifier: NCT04660812) (111), after PK/

PD profiling and efficient dose selection in a phase 1 HV study

(19). Challenges to investigating immune checkpoint inhibitors

in HVs comes from their biological characteristics – they are

mostly constructed as IgG monoclonal antibodies (mAbs). This

has an impact on the absorption, distribution and metabolism of

these compounds, introducing a significant interindividual

variability to the PK profiles. Furthermore, target-mediated

drug disposition (TMDD) of the mAbs may be one of the

main culprits for the complex PK profiles observed with

mAbs, considering the availability of the drug molecular

target(s) changes with disease state (or absence of disease).

These aspects make it particularly challenging to investigate

mAb-based checkpoint blockade in HV trials (112, 113).

Since a drug’s effective concentration depends on the clinical

context and the desired extent of activity on the specific cellular

pathways in a particular condition (114), the PK/PD relationship

assessed in HVs does not necessarily translate 1:1 to the targeted

patient population. This may represent a significant challenge
Frontiers in Oncology 13
for immunotherapeutic compounds, such as CXCR2, CXCR4

and CD38 antagonists.

The main function of the chemokine receptor CXCR2 is to

regulate the migration and efflux of neutrophils from the bone

marrow and it also plays a role in controlling the migration of

myeloid derived suppressor cells (MDSCs) to TME in patients.

Increased CXCR2 signaling leads to increased levels of

neutrophils and MDSCs in TME, which has been associated

with abrogated anti-tumor effects of immunotherapy and poorer

clinical outcomes. Depletion of neutrophils and MDSCs by

CXCR2 antagonists has been shown to increase the numbers

and activity of tumor-infiltrating CD8+ T cells, preventing

tumor growth and metastasis (115). Of significance for early

phase clinical studies could be the ability to investigate the proof-

of-concept of CXCR2 engaging compounds to address targeting

of CXCR2 already expressed in immune cells of HVs.

In malignancies, the chemokine receptor CXCR4 has been

shown to be overexpressed in various tumor cell populations,

causing tumor cell migration, angiogenesis, and tumor

progression. Blocking this pathway may therefore be an

attractive strategy in tumor immunotherapy (77). CXCR4

antagonists work by disrupting the CXCL12/CXCR4 pathway,

thereby inducing the mobilization of stem cells to the periphery,

making them valuable in the context of harvesting CD34+ cells

from both HVs and patients for hematopoietic stem cell

transplantation (14).

CD38 is a glycoprotein overexpressed in certain

autoimmune conditions (68), and multiple myeloma, where
TABLE 4 Continued

Mode of action
in oncology

Target/MoA
[role in
immuno-
oncology]

Compound
(route of

administration)

Grouped relevant
pharmacodynamic

endpoint

Study pharmacodynamic endpoints – detailed

T cell function and
proliferation

IL-1 receptor
antagonist
[(92)]

Anakinra
(s.c.)

Cytokine levels; cell counts Cytokine levels, white blood cells count, sputum neutrophils

IL-10 receptor
agonist
[(93)]

rhIL-10
(s.c.)

Cytokine levels; cell counts Cytokine levels; white blood cells and platelet count

anti-CD38
monoclonal
antibody
[(94)]

TAK‐079
(mezagitamab)
(i.v./s.c.)

Immune cell counts Plasmablasts and NK cells levels

Tumor cell
migration, TME

P2X7 antagonist
[(95)]

JNJ-54175446
(p.o.)

In vivo challenges, ex vivo challenge
assay

NeuroCart, PharmacoEEG, dexamphetamine challenge, LPS/
BzATP induced IL-1b release assay

Tumor cell survival JAK1/JAK2
inhibitor
[(96, 97)]

Ruxolitinib
(p.o.)

Ex vivo challenge assay IL‐6 induced activation of JAK/STAT pathway, levels of
phosphorylated STAT3 (pSTAT3)

TYK2/JAK1
inhibitor
[(97)]

Brepocitinib
(PF-06700841)
(p.o.)

Blood biomarker levels JAK1 downstream biomarkers (IP-10, hsCRP, neutrophils,
lymphocytes)
Studies are grouped by mode of action in oncology, and investigated pharmacodynamic endpoints were grouped by compound mechanism of action. MoA: mechanism of action; i.v.:
intravenous; s.c.: subcutaneous; p.o.: peroral; i.m.: intramuscular.
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CD38 antagonism by anti-CD38 mAbs can directly deplete

CD38+ myeloma cells (94). Nonetheless, anti-CD38 mAbs

have been also shown to successfully deplete the MDSCs and

regulatory T cells, thereby reverting the tumor-induced

immunosuppression and restoring the anti-myeloma effector T

cell functions (94). Such indirect cellular immune mechanisms

might already be investigated in the context of proof-of-concept

HV trials. Thus, in an integrative clinical study design for

immunotherapeutic compounds such as CXCR2, CXCR4 and

CD38 antagonists, the variability of target expression in HVs

compared to cancer patients should be considered when

investigating the PK/PD relationship in HVs for translation

into the patient setting.

As outlined in a recent review, there are several additional

obstacles that should be taken into account when designing early

phase oncology trials in HVs, ranging from more stringent

requirements for the pre-clinical pharmacology experiments to

alternative study designs, to starting dose selection (below the

pharmacologically active dose in HV studies, different than for

patients), and maximum exposure (with the difficulty to justify

dose escalation above the no observed adverse effects level,

NOAEL, in HVs) (116). Obviously, the challenge for future

early phase clinical design in oncology will be to further integrate

HVs using more sophisticated methodology to measure PD

endpoints, and to combine HVs and patients in an integrative

clinical trial design.
Limitations of the study

The findings of this systematic review must be observed in

light of some additional considerations. The interpretation of the

primary immune-related mechanism of action of a compound is
Frontiers in Oncology 14
potentially ambiguous. The exclusion of several compounds

(listed in Figure 1) deserves a separate justification. Although

direct tumor-targeting drugs such as trastuzumab, sunitinib and

lapatinib were intentionally not included in this review, we are

aware that evidence exists that the activity of these and similar

compounds may be partly attributed to the activation of the

innate and adaptive immune responses, mainly by induction of

CD8+ T-cell responses or inhibition of immunosuppressive Treg

cells (117, 118). However, they are typically not considered

direct immunotherapeutic compounds. Furthermore,

calcineurin inhibitor cyclosporine A and protein kinase C

inhibitor sotrastaurin, together with vaccines against hepatitis

B and human papillomavirus (viruses known to cause

malignancies) were not included in immunological targets

presented in Table 1, even though strictly fulfilling our

definition of immunotherapeutic agents (119–122). The first

two were not included in the original search due to not (yet)

being recognized as relevant targets in in immuno-oncology,

meaning the possible use in immuno-oncology was not

confirmed by literature, although that might change in the

future. Although several HV studies with compounds targeting

tumor-associated antigens (TAAs) were identified, we decided to

omit those studies, since expression of TAAs in HVs is either

absent or low, making the relevance of PD endpoints less

obvious in HVs. More specifically, FLT3 tyrosine-kinase

inhibitors aimed against acute myeloid leukemia (AML) cells

and BCR-ABL-derived peptide vaccine aimed against chronic

myeloid leukemia (CML) cells were investigated in HVs (123–

126). Importantly, the assessment whether a target could be

relevant for oncology was also based on the review by Tang et al.

(1, 2) and the Landscape of Immuno-Oncology Drug

Development tool (12). Obviously, the clinical relevance as

oncological targets remains to be proven for many of them
FIGURE 2

Overview of number of studies with at least one pharmacodynamic (PD) endpoint per target group. Targets included in each category are 1)
chemotaxis: CXC4 antagonists; 2) immune checkpoint: A2a and A2a/A2b antagonists; 3) innate immune response: CXCR2 antagonist, dectin
receptor agonist, TLR3/4/7/8/9 agonists, IFN; 4) Regulation – immunomodulation: CRBN modulators; 5) Regulation – angiogenesis: IL-3; 6)
Regulation – immune cell activity: CCR5 antagonists; 7) T cell function or proliferation: anti-CD38 mAb, IL-1R antagonist, IL-10 agonist; 8)
Tumor cell migration: TGF-bR1 Kinase/ALK5 inhibitor, P2X7 antagonist; 9) Tumor cell survival: TYK2/JAK1 inhibitor, JAK1/JAK2 inhibitor; PD,
pharmacodynamic; TME: tumor microenvironment.
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and insights are quickly changing. We did not aim to give a

complete overview, but rather an indication of the current state

of immuno-oncology drug development studies that integrate

HVs in early phase clinical trial protocols.
Conclusion

In conclusion, the findings of our systematic review show the

potential value of HV studies for investigational oncology

compounds with an immunomodulatory mechanism of action.

For all identified drug classes, the observed safety profiles in HV

were favorable, and for many compounds the drug

concentration versus activity relationship could be evaluated

based on incorporated PD endpoints. As such, the obtained

insights can guide selection of a safe and pharmacologically

active dose for the phase 1B/2A trial in patients. Based on a

thorough benefit/risk assessment, the integration of HVs in early

phase drug development programs for immuno-oncological

compounds can be considered on a case-by-case basis and

may have significant advantages for the later clinical

development program.
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