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Circular RNAs (circRNAs) are a class of closed circular non-coding RNAs widely

exist in eukaryotes, with high stability and species conservation. A large number

of studies have shown that circRNAs are abnormally expressed in various tumor

tissues, and are abundant in plasma with long half-life and high specificity,

which may be served as potential tumor biomarkers for early diagnosis,

treatment and prognosis of malignant tumors. However, the role of circRNAs

is still poorly understood in gastric cancer. This article reviews the research

progress of circRNAs in gastric cancer in recent years so as to explore the

relationship between circRNAs and the occurrence and the development of

gastric cancer, and provide new ideas for the diagnosis and treatment of

gastric cancer.
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The formation and regulatory mechanism of
circRNAs

Formation of circRNA

CircRNAs are mainly divided into four categories according to their sources: exonic

circRNAs (ecircRNAs) (1), intronic circRNAs (ciRNAs) (2), exon-intron circular RNAs

(EIciRNA) (3) and intergenic circRNA (4). The biosynthesis of circRNA is different from

the traditional canonical splicing mode of linear mRNA, but is formed by back splicing

(5). Although the efficiency of circRNA reverse splicing is much lower than that of linear

RNA, circRNA maintains high abundance in various species on accout of its high

stability and long half-life. At present, the two formation mechanisms studied thoroughly

are exon cyclization mechanism and intron cyclization mechanism.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.954637/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.954637/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.954637/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.954637&domain=pdf&date_stamp=2022-11-16
mailto:zhaoqun@hebmu.edu.cn
https://doi.org/10.3389/fonc.2022.954637
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.954637
https://www.frontiersin.org/journals/oncology


Ding et al. 10.3389/fonc.2022.954637
Exonic circRNAs can be formed by reverse splicing of a

single exon or multiple exons. The specific splicing methods are

mainly divided into the following two models: the lasso-driven

circularization model (6) and the intron pairing-driven circular

model (7). The efficiency of the lasso-driven circularization

model to form circRNAs is significantly higher than the intron

pairing-driven circularization model, and it is a more common

form of splicing in organisms (8).

Most exon-derived circRNAs are mainly formed through a

lasso-driven circularization model. The mRNA precursor (pre-

mRNA) is partially folded during transcription, bringing the

distance between originally non-adjacent exons closer, resulting

in exon skipping, thereby the crossed region forms the circRNA

intermediates, and then forms the so-called exon circRNA

through splicing.

During primary transcription, the intron regions on both

sides of the primary mRNA(pri-mRNA) transcription product

are complementary to each other due to the presence of reverse

complementary sequences, such as ALU repeat elements,

resulting in complementary pairing of introns and mediating

the reverse splicing of exons and folding them together, and then

partially cutting off introns to form some exonic circular RNAs.

The formation of intronic circRNAs is formed by the splicing

of introns, and can be divided into group I introns, group II

introns, and nuclear pre-mRNA introns (spliceosomal intron)

according to different splicing methods. Most commonly, intron

splicing during exonic circRNA formation is mediated by nuclear

pre-mRNA introns, whereas intron circRNA formation is

associated with class I introns and class II introns (9).
Frontiers in Oncology 02
CircRNAs formed by intron cyclization can be produced in

two ways: one is that an exogenous guanine nucleotide attacks

the 5’ splice site, excises the 5’ exon and connects to the intron,

and then the 3’ hydroxyl end of the excised 5’ exon attacks the 3’

splice site, releases the linear intron and joins the exons, and

finally, the linear intron releases the 3’ tail to form a 2’-5’

junction intronic circular RNAs. The other is to first release

the 3’ exon, and then the 2’ hydroxyl end of the intron attacks the

5’ splice site to generate circRNA.

An exogenous guanine nucleotide is used as a nucleophile to

attack the 5 ‘ end splicing site, the exon at the 5’ end is excised by

transesterification, and the exogenous guanine and intron are

connected to each other, while the 3’ hydroxyl (-OH) above the

cleaved 5’ terminal exon attacks the 3’ terminal splice site,

resulting in the release of the linear intron by excision, the

exons are connected to each other. Then the released linear

intron removes its own 3’-terminal tail, and the remaining 2’-

OH and 5’-terminal splice sites are connected to form a

phosphodiester bond to generate an intronic circRNA (10,

11) (Figure 1).
The regulatory mechanism of circRNA

Mechanistic studies have shown that the flanking intron

regions of circRNA circularized splice junctions usually contain

reverse complementary sequences of varying lengths, including a

repeat sequence of about 30-40 nucleotides that exists in primate

genomes, called ALU element, and this structure can
FIGURE 1

The formation and regulatory mechanism of circRNA.
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significantly promote the formation of circRNA (12). In addition

to the above-mentioned Alu elements, it is reported that the

complementary sequences within certain exons and their

flanking introns can promote RNA reverse splicing to form

circRNAs through base pairing (13).

The formation of circRNAs may also be affected by RNA-

binding proteins (RBPs). On the one hand, RBPs can promote

the formation of circRNAs by binding to target sites in the

flanking intronic regions of pre-mRNA. For example, the

splicing factor Quaking promotes circRNA formation by

binding to targets upstream and downstream of circularized

flanking intron regions on SMARCA5 pre-mRNA (14). The

immune factors NF90 and/or NF110 promote circRNA

production by binding to the inverted repeat Alus (IRAlus) of

pre-mRNA (15). On the other hand, RBPs can also inhibit the

formation of circRNAs by affecting the RNA pairing process. For

example, the adenosine deaminase ADAR1 affects RNA pairing

that A-to-I editing circularized exon flanks, reducing the

complementarity and stability of the RNA pairing and

inhibiting circRNA formation (16). The RNA helicase DHX9

can bind to IRAlus and inhibit circRNA formation by unraveling

the paired RNAs flanking the circular exons (17).

In addition, circRNA formation occurs in synergistic

transcription and post-transcriptional coupling with Pol II

transcription (18, 19). A study on Pol II transcription

elongation (TER) of genes that promote circRNA formation

(20) found that the average TER of circRNA was higher than

that of non-circRNA, and the change of TER had a significant

effect on the formation of circRNA. They believed that this

might because higher TER can allow the transcription of

downstream intron complementary sequences (ICS),

increasing the possibility of ICS cross-exon pairing, thereby

increasing the possibility of reverse splicing circRNA

formation. At the same time, higher TER-related linear

splicing reduction may also promote the formation of

circRNA. There are also quite a few circRNAs that are formed

after transcription. A large number of nascent circRNAs are

detected only after the transcription of their host pre-mRNAs

has been completed (20). Further Mechanistic studies have

shown that mRNA 3 ‘ -end processing is required for circRNA

production (2), and inhibition of co-transcription 3 ‘ -end

processing can increase circRNA formation (21), which can be

attributed to increased transcription of Pol II upstream

polyadenylation signals.
Biological functions of circRNAs

Interaction between circRNA and miRNA

Some circRNAs contain miRNA binding sites, and act as

competing endogenous RNAs (ceRNAs) to negatively regulate

miRNA activity by competing miRNA binding sites, thereby
Frontiers in Oncology 03
reducing the inhibitory effect of miRNAs on their downstream

target genes. The most representative example is the antisense

transcript of cerebellar degeneration-related protein-1

(CDR1as), also known as ciRS-7, which contains 74 selectively

conserved miRNA-binding sites and acts as a molecular sponge

for miR-7. Another circular RNA circSRY, exists specifically in

mouse testis tissue, contains 16 binding sites for miR-138 (22,

23). Another study found that circHIPK3 could act as a

molecular sponge for miR-124, upregulate the expression of

miR-124 target genes IL6R and DXL2, and then promote the

proliferation of liver cancer cells (24). But it is worth noting that

the concentration of circRNA and corresponding miRNA

should be at a similar level to facilitate effective competitive

binding of miRNA, and only in this way, circRNAs can

effectively bind miRNAs and inhibit their functions. However,

many circRNAs in organisms are usually expressed in low

abundance and lack multiple targets for the same miRNA

molecule, so the function of miRNA sponge is limited

(25) (Figure 2A).

Besides acting as miRNA sponges and specific inhibitors of

target miRNAs, circRNAs can also act as miRNA reservoirs to

stabilize or activate miRNA functions. For example, ciRS-7 can

be considered as miR-7 reservoir. After miR-671 cleaves ciRS-7,

miR-7 is released in large quantities and its activity increases

rapidly, consequently resulting in the effective inhibition of miR-

7 targets. At this time, ciRS-7 becomes a “miR-7 reservoir” and

activates miR-7 function (26). ERb represses the circular RNA

circATP2B1, which acts as a reservoir of miR-204-3p by

transcription. The decreased circATP2B1 cannot stabilize the

expression of miR-204-3p, resulting in the decrease of miR-204-

3p, which in turn increases its downstream target FN1 and

enhanced the invasive ability of ccRCC cells (27). Other studies

have shown that circ-HIAT1 can act as a reservoir for miR-195-

5p, miR-29a-3p and miR-29c-3p to stabilize the expression of

these miRNAs, thereby inhibiting the activity of the downstream

target gene CDC42 (28).
circRNA interacts with RBP

RBP is a class of proteins widely involved in gene

transcription and translation in organisms, and the interaction

with RBP can be considered as an important part of the function

of circRNA. RBPs function in splicing, processing, folding,

stability and localization of circRNAs by interacting with the

circularized splice junctions of circRNAs (29). For example, circ-

Foxo3 can form a Foxo3-p21-CDK2 ternary complex by

interacting with cyclin-dependent kinase 2 (CDK2) and p21,

resulting in the inhibition of CDK2 function and the blockage of

cell cycle progression, thereby regulating tumor development

(30). In addition, circ-Foxo3 was also found to bind to two

proteins, MDM2 and p53, promoting MDM2-induced p53

ubiquitination and subsequent degradation (31). Another
frontiersin.org
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study found that the circular RNA circPABPN1 inhibited the

combine of HuR with linear PABPN1 mRNA by competitively

interacting with HuR, thereby affecting the translation of its

cognate transcript PABPN1 (32) (Figure 2B).
circRNAs can regulate gene transcription

Nuclear EIciRNAs and ciRNAs may be involved in the

transcriptional regulation of genes. Studies shown that the

transcription of the parental gene was inhibited after

knockdown of EIciRNA. Mechanistic studies have shown that

EIciRNAs such as circEIF3J and circPAIP2 form EIciRNA-U1

snRNP complexes by interacting with U1 small nuclear

ribonucleoprotein (U1snRNP), and interacte with RNA

polymerase II (Pol II) on the promoters of EIciRNA parent

genes to promote transcription of the parental gene. In addition,

when the above RNA-RNA interaction is blocked, the

interaction between EIciRNA and Pol II is disrupted, resulting

in a subsequent decrease in the transcription of the EIciRNA
Frontiers in Oncology 04
parental gene (3). Another study found that circSEP3, a circular

RNA derived from exon 6 of SEPALLATA3 (SEP3) in

Arabidopsis thaliana, could tightly bind to its cognate DNA

locus to form a circRNA : DNA complex, which could cause

transcriptional pause, and exon-skipping alternatively spliced

SEP3 mRNA (33). Besides, abundant ciRNAs such as ci-ankrd52

in the nucleus may positively regulate Pol II transcription by

extending the Pol II mechanism. When ci-ankrd52 is knocked

down, the transcription of its parental gene is also reduced

(2) (Figure 2D).
circRNAs can encode polypeptides

Although circRNAs have always been defined as non-coding

RNAs, some circRNAs have internal ribosome entry site

elements (IRES) (34) or prokaryotic ribosome binding sites

(35), so these circRNAs are no longer non-coding RNA in the

traditional sense, but a special circular RNA capable of encoding

polypeptides. Given circRNAs lack caps and poly(A) tails, thus,
B C

D

A

FIGURE 2

Biological functions of circRNAs.
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translation of circRNAs may occur in a cap-independent

manner. At present, with the continuous development of

circRNA research, many online databases can be referenced

for researchers. Such as, the circRNADb database contains the

specific information of 32,914 human exonic circRNAs,

including the genome sequence, open reading frame (ORF)

and IRES. This information can help us to assess whether

circRNAs have coding potential (36). For example,

circZNF609 can encode functional polypeptides and

participate in regulating the proliferation of myoblasts during

muscle differentiation (37). Another circular RNA, circMbl,

derived from the muscleblind (Mbl) locus, encodes a protein

that has been detected in fly head extracts by mass

spectrometry (38).
Interaction between circRNA and mRNA

Mechanistic studies have shown that CircRNA can not only

bind to mRNA, but also act as a regulator of mRNA translation and

stability (39, 40). For example, CircIPO11, a regulator necessary for

liver cancer stem cells (CSCs) to maintain self-renewal, can recruit

the TOP1 to the GLI1 promoter to trigger its transcription, thereby

activating the Hedgehog signaling to promote liver CSC self-

renewal and HCC progression (40). circYAP is a circRNA that

regulates the translation of mRNA. In the translation initiation

complex, circYAP can specifically recognize and bind to YAP

mRNA, eliminating the interaction between PABP on the poly

(A) tail and eIF4G on the 5 ‘ -cap of Yap mRNA, resulting in the

inhibition of Yap translation initiation (41). CircRNA can regulate

mRNA stability. When circXPO1 binds to IGF2BP1 and enhances

the stability of CTNNB1mRNA, the inhibitory effect of CTNNB1 is

enhanced, thereby accelerating the progression of lung tumors (42).

Similarly, circARHGAP12 enhances the stability of EZR mRNA by

binding to the 3’UTR of EZR mRNA, thereby promoting the

progression of nasopharyngeal carcinoma (NPC) (39, 43).

In addition to the above mechanisms, circRNAs may also

initiate the translation process through N6-methyladenosine

(m6A) modification. CircRNAs are rich in m6A consensus

motifs, and a single m6A site is sufficient to drive translation

initiation. One study found that m6A-driven circRNA translation

was widespread through ribosome sequencing analysis and mass

spectrometry detection, and many endogenous circRNAs had

translation potential (44) (Figure 2C).
The relationship between circRNA
and gastric cancer

With the deepening of circRNA research in recent years, the

relationship between circRNA and various human diseases has

been discovered one after another, including difficult-to-treat

tumors. Gastric Cancer (GC) is one of the most common
Frontiers in Oncology 05
malignant tumors of the digestive system in the world, with

higher morbidity and mortality in our country (45). Although

great progress has been made in the treatment of gastric cancer,

the five-year overall survival rate of patients with gastric cancer

is still low due to the high clinical heterogeneity and the variable

progression of gastric cancer (46). Therefore, there is an urgent

need to find effective biomarkers for early diagnosis, early

treatment and prognostic of gastric cancer, so as to provide

more timely and precise treatment options for gastric cancer

patients. Recently, some studies have emerged on the abnormal

expression and mechanism of circRNAs in gastric cancer, which

may have important implications for the diagnosis, treatment

and prognosis of gastric cancer.
Differential expressions of circRNAs in
gastric cancer

The expression of some circRNAs is up-regulated in gastric

cancer (Table 1). For example, a study detected by RT-PCR

technology found that the expression level of circPVT1 was

significantly higher than that in the corresponding adjacent

normal tissue as a proliferation factor and prognostic marker in

gastric cancer tissue (47). circHIPK3 is also found to be up-

regulated in gastric cancer tissues and cells, and the expression

level of circHIPK3 is significantly correlated with the TNM stage of

gastric cancer patients (48). Similar results are as follows, the

expression of circ_0006282 in gastric cancer tissues is significantly

higher than that in its adjacent non-cancerous tissues, and the high

expression of circ_0006282 was associated with tumor size, lymph

node metastasis and TNM stage (49). The expression of

hsa_circ_0010882 is significantly up-regulated in gastric cancer

patient plasma and gastric cancer cell lines, and its expression

level is significantly correlated with the tumor size and histological

grade of the patients (50). The expression level of hsa_circ_0000467

in gastric cancer tissues is significantly higher than that in the

corresponding adjacent tissues, and it is correlated with the

histological grade of gastric cancer (51). A study quantitatively

detected the expression of circRBM33 in 79 pairs of GC tissues and

paracancerous tissues and 4 GC cell lines (MGC-803, BGC-823,

SGC-7901 and AGS) by RT-PCR. It was significantly up-regulated

in GC tissue specimens and cell lines, and the expression level of

circRBM33 is observed to be closely related to the clinical

characteristics of GC patients (52). In the analysis of the

expression levels of circURI1 in GC and adjacent normal tissues,

and found that circURI1 is generally and significantly up-regulated

in GC compared with adjacent tissues, and the decreased expression

level of circURI1 was associated with TNM stage (III-IV) and

distant metastasis (53). CircNHSL1 is the most up-regulated

circRNA in gastric cancer metastatic tissues through RNA-seq

analysis in 3 gastric cancer tissues with metastasis and 2 gastric

cancer tissues without metastasis, and the high expression of

circNHSL1 is positively correlated with UICC stage, pathological
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TABLE 1 Summary of some tumor-related CircRNAs.

CircRNA ID Expression Tumor
size

Differentiation
grade

T
stage

TNM
stage

Lymphatic
metastasis

Distant
metastasis

Drug
resistance

Mechanisms

CircRNA ciRS-7 ↑ CircRNA ciRS-7/MiR-7/
PTEN/PI3K/AKT

Hsa_circ_0007507 ↑ ✔ ✔ ✔ Unknown

Hsa_circ_0110389 ↑ ✔ ✔ ✔ ✔ ✔ HsacircOl l0389/MiR-l27-5p
or miR-l36-5p/SORT l

CircTMEM87A ↑ ✔ ✔ CircTMEM87A/MiR-l42-5p/
ULKl

CircRNA UBE2Q2 ↑ ✔ ✔ CircRNA UBE2Q2/MiR-370-
3p/STAT3

CircDNA2 ↑ CircDNA2/miR-l49-5p/
CCDC6

CircLM07 ↑ ✔ ✔ CircLMO7/MiR30a-3p/
WNT2/|3-catenin

CircURIl ↑ ✔ ✔ CircUIl/hnRNPM

CircHIPK3 ↑ CircHIPK3/miR-637/AKT l

Hsa_circ_0001020 ↑ ✔ Unknown

CircAG02 ↑ ✔ ✔ ✔ CircAG02/HURR

Circ-DONSON ↑ ✔ ✔ Circ-DONSON/NURF/SOX4

CircNRIPl ↑ ✔ ✔ CircNRIPl/MiRl49-5p/AKT
l/mTOR

Circ-RanGAPl ↑ ✔ ✔ ✔ Circ RanGAP1/MiR-877-3p/
VEGFA

CircSHKBPl ↑ ✔ ✔ ✔ CircSHKBP l M iR582-3p
/HUR/VEGF/H SP90

CircNHSLl ↑ ✔ ✔ ✔ ✔ CircNHSLl/MiR-l3063p/SIXl/
vimentin

CircAXINl ↑ ✔ ✔ ✔ CircAXIN l /AXIN l -295aa/
Wnt/|3-catenin

EBV-CircLMP2A ↑ ✔ ✔ ✔ EBV-CircLMP2A/KHSRP/
VHL/HIFla/VEGFA

Circ_SMAD4 ↑ Circ_SMAD4/wnt/|3-catenin

CircHAS2 ↑ ✔ ✔ ✔ CircHAS2/MiR-944/PPM IE

CircRNA_l 00290 ↑ ✔ ✔ CircRNA_l00290/MiR-29b-
3p/lTGAl l

CircLMTK2 ↑ ✔ ✔ ✔ CircLMTK2/MiR-l505p/c-
Myc

circ_0006282 ↑ ✔ ✔ ✔ Circ_0006282/MiR-l55/
FBXO22

hsa_circ_0010882 ↑ ✔ ✔ Hsa_circ_00l0882/PI3K/Akt/
mTOR

circRBM33 ↑ CircRBM33/M lR-149/1L-6

CircDLST ↑ ✔ 5-FU
resistance

CircDLST/MiR-502-5p/
NRAS/MEKl/ ERKl/2

CircRNA AKT 3 ↑ ✔ ✔ ✔ cisplatin
resistance

CircRNA AKT3/MrR-l98/
PIK3Rl

CircFAM73A ↑ ✔ ✔ cisplatin
resistance

CircFAM73A/MiR-490-3p/
HMGA2/hnrnpk/|3-cateniri

CircPVT 1 ↑ cisplatin
resistance

CircP VI1/M lR-152-3p/
HDGF

Circ_ASAP2 ↑ cisplatin
resistance

Crrc_ASAP2/MiR-330-3p/
NT5E

CircCPM ↑ 5-FU
resistance

Circular CPM/MiR-21-3p/
PRKAA2

(Continued)
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T stage, lymphatic metastasis, distant metastasis and histological

grade. Meanwhile, the expression level of circNHSL1 in M1 stage

tissues is higher than that in M0 stage tissues, and it is associated

with progression and poor prognosis (54). In analyzing the
Frontiers in Oncology 07
expression of ebv-circLMP2A in 69 EBVa GC patients. It is

found that high expression of ebv-circLMP2A is significantly

associated with lymph node metastasis, distant metastasis and

TNM advanced stage (55). The expression level of circDLST is
TABLE 1 Continued

CircRNA ID Expression Tumor
size

Differentiation
grade

T
stage

TNM
stage

Lymphatic
metastasis

Distant
metastasis

Drug
resistance

Mechanisms

CircFNl ↑ ✔ ✔ cisplatin
resistance

CrrcFNl/MiR-182-5p

CircOl 10805 ↑ cisplatin
resistance

Circ_0110805/MiR-299-3p/
ENDOPDI

Circ_0026359 ↑ cisplatin
resistance

Crrc_0026359/MiR-1200/
POLD4

Circ_0000260 ↑ cisplatin
resistance

Circ_0000260/M lR-129-5p
MMP11

CircMCTP2 ↓ ✔ ✔ ✔ cisplatin
resistance

CircMCTP2/MiR-99a-5p/
MTMR3

Circul2 ↓ ✔ ✔ ✔ ✔ cisplatin
resistance

Crrcul2/MiR142-3p/ROCK2

CircRNA YAP1 ↓ ✔ ✔ 5-FU
sensitive

CircRNA YAPl/MiR-367-5p/
p27 Kip 1

Circ_0001017 ↓ cisplatin
resistance

Circ_0001017/MrR-543/
PHLPP2

Hsa_circ_0009172 ↓ ✔ ✔ Hsa_circ_0009172/MiR-485-
3p/NTRK3

CircDIDOl ↓ ✔ ✔ CrrcDIDO 1/DIDO1-529aa/
PRDX2

Circ0007360 ↓ Crrc0007360/MiR-762/[RF7

CircGSK3B ↓ ✔ ✔ ✔ CircGSK3B/EZH2/RORA

Circ-HuR ↓ ✔ ✔ ✔ Crrc-HuR/CNBP/HuR

CircMRPS35 ↓ ✔ ✔ ✔ CircMRPS35/KAT7

CircCCDC9 ↓ ✔ ✔ ✔ CrrcCCDC9/MiR-67923p/
CAVl

CircFATl(e2) ↓ ✔ ✔ ✔ CircFATl(e2)/MiR-548gYBXl

CircRNA
ST3GAL6

↓ ✔ ✔ CircRNA ST3GAL6/FOXP2/
MET/mTOR

CircPTK2 ↓ ✔ CrrcPT K2/M rR-196a-3p
/AAT K

CircMTOl ↓ CircM TOl/MiR-3200-5p
/PEBP1

Hsa_crrc_0004872 ↓ ✔ ✔ ✔ Hsa_crrc_0004872/M rR-
224/ Smad4/ADAR1

CircRNA_LARP4 ↓ CircRNA_LARP4/MiR-424-
5p/LAT SI

CircPSMC3 ↓ ✔ ✔ CrrcPSM C3/M rR-296-5p

CircST3GAL6 ↓ ✔ CircST3GAL6/FOXP2/MET/
mTOR

CircRAB31 ↓ ✔ ✔ ✔ CircRAB31/MiR-885-5p/
PTEN/PI3K/AKT

Hsa_crrc_00001649 ↓ Unknown

Hsa_circ_0003159 ↓ Hsa_circ_0003159 / MiR-
223-3p/NDRGl

Circ-KIAA1244 ↓ ✔ ✔ Unknown

Circ-SMAD7 ↓ Unknown
↑/↓, up-regulation and down-regulation; ✔, CircRNAs are associated with clinicopathological features.
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significantly increased in gastric cancer tissues compared with

adjacent tissues, and it is an independent prognostic factor for

poor survival of gastric cancer patients. Among patients receiving

chemotherapy (oxaliplatin plus 5-Fu), patients with high circDLST

expression have shorter overall survival than those with low

expression (56). Circ_ASAP2 is overexpressed in DDP-resistant

gastric cancer tissues and cells, the down-regulation of circ_ASAP2

promote the sensitivity and apoptosis of DDP-resistant gastric

cancer cells and inhibite cell proliferation, migration and

invasion (57).
Down-regulated circRNAs in
gastric cancer

Some circRNAs are down-regulated in gastric cancer. For

example, circRNA LARP4 is lowly expressed in gastric cancer

tissue, and its expression level is significantly correlated with the

pathological stage and overall survival rate of gastric cancer patients

(58). Hsa_circ_00001649 is significantly down-regulated in tumor

tissue and serum of patients with gastric cancer, and its expression

may be related to the type of gastric cancer, with relatively high

sensitivity and specificity (59). hsa_circ_0003159 is lowly expressed

in GC tissues and cells, and low expression of hsa_circ_0003159 is

associated with lower overall and disease-free survival in gastric

cancer patients (60). Similar results are as follows, a study showed

that circ-KIAA1244 in GC tissues, plasma and cells was significantly

lower compared with normal controls by analysing the circRNA

expression profiles in plasma samples from 10 GC patients with

different TNM stages and 5 healthy people, and further clinical data

analysis showed that the low expression of circ-KIAA1244 in

plasma was negatively correlated with TNM stage, lymph node

metastasis and overall survival time in GC patients (61). Another

study showed that circ-SMAD7 expression was significantly

reduced in GC tissues compared with adjacent normal tissues

(62). circYAP1 was significantly lower in gastric cancer tissues

than in adjacent normal tissues. In addition, the treatment outcome

of gastric cancer patients with high circYAP1 expression was better

than those with low circYAP1 expression by observing 75 gastric

cancer patients who received adjuvant chemotherapy (oxaliplatin

and 5-Fu) (63). The expression level of circ_0001017 in GC tissues

of recurrent patients was lower than that of primary patients by

analysing 26 patients with primary gastric cancer (sensitive) and 33

patients with recurrent gastric cancer (resistant), and low expression

of circ_0001017 was associated with CDDP resistance in GC (64).
Relationship between circRNA and
the occurrence and development of
gastric cancer

Studies have found that some circRNAs may act as oncogenes

to promote the occurrence and development of gastric cancer. For
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example, circ_0006282 can promote the proliferation and

metastatic capacity of GC cells in vitro by acting as a miR-155

molecular sponge, and can promote tumor growth in vivo (49).

The research results also showed that knockdown of

hsa_circ_0010882 inhibited the proliferation, migration and

invasion of gastric cancer cell lines, and increased apoptosis. In

addition, the overexpression of hsa_circ_0010882 can enhance the

proliferation, migration and invasion of gastric cancer cell,

without changing apoptosis (50). Hsa_circ_0000467 promotes

the proliferation and invasion ability of gastric cancer cells and

the number of cells entering G2/M phase by regulating the

expression of miR-326-3p (51). On the other hand, some

circRNAs may act as tumor suppressor genes to inhibit the

occurrence and development of gastric cancer. For example,

circRBM33 inhibits gastric cancer cell apoptosis and promotes

cell proliferation, migration and invasion through the circRBM33/

miR-149/IL-6 axis (52). Hsa_circ_0003159 inhibits the

proliferation, migration and invasion but induces apoptosis of

GC cells by regulating miR-223-3p and NDRG1 (60).

CircRHOBTB3 affects p21 protein expression by acting as a

sponge for miR-654-3p, and then inhibits gastric cancer cell

proliferation in vitro and xenograft tumor growth in vivo (65).
circRNA as a diagnostic marker for
gastric cancer

Although the current treatment technology for gastric cancer

has been greatly improved, the overall survival of gastric cancer

patients is still unsatisfactory. The main reason is that many

patients do not undergo early surgical resection in time, and the

gastric cancer is found at a later stage and miss the best

opportunity for surgery, resulting in a greatly reduced treatment

effect. Therefore, the early screening and diagnosis of gastric

cancer has become the key to improve the prognosis of patients

(66). Histopathology is currently the gold standard for the

diagnosis of gastric cancer, but it requires invasive procedures to

obtain gastric tissue samples. In recent years, gastroscopic

examination has been widely used in clinical practice. It can

visually check the tissue lesions of the stomach and biopsy

suspected tissues. However, because it is an invasive

examination, it may cause some physical discomfort to the

examiner, and has contraindications, so the application is still

limited. Tumor marker detection is also a commonly used method

to assist the diagnosis of gastric cancer. Carcinoembryonic antigen

(CEA), alpha-fetoprotein (AFP), carbohydrate antigen 19-9

(CA19-9) and carbohydrate antigen 72- 4 (CA72-4) and other

substances are of great significance for the diagnosis of tumors,

but due to the lack of specificity, they can only be used as auxiliary

diagnosis. Based on the above analysis, in order to improve the

current status of early diagnosis of gastric cancer, it is of great

urgent to explore less or even non-invasive, high-sensitivity and

specific detection methods.
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The inherent closed-loop structure of circRNA makes its

expression relatively stable in tissues and blood, which makes it

more likely to be a diagnostic marker for tumors. For example,

circRNAs are highly stable in mammalian cells, and one specific

circRNA hsa_circ_002059 may be a potential novel and stable

biomarker for the diagnosis of gastric cancer (67). The expression

level of hsa_circ_0000190 is significantly reduced in gastric cancer

tissue and plasma, and its sensitivity and specificity in diagnosing

gastric cancer are significantly better than those of CEA and CA19-

9 (68). Besides, the expression level of hsa_circ_0000745 in gastric

cancer tissue is related to the degree of tumor differentiation, and its

expression level in plasma was related to the stage of tumor lymph

node metastasis. At the same time, the combination of its plasma

expression level and CEA level may be an effective marker for the

diagnosis of gastric cancer (69). Likewise, hsa_circ_0001020 is

significantly up-regulated in gastric cancer patient plasma

compared with normal plasma and is significantly lower in both

the postoperative group and the healthy group than the

preoperative group by analysing plasma samples from

preoperative and postoperative gastric cancer patients and healthy

volunteers, subsequently ROC curve is constructed to determine the

potential screening value of hsa_circ_0001020 in plasma. The AUC,

sensitivity, specificity are 0.738, 46.55% and 97.83%, respectively.

When CEA combined with hsa_circ_0001020 are used as plasma

biomarkers, their AUC, sensitivity and specificity are 0.852, 66.7%,

and 91.3%, respectively (70). CircPSMC3 is significantly

downregulated in gastric cancer and correlated with poor

prognosis, and the down-regulation of circPSMC3 is negatively

correlated with TNM stage and lymph node metastasis, meanwhile,

the area under the ROC curve (AUC) of circPSMC3 in

differentiating GC-MS from normal GC-MS was 0.9326, with a

sensitivity of 85.85% and a specificity of 95.24% (71). In addition,

Gastric cancer patients with high expression of circYAP1 had better

therapeutic effect than those with low expression of circYAP1 by

observing 75 gastric cancer patients who received adjuvant

chemotherapy (oxaliplatin and 5-Fu) (63). Therefore, the

circRNAs have important guiding significance for the early

diagnosis of gastric cancer and chemotherapy of advanced

gastric cancer.
circRNAs as therapeutic targets for
gastric cancer

With the deepening of the concept of precision medicine and

the rapid development of molecular biology technology,

molecular targeted therapy has been widely used in clinical

anti-tumor work. Molecular targeted therapy, also known as

“bio-missile”, is targeted at a certain protein molecule or gene

fragment in the discovered tumor cells to specifically kill tumor

cells, thereby inhibiting tumor growth and control tumor

recurrence and metastasis (72). At present, the therapeutic

targets of gastric cancer mainly include HER-2, EGFR, PI3K,
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mTOR and c-Met, etc., and targeted drugs targeting these

receptors and kinases have achieved certain results in the

clinical application of gastric cancer treatment (73). With the

continuous development of circRNA research in recent years, its

regulatory mechanism has been increasingly discovered in

gastric cancer. Among them, circRNA function in a variety of

cancer pathways by regulating the expression of some tumor-

related genes, providing new potential molecular targets for

targeted therapy of gastric cancer (74). For instance, circPVT1

exhibits frequent gene fragment amplification in gastric cancer,

and can upregulate the expression of target gene E2F2 by acting

as a molecular sponge of miR-125b, promoting the growth and

proliferation of gastric cancer cells, and the stability of its

expression makes it possible as a potential therapeutic target

for gastric cancer (47). Synthetic anti-nuclease digested circRNA

sponges have been reported to inhibit the proliferation of gastric

cancer cells and reduce the activity of miR-21 against

downstream targets, including the tumor protein DAXX. This

finding suggests that synthetic circRNA sponges represent a

simple, effective, and convenient therapeutic strategy to target

miRNA loss-of-function in vitro, and is expected to gain

potential therapeutic applications in human patients (75).
circRNA as a prognostic marker for
gastric cancer

Medical technology continues to advance, the incidence and

mortality of gastric cancer have been decreasing year by year in

our country, but the prognosis of patients with advanced gastric

cancer still needs to be improved (76). At present, tumor

recurrence and metastasis after surgical treatment are the main

factors affecting the prognosis of gastric cancer patients. A study

screened 4 circRNAs significantly associated with postoperative

recurrence in patients with stage III gastric cancer by gene chip

technology, namely circRNA_101308, circRNA_104423,

circRNA_104916 and circRNA_100269. Based on the above

four circRNAs, a new risk prediction model was constructed

for the recurrence of stage III gastric cancer patients after radical

resection, and the model was more accurate than the traditional

TNM staging and could better reflect the prognosis of patients

(77). Another study found that the survival rate of gastric cancer

patients with high expression of hsa_circ_0081143 was

significantly lower than that of gastric cancer patients with low

expression, indicating that hsa_circ_0081143 might be a

potential prognostic marker for gastric cancer (78). In

addition, the aforementioned circRNA_LARP4 could also be

used as an independent prognostic factor for gastric cancer

patients, and the overall survival time of patients with high

circRNA_LARP4 expression was significantly longer than that of

patients with low expression (58). At the same time, circPVT1

molecule can also be considered as a prognostic indicator of

gastric cancer, the survival rate of gastric cancer patients with
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high expression of circPVT1 and low expression of PVT1 is

significantly higher compared with gastric cancer patients with

low expression of circPVT1 and high expression of PVT1, this

joint detection of circPVT1 and PVT1 has greater application

value for the prognosis evaluation of gastric cancer patients (47).
Advantages and disadvantages of
circRNA as a diagnostic and
prognostic biomarker

Through the whole transcriptome analysis of human

peripheral blood, a large number of repeatable circRNAs were

identified, laying the foundation for the study of the potential of

circRNA as a tumor biomarker (39, 79). Compared with traditional

biomarkers, circRNA has the following characteristics. Firstly,

circRNA has a closed ring structure and can resist the

degradation of linear mRNA decay mechanism, thus showing

excellent stability and long half-life (80, 81). Secondly, circRNA

is highly conserved and highly expressed, making it easier to detect.

In addition, circRNA is widely present in various body fluids

(blood, saliva, urine and gastric juice) (82–85), making detection

more convenient. Thirdly, the expression pattern of circRNA is

highly specific, including cell specificity, tissue specificity and

developmental specificity (39). The expression patterns and their

diversity in different cell and tissue types and developmental stages

are highly recognizable (86, 87). In summary, circRNA is expected

to become an ideal clinical biomarker and therapeutic target and

has been proved in many diseases. However, although circular

RNAs have good application prospects, the research of circRNAs

in cancer is still in its infancy. Compared to traditional markers,

circRNAs lack common standards for reporting and naming

circRNAs, available cancer-related RNA sequence data sets, and

new technologies for detecting circRNAs (88).
Discussion

This review systematically summarizes the formation and

regulatory mechanism of circRNA, its biological function and its

relationship with gastric cancer. As a class of non-coding RNA

molecules that are stably expressed in eukaryotes, circRNAs have

rich biological functions. CircRNAs can interact with miRNAs and

RBPs to regulate gene expression, and many nuclear-localized

circRNAs can also regulate gene transcription. Although

circRNAs have always been classified as non-coding RNAs, with

in-depth research in recent years, circRNAs have been found to

have coding potential, and its encoded polypeptides have

important biological effects. These findings not only deepen our

understanding of circRNAs, but also remind us that many

unknown areas in circRNA research worth exploring.

Gastric cancer is a complex disease caused by multiple

factors. Its exact pathogenesis has not been elucidated, and the
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treatment strategy still needs to be further improved. Given its

closed loop structure, circRNA can exist stably in tissues and

plasma, and the expression of circRNA has obvious tissue

specificity. Therefore these characteristics make circRNA more

potential to be an effective disease diagnosis, treatment and

prognosis marker. Studies have found that many circRNAs are

up-regulated or down-regulated in gastric cancer tissue or

plasma, and these abnormally expressed circRNA molecules

can regulate the expression of certain tumor-related proteins

through different mechanisms, thus affecting the occurrence and

development of gastric cancer. The expression level of some

circRNAs may have a certain correlation with the

clinicopathological indicators and survival time of gastric

cancer patients. The above findings reveal that circRNAs

function in the early diagnosis, lesion progression, treatment

and prognosis of gastric cancer. Nevertheless, the action

mechanism of circRNAs is still unclear, and some circRNAs

with lower expression levels have not been discovered due to the

limitations of detection methods in gastric cancer. In short, our

current understanding of circRNAs is still at the primary level,

and many experimental techniques and research strategies are

still immature. Therefore, the transition from basic theory to

clinical practice is worth studying and discussing. However, it is

believed that more valuable circRNA molecules will be

discovered through continuous innovation and exploration of

scientific researchers, providing more effective molecular targets

for the diagnosis, treatment and prognosis of gastric cancer.
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