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Background: Colposcopy is an important method in the diagnosis of cervical

lesions. However, experienced colposcopists are lacking at present, and the

training cycle is long. Therefore, the artificial intelligence-based colposcopy-

assisted examination has great prospects. In this paper, a cervical lesion

segmentation model (CLS-Model) was proposed for cervical lesion region

segmentation from colposcopic post-acetic-acid images and accurate

segmentation results could provide a good foundation for further research

on the classification of the lesion and the selection of biopsy site.

Methods: First, the improved Faster Region-convolutional neural network (R-

CNN) was used to obtain the cervical region without interference from other

tissues or instruments. Afterward, a deep convolutional neural network (CLS-

Net) was proposed, which used EfficientNet-B3 to extract the features of the

cervical region and used the redesigned atrous spatial pyramid pooling (ASPP)

module according to the size of the lesion region and the feature map after

subsampling to capture multiscale features. We also used cross-layer feature

fusion to achieve fine segmentation of the lesion region. Finally, the

segmentation result was mapped to the original image.

Results: Experiments showed that on 5455 LSIL+ (including cervical

intraepithelial neoplasia and cervical cancer) colposcopic post-acetic-acid

images, the accuracy, specificity, sensitivity, and dice coefficient of the

proposed model were 93.04%, 96.00%, 74.78%, and 73.71%, respectively,

which were all higher than those of the mainstream segmentation model.

Conclusion: The CLS-Model proposed in this paper has good performance in

the segmentation of cervical lesions in colposcopic post-acetic-acid images

and can better assist colposcopists in improving the diagnostic level.

KEYWORDS

colposcopic images, cervical lesion, image segmentation, deep learning,
feature extraction
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Introduction

According to statistics, cervical cancer is the fourth largest

female cancer in the world in terms of morbidity and mortality

(1). The WHO currently recommends three different types of

screening tests: HPV DNA testing for high-risk HPV types,

conventional (Pap) test and liquid-based cytology (LBC), and

visual inspection with acetic acid (VIA). The first two methods

are complex and expensive to operate. At present, colposcopic

directed biopsy is widely used in cervical cancer diagnosis in

developing countries. The cases who had a positive test from

cytology or HPV test were sent for colposcopy according to

ASCCP guidelines (2). At the same time, patients with high risk

or uncertainty detected in the first two methods need further

examination and treatment under the guidance of colposcopy.

Cervical lesion mainly includes squamous cell cancer and

precursors. Referring to the binary classification of the

precursors in the 2014 WHO Classification of Tumors of the

Female Reproductive System (3), the squamous intraepithelial

lesion was histologically divided into the low-grade squamous

intraepithelial lesion (LSIL, traditionally called cervical

intraepithelial neoplasia (CIN) 1) and high-grade squamous

intraepithelial lesion (HSIL, traditionally named CIN 2 and

CIN 3). The two-tier system is regarded as more biologically

relevant and histologically more reproducible than the three-tier

terminology used in the prior edition and is therefore

recommended (3). Colposcopic diagnosis requires that the

operating colposcopist can accurately determine the

characteristics of white epithelial acetate, which largely

depends on the clinical experience of colposcopists. In areas

with insufficient medical resources, the lack of experienced

inspectors and the heavy workload of screening pose great

challenges to screening (4). Machine learning algorithms have

been proved to be effective in cases where medical diagnosis

requires subjective judgment (5). With the development of

artificial intelligence technology, computer-aided diagnosis

(CAD) based on deep learning has made remarkable progress,

which provides a solution to improve the accuracy and stability

of diagnosis and reduce the workload of medical personnel. A

series of achievements have been made in the computer-assisted

diagnosis of colposcopy. However, in the field of deep learning,

related studies mainly focused on the gross classification of the

lesion based on colposcopic images and the detection of HSIL+

(HSIL and cervical cancer), and there were relatively few studies

on the segmentation of the lesion region that could provide

intuitive guidance for colposcopists. Accurate segmentation

results can provide a good foundation for further research on

the classification of the lesion and the selection of biopsy sites.

Therefore, cervical lesion region segmentation plays an

important role in cervical cancer diagnosis.

In this paper, a deep learning method named cervical lesion

segmentation model (CLS-Model) was proposed to segment the
Frontiers in Oncology 02
cervical lesion region, that is, LSIL+ (including CIN and cervical

cancer), in colposcopic post-acetic-acid images to assist

colposcopists in accurately locating the lesion region and selecting

biopsy sites. It included three parts. First, the improved Faster R-

CNN was used to extract the cervical region and remove the

interference noises of instruments and vaginal wall in the

colposcope pose-acetic-acid images. Second, the cervical lesion

segmentation network (CLS-Net) was proposed. EfficientNet-B3

was adopted for the cervical region feature extraction. The features

extracted after the 28th layer was fed into the atrous spatial pyramid

pooling (ASPP)module to capturemultiscale information, and then

the features extracted from the 21st layer was added after

upsampling to realize cross-layer information fusion. The sample

was taken to the size of 640 × 640, to achieve a fine division of the

diseased region. Third, the segmentation result was mapped to the

original image, which is convenient for doctors to observe. After

that, the model was visualized with a heatmap, and the analysis of

the HSIL+ recall value proved that the segmentation results of the

model could be used to further detect HSIL+ and locate tissue

biopsy points.
Related work

Deep learning has achieved great success in the field of

medical image segmentation, and computer-aided diagnosis

(CAD) plays an increasingly important auxiliary role in the

diagnosis of malignant tumors. In recent years, to diagnose

lesions from colposcopic images, researchers have proposed

many methods mainly around the cervical region or

transformation zone extraction and lesion segmentation.
Cervical region extraction

Irrelevant information such as the vaginal wall and

vaginal dilator in the colposcopic images will disturb the

detection of the cervical region. At the same time, the lesion

region may be outside the transformation zone. Therefore,

extracting the cervical region is very important for the

detection of the lesion. Traditional methods are used to

segment unlabeled data. For example, Sumindar et al. (6)

proposed a method using color features, morphological

operations, and Gaussian mixture model (GMM). Mercy

et al. (7) used the Gabor filter method. Meanwhile, most

researchers have used K-means, which is a machine learning

algorithm (8, 9), and (10). However, these methods are

sensitive to noise and have the defect of over-segmentation.

For labeled data, previous studies mainly used Faster R-CNN

(5, 11), to extract the cervical region.
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Lesion region segmentation

The current research is mainly divided into the segmentation

of the acetowhite region and LSIL+.

Shi et al. (12) segmented the acetowhite region by combining

the features of gray-level symbiosis and the level set algorithm.

Yue et al. (13) first generated an attention map based on CICN

combined with UNet and CAM blocks and then segmented the

acetowhite region through the proposed AWL-CNN network.

Liu et al. (10) used DeepLabV3+ to segment the acetowhite

region, which included the lesion region and inflammation,

partial normal metaplastic squamous epithelium region

leucoplakia, and other non-lesion regions. Therefore,

segmentation of the acetowhite region alone cannot provide

doctors with a more accurate lesion-assisted diagnosis.

At present, the segmentation of cervical precancerous lesions

is mainly divided into region-based and pixel-based methods.

Based on region segmentation, in 2011, Sun et al. (14)

generated anatomical maps based on color and texture, using

K-means means clustering to further cluster the adult region of

the tissue region defined by anatomical feature maps, combining

adjacent region classification results by probability based on CRF

classifiers and determining the final classification results by

KNN and LDA integration. In 2021, Roser et al. (15) proposed

using PCA to reduce the dimensionality of the RGB vector and

used an ANN to generate the probability map of the

precancerous lesion for each pixel. Then, seed point region

growth was used to connect the points exceeding the threshold

value to the segment region, and whether HSIL+ was determined

according to the size of the lesion region, but HSIL+ had nothing

to do with the size of the region. It is also affected by noise, is

prone to cavities and over-segmentation, and has high

requirements on the results of ANN extraction.

Based on region segmentation, in 2018, Zhang et al. (16) used

cam-based localization of the lesion region, but only general

localization of the lesion was carried out without a specific

contour. In 2020, Xue et al. (17) adopted UNet, and Zhang et al.

(18) proposed an improvedUNet by adding two convolution blocks

at the input and output based on the original UNet to better extract

image feature information. Yuan et al. (19) replaced the encoding

part of UNet with ResNet to segment CIN 1+. However, they only

fine-tuned UNet and did not attempt to compare and improve it

with other segmented networks.
Methodology

Our proposed segmentation method consisted of three parts:

extraction of the cervical region, segmentation of the cervical

lesion network, and mapping of the original image. First, the

improved Faster R-CNN was used to extract the cervical region

in the images. Second, the cervical lesion segmentation network
Frontiers in Oncology 03
CLS-Net proposed was used to segment LSIL+. Third, the image

was restored and mapped to the original image according to the

zoom ratio. The overall architecture of the CLS-Model is shown

in Figure 1.
Extraction of the cervical region

The shape of the cervical region in the colposcopic post-

acetic-acid image was irregular, and the data set was marked

with rectangular boxes by experienced colposcopists to facilitate

subsequent processing. Thanks to the data set marked by

experienced colposcopists, the supervised learning Faster R-

CNN target detection method was used to detect the cervical

region. Compared with k-means clustering and other

segmentation methods with irregular cervical boundaries (20),

the rectangular segmentation results were more convenient for

subsequent experiments. Compared with Faster R-CNN and

other target detection algorithms, the improved Faster R-CNN

method using ROI Align technology referencing Mask R-CNN

has higher detection accuracy when the time is similar (21).

Since there was only one category of regression box, namely, the

cervical region, the branch of classification was deleted in this

paper to reduce the complexity and computation of Faster R-

CNN on the basis of ensuring accuracy.

In this paper, the improved Faster R-CNN model was used

to extract the cervical region. Due to the large size of the original

colposcopic post-acetic-acid image and the size of the extraction

region, and the scaling did not affect the subsequent analysis of

the lesion, the extraction region was uniformly reduced to 640 ×

640, which was convenient for further processing of the

subsequent segmentation network under the premise of

maintaining clarity. The overall framework of the cervical

region extraction model is shown in Figure 1A, and the

structure of the improved Faster R-CNN is shown in

Figure 1B. The coordinates of the upper left corner point of

the rectangular frame and the width and height of the

rectangular frame were recorded when the cervical region was

extracted, denoted as (x, y, w, h).
Cervical lesion segmentation network

Overall framework of the CLS-Net model
The CLS-Net model used an end-to-end encoder–decoder

structure, and the overall framework is shown in Figure 1C. In

the encoding part, the efficient and accurate EfficientNet-B3 (22)

network was used to extract the features of the cervical lesion

region. The size of the feature map on the 20th layer was 1/16 of

the original size as feature1, and that on the 28th layer was 1/32

of the original size as feature2. The two extracted layers were the

two smallest sizes in the process of subsampling and were the last

layer under this size, with better deep pragmatic features. Low-
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level features had higher resolution and contained more location

and detailed information. However, due to less convolution, they

had lower semantic information and more noise. High-level

features had stronger semantic information but lower resolution

and poor ability to perceive details. Therefore, a multiscale

feature fusion method across layers was used in the decoding

part. The size of feature1 was 1/16 of the original image size after

the convolutional layer and BN layer with a convolutional kernel

of 1 × 1, which was consistent with the 1/16 of the original size

obtained by feature2 through the ASPP module designed for this

lesion after two upsampling layers. The characteristic

information of the adjacent high and low layers was fused, and

finally, the sample was upsampled 16 times to the original size.

The EfficientNet-B3 module and ASPP module are described in

detail below, respectively.

EfficientNet-B3 module
EfficientNet (22) is a standardized model extension method

that strikes an excellent balance among the three dimensions of
Frontiers in Oncology 04
model width, depth, and resolution. EfficientNet uses MBConv in

MobileNetV2 (23) as the backbone network of the model, and the

squeeze and scheduling method in SENet (24) is used to optimize

the network structure. The number of parameters in EfficientNet is

greatly reduced compared to other models, which greatly improves

the operating efficiency of the model and greatly reduces the

threshold for model deployment. For the various networks in

ImageNet’s history, EfficientNet has been effective in crushing (22).

EfficientNet-B0 is a baseline model developed through

AutoML MNAS. In this paper, ImageNet pretrained

EfficientNet-B3 was used to realize feature extraction. The

model had a total of 34 layers, and only the one before the

28th layer was used in this paper, as shown in Figure 1D.

The input image size was 640 × 640, the size of the 20th layer

after feature1 was 40 × 40, which was 1/16 of the original image

size, and the size of the 28th layer after feature2 was 20 × 20,

which was 1/32 of the original image size. These two layers were

the last layer under this size, containing the deepest semantic

information under this size.
A

B

D

E

FC

FIGURE 1

The overall architecture of CLS-Model. (A) The architecture of the cervical region extraction model, (B) the improved Faster R-CNN, (C) CLS-
Net, (D) EfficientNet-B3, (E) ASPP, and (F) mapping (the yellow box is the cervical region, and the pink-white region is the lesion. Normal region
is indicated by a translucent gray mask).
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ASPP module
Atrous Spatial Pyramid Pooling (ASPP) is a module to

sample the input feature graph in parallel with the dilated

convolution of different sampling rates, concatenate the

obtained results together to expand the number of channels,

reduce the number of channels to the number of output channels

(class number) through a 1 × 1 convolution, and capture image

feature information through multiple scales.

In this paper, based on the characteristics of a large area

difference in the lesion region and the size after subsampling, the

ASPP module suitable for the sample rate of the lesion was

redesigned based on the ASPP proposed by DeepLabV3+,

including six branches, a 1 × 1 convolution, four 3 × 3 dilated

convolutions at rates = {2,4,6,8}, and one global average pooling.

Then, we used a convolution fuse and concatenated the features

of six branches to capture multiscale information. After that, we

reduced the number of channels to half of the input layer

through a 1 × 1 convolution. The architecture of the ASPP

module is shown in Figure 1E.

The size of the input image was 640 × 640, and the feature

size after the 28th layer was 20 × 20. When the subsampling rate

was 2, 4, 6, and 8, the size of the equivalent convolution kernel

was 5 × 5, 9 × 9, 13 × 13, and 17 × 17, respectively, which was

sufficient to fully extract the features of this layer. Therefore,

subsampling rates of 2, 4, 6, and 8 were adopted in this paper to

capture multiscale information.
Mapping of the original image

After the segmentation result image with the size of 640 ×

640 was obtained, the segmentation image was mapped to the

original image according to the coordinates of the upper-left-

corner point of the rectangular frame and the width and height

of the rectangular frame (x, y, w, h) for the convenience of the

colposcopists. The normal region was superimposed with

translucent black masks, and the lesion region was not

superimposed with any original appearance. As shown

in Figure 1F.
Experiments

Dataset

Data were collected from 12,572 cases of colposcopy

provided by the Cervical Disease Center, Affiliated Hospital of

Weifang Medical College, China, from July 2013 to May 2021.

After screening, 11,510 cases remained, including 4,504 normal

cases, 5,338 LSIL cases, and 1,668 HSIL+ cases. Data screening

criteria were as follows: patients with necessary information

(patient age, HPV test results, cervical cytology results, cervical
Frontiers in Oncology 05
transformation zone type, colposcopic images, colposcopic

pathological results, biopsy pathological report) and qualified

colposcopic images (The cervix was clear and intact, no severe

bleeding, and the lesion was not severely covered by leucorrhea.)

were selected.

Each case contained a biopsy pathological report, a

colposcopy pathological report, a post-acetic-acid image

(Apply 3%–5% acetic acid solution for 1 min.), and a JSON

file labeled with LabelMe software (https://github.com/

wkentaro/labelme) for the lesion region and cervical region.

The post-acetic-acid images were all 2,656 × 1,992, and the ratio

of length to width was 4:3. Images were screened by five

colposcopists with more than 3 years of experience. They took

biopsy pathological results as the ground truth and used

LabelMe software to label the lesion area for each post-acetic-

acid image. The final labels were reviewed by a deputy chief

colposcopist with more than 10 years of experience. Figure 2

shows the schematic diagram of the annotation. The yellow box

marks the cervical region, and the green point-lines mark the

lesion region.

In the first part, the cervical region was extracted. Due to the

relatively simple task, the train sets, validation sets, and test sets

contained 700, 100, and 200 cervigrams, respectively, out of

11,510 cases. In the second part, since only the lesion region was

segmented, 5,455 LSIL+ cervigrams (LSIL and HSIL+) were

selected for the experiment after excluding the small and

scattered lesion region, menopause, severe inflammation, and

other samples that were difficult to label, and they were divided

into 3,820 train sets, 545 validation sets, and 1,090 test sets at a

ratio of 7:1:2. To reflect the generalization ability of the model,

the train sets and validation sets were shot with Leisegang

equipment, and the test sets were shot with OPTOMIC-OP-

C5 equipment. Table 1 summarizes the image distribution. The

Ethics Review Committee of Tianjin University granted ethical

approval for the study (TJUE-2021-136).
Experimental setup

The network was implemented in Python 3.7, PyTorch

v1.7.0 library, torchvision v0.9.0, Matplotlib v3.4.4, NumPy

v1.19.2, efficientnet_pytorch, and Cuda v11.0 with an NVIDIA

GeForce RTX 3090 graphics card and 24-GB memory. All

methods were measured on the same platform. We used

adaptive moment estimation (ADAM) as the global optimizer.

The initial learning rate was set to 0.001 and attenuated to 0.001

after 20 epochs. The weight decay was set to 0.0001. The input

images were resized to 640 × 640. All networks were trained with

50 epochs and a batch size of 16. The loss function of the train set

and validation set was Dice Loss.

Dice Loss = 1�Dice (1)
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Evaluation criteria

The five commonly used criteria, namely, dice, accuracy,

recall, precision, and specificity, were employed to evaluate the

performance of different models, the details of which are as

follows:

Dice =
2� TP

FP + FN + 2� TP
(2)

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

Recall =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

Specificity =
TN

TN + FP
(6)

Score =
Dice + Recall

2
(7)

where TP, TN, FP, and FN are true positive, true negative,

false positive, and false negative, respectively. The lesion region is

positive and the normal region is negative. Dice is very important

in the segmentation process, and cervical precancerous lesions

require a low rate of missed diagnosis but a misdiagnosis rate in a
Frontiers in Oncology 06
reasonable range. Thus, the Recall must be high, and the

Specificity just needs to be in a reasonable range. Therefore, we

selected the network model with the highest score on the

validation set to use on the test set.
Results and analysis

First, we used the improved Faster R-CNN to extract the

features of the cervical region, which obtained the AP@0.8 =

0.995. This means that only one of the 200 test sets has an IOU

less than 0.8. The AP@0.8 = 0.995, which is sufficient to satisfy

our requirements. The ground truth box (red GT) and

prediction box (green Pre) are shown in Figure 3. The AP@0.8

= 0.98 in the original Faster R-CNN. It can be seen that the

average precision (AP) is improved by using ROI Align

for correction.

Second, the training and validation loss and score curve of

the proposed model CLS-Net are shown in Figure 4. The loss

function curves of the training set and verification set tend to

converge at the 25th round. The calculation methods of loss and

score are shown in (1) and (7). The training set reached the

maximum value of 0.794 in the 30th epoch, and validation

reached the maximum value of 0.769 in the 27th epoch.

Therefore, the 30th epoch model with the largest score in the

validation set was selected as the optimal model and tested in the

test set with a result of 0.764.

The segmentation performance of the proposed CLS-Net

was compared with the state-of-the-art segmentation methods,
TABLE 1 The image distribution.

Part Train sets Validation sets Test sets All

Extract cervical region 700 100 200 1000

Segment lesion region 3820 545 1090 5455
frontiersin
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such as UNet (25), FCN8x (26), DeepLabV3+ (27), SegNet (28),

and CCNet (29). The performance according to the Dice, Recall,

Specificity, and other metrics is shown in Table 2. The mean ±

std was used to summarize the results. Several segmentation

results are presented in Figure 5.

Table 2 shows that the values of the five metrics of CLS-Net

are higher than those of the other fivemodels. In the segmentation

field, the Accuracy and the Dice coefficient are important

indicators to evaluate segmentation. The larger the Accuracy

and Dice are, the better they are. In clinical practice, the higher

the Recall rate is, the better it is, whereas the Specificity is in the

appropriate range. Doctors worry more about missed diagnoses

than misdiagnoses. Thus, the model CLS-Net we proposed has the

highest Dice of 0.7371, which is 0.0522 superior to the second-best

model CCNet and 0.1064 superior to the worst model UNet. It

shows that the gap between the CLS-Net’s prediction and ground

truth is minimal. However, we found that compared with the

segmentation tasks in other fields, the Dice of colposcopic images

in all models was generally low, which may be due to the unclear
Frontiers in Oncology 07
lesion contour and interferences such as inflammation, reflection,

or bleeding. CLS-Net has the highest Recall of 0.7802, which is

0.0623 higher than the second-best model CCNet and 0.1368

higher than the worst model FCN8x. This means that CLS-Net

has the lowest missed diagnosis rate. In terms of Specificity, all

models performed well, with values higher than 0.95, which met

the appropriate range with little difference. This proves that the

misdiagnosis rate of all models is very low. Finally, the Precision of

CLS-Net is 0.7478, 0.0214 higher than that of the second-best

model CCNet and 0.0611 higher than that of the worst model

SegNet. This indicates that CLS-Net has the lowest false positive

rate; in other words, the positive prediction of model CLS-Net is

more reliable and can avoid overtreatment of patients.

A finer profile can help doctors makemore accurate diagnoses

while also making them more difficult to segment. The data set

used in this study was labeled as a fine outline of the lesion region

after acetic acid was applied under colposcopy, distinguishing

between the normal metaplastic squamous epithelium and lesion

region that also occur with acetate whiteness, in the hope of giving
BA

FIGURE 4

The training and validation loss and score curve of the CLS-Net. (A) Loss curve. (B) Score curve.
FIGURE 3

The graphical result of the improved Faster R-CNN.
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doctors more accurate auxiliary diagnostic information. As shown

in Figure 5, the visible partial model segmentation results contain

a scaly normal metaplastic squamous epithelium region that is

very similar to the lesion region, resulting in decreased accuracy of

the segmentation results. The CLS–Net proposed in this paper has

made a good distinction between the lesion region and the normal

metaplastic squamous epithelium region, and its segmentation

results are most consistent with the ground truth in the

comparative segmentation model. UNet (25) integrates more

low-level features, which is suitable for the target of a relatively

stable internal structure of the human body and is not satisfactory

for cervical lesion regions of different shapes and sizes in

this study.
Frontiers in Oncology 08
Ablation experiments

To verify the effectiveness of our proposed method, we

performed ablation experiments on cervical region extraction

and ASPP respectively. The results are shown in Table 3. Only

using the improved Faster R-CNN to extract the cervical region

and then segmentation can improve the accuracy by 0.79% and

Dice coefficient by 0.0070. The accuracy and Dice coefficient can

be improved by 1.14% and 0.0096, respectively, by using ASSP

alone. It can be seen that it is effective to use the improved Faster

R-CNN and ASPP to optimize the model, but the excellence of

the model mainly comes from the design of the overall

network structure.
B C D E F G HA

FIGURE 5

The segmentation results from six methods. (A) Original image. (B) Ground truth. (C) UNet. (D) FCN8x. (E) DeepLabV3+. (F) SegNet. (G) CCNet.
(H) CLS-Net.
TABLE 2 The metrics of CLS-Net and the state-of-art methods in our dataset.

Method Accuracy Precision Recall Specificity Dice

UNet (25) 0.9073 0.6941 ± 0.2321 0.6593 ± 0.2233 0.9575 ± 0.0223 0.6307 ± 0.2175

FCN8x (26) 0.9094 0.7102 ± 0.2287 0.6434 ± 0.2097 0.9522 ± 0.0185 0.6311 ± 0.2059

DeepLabV3+ (27) 0.9083 0.6889 ± 0.2101 0.6828 ± 0.1945 0.9545 ± 0.0167 0.6416 ± 0.1816

SegNet (28) 0.9097 0.6867 ± 0.1898 0.7057 ± 0.1733 0.9517 ± 0.0117 0.6600 ± 0.1637

CCNet (29) 0.9191 0.7264 ± 2.003 0.7179 ± 0.1898 0.9560 ± 0.0196 0.6849 ± 0.1802

CLS-Net (ours) 0.9304 0.7478 ± 0.1551 0.7802 ± 0.1526 0.9609 ± 0.0120 0.7371 ± 0.1486
The best performing in each column (evaluation index) are in bold.
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Feature visualization

We visualized the features extracted from CLS-Net by

generating heatmaps. The redder the region is, the greater the

contribution of the region to the final classification of the model,

and the bluer the region is, the lesser the contribution of the region

to the final classification. That is, the model will be judged more by

the red area. As seen in Figure 6. Figures 6A-C are the post-acetic-

acid image, the ground truth, and the prediction segmentation,

respectively. Figure 6D is the heatmap of feature2 unsampled by 2,

and Figure 6E is the heatmap of feature1 after going through the

convolution layer and BN layer in Figure 1C. They add up to

Figure 6F, which combines the deeper semantic features of (d) with

the more detailed features of (e) and has better segmentation results.

Figure 6G is the heatmap after upsampling to the size of the original

image. It takes the bilinear difference method and looks smoother.

We also produced other CLS-Net layer features using

heatmaps of cross-layer connections in Figures 6H, I. Figure 6H

shows the 8th layer of EfficientNet-B3 which has a size of 80 × 80

and connects feature 1, which also has a size of 80 × 80 and is

unsampled by 2. The same connection method is used. As can be

seen from Figure 6H, the effect is not as good as before. The size of

160 × 160 has worse performance than 80 × 80, as shown in
Frontiers in Oncology 09
Figure 6I. Thus, we only use the layer that has a size of 40 × 40 for

cross-layer connections.

Discussion

Recall rate is generally low

Although the proposed model shows better segmentation

than other comparison models, its Recall rate is still low and its

Specificity is high. We found that the model in the prediction

was easy to identify some LSIL that could not be distinguished

from the normal metaplastic squamous epithelium as normal,

lost part of the edge of LSIL, or lost LSIL with a very small region

and shallow color and texture features. In addition to the

improvement of the model, there may be two reasons. Doctors

need to combine iodine images and post-acetic-acid images in

high-definition resolution to compare repeatedly to further

distinguish normal, LSIL, and HSIL+ in the uncertain region.

It is indeed impossible to make a particularly accurate judgment

only from post-acetic-acid images. Second, doctors cannot

accurately remove some normal regions that may exist inside the

lesion region when labeling, but the neural network model can,

which leads to more accurate segmentation of the neural network
B C

D E F G H I

A

FIGURE 6

The heatmaps of CLS-Net’s features. (A) Colposcopic post-acetic-acid images. (B) The ground truth. (C) The result of CLS-Net. (D) The
heatmap of feature2 unsampled by 2. (E) The heatmap of feature1 after going through the convolution layer and BN layer. (F) The result of
feature1 adds up to feature2. (G) The heatmap after upsampling to the size of the original image. (H) The heatmap of the 8th layer output. (I)
The result of (F) adds up to (H).
TABLE 3 Ablation experiments on the improved Faster R-CNN and ASPP.

CLS-Model Accuracy Precision Recall Specificity Dice

Without Faster R-CNN and ASPP 0.9162 0.7241 ± 0.2337 0.7553 ± 0.1818 0.9562 ± 0.0201 0.7195 ± 0.1875

Without Faster R-CNN 0.9276 0.7392 ± 0.1827 0.7660 ± 0.1978 0.9582 ± 0.0145 0.7291 ± 0.1773

Without ASPP 0.9241 0.7331 ± 0.1912 0.7633 ± 0.1844 0.9578 ± 0.0172 0.7265 ± 0.1716

All (ours) 0.9304 0.7478 ± 0.1551 0.7802 ± 0.1526 0.9609 ± 0.0120 0.7371 ± 0.1486
The best performing in each column (evaluation index) are in bold.
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model but with a lower Recall. However, in clinical practice, there is

no requirement for the detection rate of LSIL, and only the

detection rate of HSIL is required to be greater than 65% (30),

which means that as long as the real region of HSIL+ has a high

Recall rate in the lesion segmented by the model, it is ok. We

divided 1,090 test sets between LSIL and HSIL+, of which 938 were

LSIL and 152 were HSIL+. The formula of HSIL+ Recall rate (HR)

is as follows:

HR =
AH ∩ Aa

AH
(8)

where AH is the real region marked by HSIL+, and Aa is the

region of the lesion predicted by the model. The HR values of 152

cases of HSIL+ were statistically analyzed, as shown in Table 4.

Among the above, 96.05% were greater than 0.9; 0.8 to 0.9

accounted for 1.32%, due to the boundary between some HSIL+

and normal metaplastic squamous epithelium and the columnar

epithelium was not easily distinguished, or there was blood, which

was predicted to be normal by the model; 0.7 to 0.8 accounted for

0.00%; and 0.7 or fewer accounted for 2.63%. The reason was that

the lesion was blocked by a large amount of bleeding, and the

bleeding region was labeled HSIL+ when doctors labeled it.

However, the bleeding region was not identified as a lesion in

the prediction of the model, or it was difficult to distinguish the

bleeding region from the normal metaplastic squamous

epithelium at the cervical mouth, resulting in a low Recall. In

conclusion, although the Recall of the model is not high, the

percentage of HR >0.9 is very high, which means that the HSIL+

region can be segmented by the model, and most of the missed

region is the LSIL region. Further HSIL+ detection and biopsy site

location and other related studies can be effectively carried out on

segmented lesions to meet clinical needs.
Comparison of the proposed model with
recent methods

We compared some recently published papers. Since their code

is not open source and their datasets are different, we have only

listed the results presented in the original literature in Table 5.

In 2020, Xue et al. (17) adopted UNet to segment lesion region

subsequent lesion classification, so they only gave the classification

results and they did not give the segmentation results on their

dataset. Zhang et al. (18) proposed an improved FCN by adding
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two convolution blocks at the input and output based on the

original UNet to better extract image feature information. On

their dataset, the accuracy of FCN was 67.00% and UNet was

57.3%. The accuracy of UNet is lower than FCN, which was

consistent with the conclusion and analysis of our dataset. Yuan

et al. (19) replaced the coding part of UNet with ResNet to

segment CIN 1+ whose accuracy could reach 95.59% on their

dataset. However, they only fine-tuned UNet and did not attempt

to compare and improve it with other segmented networks. In

2021, Liu et al. (10) used DeepLabV3+ to divide the acetowhite

area, which is easier than the lesion region, with an accuracy of

90.36%. The accuracy of our method CLS-Net was 93.04%. It can

be seen from this that the results of the same method on different

data sets differ greatly, so a direct comparison cannot be made.

The results of FCN, UNet, and DeepLabV3+ in Table 2 were the

results of emulating the methods they used with our dataset. Their

accuracy was 90.94%, 90.73%, and 90.83%, respectively. It can be

seen that the proposed method CLS-Net has certain advantages.

Specular reflection

The specular reflection region usually has high brightness and

low color saturation (31), which is easily confused with the coarse

white region. Predecessors have also done much research work to

remove specular reflection (32). However, we find that almost all

models, especially CLS-Net, performed well without removing

specular reflections, as shown in Figure 5. This indicates that

almost all models can effectively distinguish the features of the

specular reflection region from the lesion region. This is likely

because we have enough finely annotated datasets to make the

model have a good ability to learn the different features of the

specular reflection region and lesion region. Therefore, it is no longer

used as a preprocessing to remove specular reflection in this paper.

Fine contour labeling

Distinguishing between normal metaplastic squamous

epithelium and squamous intracutaneous lesion (cervical lesion)

that occur in acetowhite reactions is a challenge for less experienced

colposcopists. In other related studies (7), and (12) to (10), the

acetowhite region (AW) is generally used as the segmentation

target. In this study, normal metaplastic squamous epithelium

and squamous intracutaneous lesion region were distinguished,

and the segmentation target was the cervical lesion region. It aims to

provide doctors with more precise diagnostic information, but it

also brings higher segmentation difficulty, resulting in a better

segmentation effect of the model for the acetowhite region in this

study. In this paper, the CLS-Net model was proposed to pay more

attention to the fine features of the cervical lesion region and ignore

the interference of the region similar to the lesion, as shown in

Figures 6D–I, which achieved a better segmentation effect of the

actual lesion region and could be used to assist the accurate

diagnosis of colposcopists and the teaching and training of
TABLE 4 HR in 152 cases of test HSIL+.

HR values Number Percentage

(0.9, 1.0] 146 96.05%

(0.8-0.9] 2 1.32%

(0.7-0.8] 0 0.00%

(0.6-0.7] 3 1.97%

(0.0-0.6] 1 0.66%
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colposcopists. It also provides a good foundation for the subsequent

research on lesion classification and so on.
Conclusions and future work

In this work, we proposed a new segmentation method CLS-

Model for cervical lesions, which contained three key steps: The

improved Faster R-CNNwas used to extract the cervical region from

colposcopic post-acetic-acid images, which effectively avoided the

interference of other tissue equipment on subsequent processing.

Based on this, a new segmentation model CLS-Net was proposed,

which could effectively segment the lesion region (LSIL+). Finally,

the segmentation results were mapped to the original image size.

This method had better performance than other similar methods.

Unlike other related studies, our solution does not require separate

removal of specular reflections, but it does not affect the performance

of the model. Our segmentation scheme distinguishes cervical lesion

and normal metaplastic squamous epithelium and other atypical

tissues and has more refined results than the segmentation of the

acetowhite region in other studies. Heatmaps were used to achieve

visual interpretation of the model. At the same time, we explored the

HSIL+ Recall (HR) which was more clinically valuable using CLS-

Net, and it could achieve satisfactory results.

Of course, there are some limitations to our research. Since

there is no publicly available dataset with segmentation labels, our

model only performs well on our dataset and can only perform

simulated experimental comparison according to the method

proposed in reference. In the face of more complex data input,

the stability of the model needs to be evaluated. At the same time,

the fusion model with the hospital information system needs

further research in the future. In addition, our current research is

only aimed at the automatic segmentation of cervical lesions. In

clinical practice, other requirements, such as cervical transformation

zone classification and tissue biopsy point recommendation, need to

be further studied. We hope that fully automatic cervical detection

can be achieved in the future based on the segmentation results.
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TABLE 5 Comparison of the proposed model with recent methods.

Year, author Accuracy (%) Object of segmentation

2020, Xue et al. (17) – Lesion region

2020, Zhang et al. (18) 67.00 Lesion region

2020, Yuan et al. (19) 95.59 Lesion region

2021, Liu et al. (10) 90.36 Acetowhite region

CLS-Net(ours) 93.04 Lesion region
The best performing in each column (evaluation index) are in bold.
frontiersin.org

https://xiaonuomi@tju.edu.cn
https://doi.org/10.3389/fonc.2022.952847
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yu et al. 10.3389/fonc.2022.952847
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated
Frontiers in Oncology 12
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References

1. Ginsburg O, Bray F, Coleman MP, Vanderpuye V, Eniu A, Kotha SR, et al.
The global burden of women’s cancers: a grand challenge in global health. Lancet
(2017) 389:847–60. doi: 10.1016/S0140-6736(16)31392-7

2. Khan MJ, Werner CL, Darragh TM, Guido RS, Mathews C, Moscicki AB,
et al. ASCCP colposcopy standards: Role of colposcopy, benefits, potential harms,
and terminology for colposcopic practice. J Low Genit Tract Dis (2017) 21:223–9.
doi: 10.1097/LGT.0000000000000338

3. Kurman RJ, Carcangiu ML, Herrington CS, Young RH, et al.WHO classification
of tumours of female reproductive organs. 4th ed. Lyon, France: IARC (2014).

4. Xue P, Tang C, Li Q, Li YX, Shen Y, Zhao YQ, et al. Development and
validation of an artificial intelligence system for grading colposcopic impressions
and guiding biopsies. BMC Med (2020) 18:406. doi: 10.1186/s12916-020-01860-y

5. Hu LM, Bell D, Antani SK, Xue ZY, Yu K, Horning MP, et al. An observational
study of deep learning and automated evaluation of cervical images for cancer screening.
J Natl Cancer Inst (2019) 111:923–32. doi: 10.1093/jnci/djy225

6. Saini SK, Bansal V, Kaur R, Juneja M. ColpoNet for automated cervical
cancer screening using colposcopy images. Mach Vision Appl (2020) 31:15.
doi: 10.1007/s00138-020-01063-8

7. Asiedu MN, Simhal A, Chaudhary U, Mueller JL, Lam CT, Schmitt JW, et al.
Development of algorithms for automated detection of cervical pre-cancers with a
low-cost, point-of-Care, pocket colposcope. IEEE Trans Biomed Eng (2019)
66:2306–18. doi: 10.1109/TBME.2018.2887208

8. Bai B, Du YZ, Liu PZ, Sun PM, Li P, Lv YC. Detection of cervical lesion region
from colposcopic images based on feature reselection. Biomed Signal Process
Control (2020) 57:SI. doi: 10.1016/j.bspc.2019.101785

9. Lu H. Precancerous lesion recognition based on deep learning and cervical
images. [M.S. thesis]. [Nanchang]: Nanchang Hangkong University (2019).

10. Liu J, Liang T, Peng Y, Peng GY, Sun LC, Li L, et al. Segmentation of
acetowhite region in uterine cervical image based on deep learning. Technol Health
Care (2022) 30:469–82. doi: 10.3233/THC-212890

11. Li YY, Wang YM, Zhou Q, Li YX, Wang Z, Wang J, et al. Deep learning model
exploration of colposcopy image based on cervical epithelial and vascular features. Fudan
Univ J Med Sci (2021) 48:435–42. doi: 10.3969/j.issn.1672-8467.2021.04.002

12. Shi HJ, Liu J, Huang HY, Du HW. Acetowhite region segmentation in cervix
based on Gray level Co-occurrence characteristic and level set algorithm. J
Nanchang Hangkong Univ (Natural Sci Ed) (2018) 32:8–16. doi: 10.3969/
j.issn.1001-4926.2018.02.002

13. Yue ZJ, Ding S, Li XJ, Yang SL, Zhang YT. Automatic acetowhite lesion
segmentation via specular reflection removal and deep attention network. IEEE J
Biomed Health Inf (2021) 25:3529–40. doi: 10.1109/JBHI.2021.3064366

14. Park SY, Sargent D, Lieberman R, Gutafsson U. Domain specific image
analysis for cervical neoplasia detection based on conditional random fields. IEEE
Trans Med Imaging (2011) 30:867–78. doi: 10.1109/TMI.2011.2106796

15. Viñals R, Vassilakos P, Rad MS, Undurraga M, Petignat P, Thiran JP. Using
dynamic features for automatic cervical precancer detection. Diagnostics (2021)
11:716. doi: 10.3390/diagnostics11040716

16. Zhang D. HSIL detection of colposcopy based on deep learning. [M.S.
thesis]. [Zhejiang]: Zhejiang University (2018).

17. Li YX, Chen JW, Xue P, Tang C, Chang J, Chu CY, et al. Computer-aided
cervical cancer diagnosis using time-lapsed colposcopic images. IEEE Trans Med
Imaging (2020) 39:3403–15. doi: 10.1109/TMI.2020.2994778
18. Zhang T. Research on cervical cancer assisted screening based on deep
nerual networks. [M.S. thesis]. [Xiamen]: Huaqiao University (2020).

19. Yuan CN. The application of deep learning based diagnostic system to cervical
squamous intraepithelial lesions recognition in colposcopy images. [dissertation].
[Zhejiang]: Zhejiang University (2020).

20. Bai B, Liu PZ, Du YZ, Luo YM. Automatic segmentation of cervical region
in colposcopic images using K-means. Australas Phys Eng Sci Med (2018) 41:1077–
85. doi: 10.1007/s13246-018-0678-z

21. Fan YN, Ma HZ, Fu YB, Liang XY, Yu H, Liu YZ. Colposcopic multimodal
fusion for the classification of cervical lesions. Phys Med Biol (2022) 67:13.
doi: 10.1088/1361-6560/ac73d4

22. Tan MX, Le QV. (2019). EfficientNet: Rethinking model scaling for
convolutional neural networks, in: International Conference on Machine
Learning. Long Beach, CA, USA: ICML 2019.

23. Sandler M, Howard A, Zhu ML, Zhmoginov A, Chen LC, et al. (2018).
MobileNetV2: Inverted residuals and linear bottlenecks, in: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Salt Lake City, Utah, USA:
IEEE, pp. 4510–20. doi: 10.1109/CVPR.2018.00474

24. Hu J, Li S, Sun G, Wu E. (2018). Squeeze-and-Excitation networks, in: 2018
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Salt Lake
City, Utah, USA: IEEE, pp. 7132–41. doi: 10.1109/TPAMI.2019.2913372

25. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for
biomedical image segmentation. Med Image Comput Comput Assist Interv
(2015), 9351:234–41. doi: 10.1007/978-3-319-24574-4_28

26. Long J, Shelhamer E, Darrell T. (2015). Fully convolutional networks for
semantic segmentation, in: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Boston, Massachusetts, USA: IEEE, pp. 3431–40. doi: 10.1109/
CVPR.2015.7298965

27. Chen LC, George P, Florian S, Hartwig A. (2017). Rethinking atrous
convolution for semantic image segmentation, in: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Honolulu, Hawaii, USA:
IEEE

28. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional
encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal
Mach Intell (2017) 39:2481–95. doi: 10.1109/TPAMI.2016.2644615

29. Huang ZL, Wang XG, Huang LC, et al. (2019). CCNet: Criss-cross
attention for semantic segmentation, in: 2019 IEEE International Conference
on Computer Vision (ICCV). Seoul, Korea: IEEE pp. 603–12. doi: 10.1109/
TPAMI.2020.3007032

30. Chen F, You ZX, Sui L, Li S, Liu J, Liu AJ, et al. The consensus of Chinese
experts on colposcopy. Chin J Obstet Gynecol (2020) 55:443–9. doi: 10.3760/
cma.j.cn112141-20200320-00240

31. Xue ZY, Antani S, Long LR, Jeronimo J, Thoma GR. Comparative
performance analysis of cervix ROI extraction and specular reflection removal
algorithms for uterine cervix image analysis. In: Medical imaging 2007: Image
processing, vol. 6512. (2007). San Diego, CA, United States: Medical Imaging.
doi: 10.1117/12.709588

32. Abhishek D, Avijit K, Debasis B. (2011). Elimination of specular reflection
and identification of ROI: The first step in automated detection of cervical cancer
using digital colposcopy, in: 2011 IEEE International Conference on Imaging
Systems and Techniques. Batu Ferringhi, Malaysia: IEEE. doi: 10.1109/
IST.2011.5962218
frontiersin.org

https://doi.org/10.1016/S0140-6736(16)31392-7
https://doi.org/10.1097/LGT.0000000000000338
https://doi.org/10.1186/s12916-020-01860-y
https://doi.org/10.1093/jnci/djy225
https://doi.org/10.1007/s00138-020-01063-8
https://doi.org/10.1109/TBME.2018.2887208
https://doi.org/10.1016/j.bspc.2019.101785
https://doi.org/10.3233/THC-212890
https://doi.org/10.3969/j.issn.1672-8467.2021.04.002
https://doi.org/10.3969/j.issn.1001-4926.2018.02.002
https://doi.org/10.3969/j.issn.1001-4926.2018.02.002
https://doi.org/10.1109/JBHI.2021.3064366
https://doi.org/10.1109/TMI.2011.2106796
https://doi.org/10.3390/diagnostics11040716
https://doi.org/10.1109/TMI.2020.2994778
https://doi.org/10.1007/s13246-018-0678-z
https://doi.org/10.1088/1361-6560/ac73d4
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/TPAMI.2019.2913372
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/TPAMI.2020.3007032
https://doi.org/10.1109/TPAMI.2020.3007032
https://doi.org/10.3760/cma.j.cn112141-20200320-00240
https://doi.org/10.3760/cma.j.cn112141-20200320-00240
https://doi.org/10.1117/12.709588
https://doi.org/10.1109/IST.2011.5962218
https://doi.org/10.1109/IST.2011.5962218
https://doi.org/10.3389/fonc.2022.952847
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Segmentation of the cervical lesion region in colposcopic images based on deep learning
	Introduction
	Related work
	Cervical region extraction
	Lesion region segmentation

	Methodology
	Extraction of the cervical region
	Cervical lesion segmentation network
	Overall framework of the CLS-Net model
	EfficientNet-B3 module
	ASPP module

	Mapping of the original image

	Experiments
	Dataset
	Experimental setup
	Evaluation criteria
	Results and analysis
	Ablation experiments
	Feature visualization

	Discussion
	Recall rate is generally low
	Comparison of the proposed model with recent methods
	Specular reflection
	Fine contour labeling

	Conclusions and future work
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


