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A novel prognostic model for
prostate cancer based on
androgen biosynthetic and
catabolic pathways

Aoyu Fan †, Yunyan Zhang †, Jiangting Cheng †, Yunpeng Li
and Wei Chen*

Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
Prostate cancer (PCa) is one of the most common malignancies in males

globally, and its pathogenesis is significantly related to androgen. As one of the

important treatments for prostate cancer, androgen deprivation therapy (ADT)

inhibits tumor proliferation by controlling androgen levels, either surgically or

pharmacologically. However, patients treated with ADT inevitably develop

biochemical recurrence and advance to castration-resistant prostate cancer

which has been reported to be associated with androgen biosynthetic and

catabolic pathways. Thus, gene expression profiles and clinical information of

PCa patients were collected from TCGA, MSKCC, and GEO databases for

consensus clustering based on androgen biosynthetic and catabolic

pathways. Subsequently, a novel prognostic model containing 13 genes

(AFF3, B4GALNT4, CD38, CHRNA2, CST2, ADGRF5, KLK14, LRRC31, MT1F,

MT1G, SFTPA2, SLC7A4, TDRD1) was constructed by univariate cox

regression, lasso regression, and multivariate cox regression. Patients were

divided into two groups based on their risk scores: high risk (HS) and low risk

(LS), and survival analysis was used to determine the difference in biochemical

recurrence-free time between the two. The results were validated on the

MSKCC dataset and the GEO dataset. Functional enrichment analysis revealed

some pivotal pathways that may have an impact on the prognosis of patients

including the CDK-RB-E2F axis, G2M checkpoint, and KRAS signaling. In

addition, somatic mutation, immune infiltration, and drug sensitivity analyses

were performed to further explore the characteristics of HS and LS groups.

Besides, two potential therapeutic targets, BIRC5 and RHOC, were identified by

us in prostate cancer. These results indicate that the prognostic model may

serve as a predictive tool to guide clinical treatment and provide new insight

into the basic research in prostate cancer.
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Introduction

Prostate cancer is the second most common cancer and the

leading cause of cancer-related deaths in males, the detection

rate of which in developing countries is increasing annually (1).

After early diagnosis, patients can benefit from radical

prostatectomy and androgen deprivation therapy (2, 3), but

the biochemical recurrence and further tumor progression to

advanced prostate cancer and castration-resistant prostate

cancer (CRPC) still occur in many patients (4). In general, the

treatment of advanced prostate cancer remains challenging.

The Androgen receptor plays an indelible role in the

development and progression of prostate cancer, therefore,

targeting androgen metabolism and androgen receptor are always

the theme of treatment (5). For instance, leuprolide and goserelin

inhibit androgen production by targeting gonadotrophin-releasing

hormones. Besides, abiraterone, a CY17 inhibitor, further decreases

androgen levels by reducing androgen production in non-gonadal

tissues (6). The androgen biosynthetic and catabolic pathways have

been shown to be associated with prostate cancer progression,

which may be related to the different sensitivity of patients to ADT

(7). Therefore, investigating the relevance of the androgen

biosynthetic and catabolic pathways to prostate cancer

progression is the focus of this research.

In this study, we constructed a prognostic model related to

androgen biosynthetic and catabolic pathways and investigated

multi-omics differences between high risk (HS) and low risk (LS)

populations through comprehensive bioinformatics analysis. In

conclusion, the novel risk model demonstrated excellent

prognostic ability and may be beneficial in clinical treatment.
Materials and methods

Data set identification and preparation

498 PRAD (Prostate adenocarcinoma) gene expression data

(FPKM form) was downloaded from the TCGA website (https://

portal.gdc.cancer.gov/repository). The Memorial Sloan

Kettering Cancer Center (MSKCC) and GSE70770 cohort

downloaded from the cBioPortal database (8) (https://www.

cbioportal.org/) and GEO database (https://www.ncbi.nlm.nih/

geo/query/), respectively. 140 and 111 samples with complete

clinical information in MSKCC and GSE70770 cohorts were

selected as the validation set.
Consensus clustering and differentially
expressed genes analysis

A total of 13 genes (HSD3B1, HSD17B6, SRD5A2, SRD5A3,

CYP17A1, HSD17B3, SRD5A1, CYP19A1, HSD17B11, and

HSD3B2) in androgen biosynthetic and catabolic pathways
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(ABCGs) were collected from MsigDb (http://www.gsea-msigdb.

org/gsea/msigdb/genesets.jsp). Subsequently, we constructed a

(protein-protein interaction) PPI network in STRING (https://cn.

string-db.org, version 11.0b) to elucidate the interactions of these 13

ABCGs. We used an unsupervised method based on Euclidean

distance andWard’s linkage and the optimal clustering number was

determined according to the data difference percentage by the

ConsensusClusterPlus package (9) with 1000 repeats. Through

the implementation of the Benjamini and Hochberg (BH)

method to compute gene expression changes, the R package

limma (10) was used to identify the DEGs between the two

clusters. The cutoff criteria were set as |log2FC| > 0.6 while P-

Value < 0.05 for differential expression.
Construction and assessment of the
prognostic prediction model

Recurrence-free survival-related genes were screened by

Univariate Cox regression. To reduce the risk of overfitting, the

least absolute shrinkage and selection operator (LASSO) regression

was performed. Then multivariate Cox regression was used to

establish the prognostic prediction model. The risk score was

calculated by (expression of gene1 × coefficient of gene1) +

(expression of gene 2 ×coefficient of gene 2) + ⋯ + (expression of

gene 13 × coefficient of gene 13). Principal component analysis

(PCA) by UMAP function was performed on HIPLOT web tools

(https://hiplot.com.cn/) for dimensionality reduction analysis

between the two risk groups. The patients were divided into the

high score (HS) and low score (LS) groups according to the optimal

cutoff value by the survminer R package (Cutoff value=0.6855398).

Kaplan-Meier(K-M) survival analysis and log-rank test were

exploited to demonstrate the difference between the two groups.

Single-gene survival curves for 13 genes in the prognostic model

were analyzed on GEPIA web tools (http://gepia.cancer-pku.cn/).

Subsequently, we further evaluate the predictive accuracy of the gene

signature using the time-dependent receiver operating characteristic

(ROC) curve by pROC R package. The area under the curve (AUC)

was used to measure the discrimination power of the model.

Calibration plots were performed to depict the prognostic

predictive accuracy of the nomogram by RMS R package.
Functional enrichment analysis and
ceRNA network construction

Gene set enrichment analysis (GSEA) (11) was performed

for the protein-coding genes. We downloaded 50 hallmark gene

sets and 7 androgen-related gene sets fromMsigDb (http://www.

gsea-msigdb.org/gsea/msigdb/genesets.jsp). Subsequently, gene

set variation analysis (GSVA) (12) was conducted to evaluate the

differences in the activity of tumor hallmark gene sets and

androgen-related gene sets between HS and LS groups.
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To construct the competing endogenous RNAs (ceRNA)

network, we analyzed the differentially expressed long non-coding

RNAs (lncRNAs), miRNAs, and genes between the two risk groups

with limma R package (|Log2FC| >0.5 and p-value <0.05), and

subsequently predicted the targets of differentially expressed

lncRNA and miRNAs using miRWalk (http://mirwalk.umm.uni-

heidelberg.de) and miRcode (http://www.mircode.org) web tools.

Finally, a ceRNA network based on the genes in the model was

created after the match of differentially expressed lncRNAs,

miRNAs, and genes.
Somatic mutation distribution and
characteristics of immune infiltration

The landscape of somatic mutations was depicted between

the two groups and differentially mutated genes were detected by

the maftools R package. The immune infiltration evaluation was

achieved by using the IOBR R package (13). THE IOBR R

package is a powerful and comprehensive immuno-oncology

analysis tool. CIBERSORT, xCell, and EPIC are frequently-used

open-source deconvolution methodologies in the IOBR R

package. CIBERSORT, as the most popular deconvolution

method, can detect 22 immune cells in the tumor

microenvironment. xCell method can analyze the infiltration

of 64 immune cells based on RNA-seq data. EPIC processes gene

expression according to the immune cell phenotype to predict

the cell subpopulation landscape. In addition, we evaluated the

expression of 45 immune checkpoints and visualized the

differences between the two groups using the ggplot2 R package.
Drug sensitivity analysis and
target prediction

Estimated IC50 of commonly used drugs for prostate cancer

(PCa) patients in the TCGA dataset were calculated using the

Genomics of Drug Sensitivity in Cancer (GDSC, https://www.

cancerrxgene.org) and the Cancer Therapeutics Response Portal

(https://portals.broadinstitute.org/ctrp) via oncoPredict R

package. Human cancer cell lines (CCLs) expression profile

data were collected from the Broad Institute-Cancer Cell Line

Encyclopedia (CCLE) project (https://portals.broadinstitute.org/

ccle/) (14). The CERES scores of 739 cell lines were obtained

from the dependency map (DepMap) portal (https://depmap.

org/portal/), with the lower the CERES score, the more

important the gene was to cancer cell growth and survival.
Statistical analysis

All analyses were performed in R software (version 4.1.1).

The log-rank test was applied to evaluate the difference in higher
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recurrence-free survival (RFS) between the two groups in the

Kaplan-Meier survival analysis. And in the comparison of

differences between groups in clinical phenotype, immune

infiltration, and drug sensitivity, either Student’s t-test was

used if the variable was normally distributed or Wilcoxon

rank-sum test was used. The correlation between two

continuous variables was measured using Spearman’s rank-

order correlation. The tests in this study were two-sided and

the significance threshold was set as 0.05 except for univariate

cox regression (p<0.2).
Results

Consensus clustering cased on ABCGs
and identification of DEGs

HSD3B1 , HSD17B6 , SRD5A2 , SRD5A3 , CYP17A1 ,

HSD17B3, SRD5A1, CYP19A1, HSD17B11, and HSD3B2 have

a strong link in the PPI network as shown in Figure 1A.

Furthermore, the expression correlations of these genes are

highly significant (Figure 1B). By using an unsupervised

method based on Euclidean distance and Ward’s linkage, the

optimal number of clusters was determined based on the

percentage difference in data from 1000 iterations, 498 patients

were classified into two clusters (Figure 1C). The heat map

showed that these genes are significantly differentially expressed

in the two clusters and the Kaplan-Meier curve showed cluster1

had a better prognosis compared to cluster2 (p=0.0033)

(Figures 1D, E). According to the expression heatmap of these

13 original ABCGs in the TCGA PRAD database, we found that

WNT4, HSD17B6, and SRD5A2 were highly expressed in

cluster1, and SRD5A3, HSD17B11, MED1, and SPP1 were

highly expressed in cluster2 (Figure 1D). Subsequently, 242

DEGs were screened, including 57 up-regulated genes and 185

down-regulated genes. The top five genes that were significantly

up-regulated in cluster2 were CRISP3, NKAIN1, ERG, F5, and

LRRN1. Besides, HSD17B6, ANPEP, ALOX15B, TFF3, and

MT1G were the top five down-regulated genes (Figure 1F).

Overall, the above results indicated that the ABCGs had an

impact on the prognosis of patients.
Construction and validation of the
prognostic model

A total of 149 genes were identified as being associated with

time to biochemical-free relapse from 242 genes in TCGA samples

using univariate cox regression. Ultimately, a prognostic model for

prostate cancer was established by lasso-cox regression

(Supplementary Figures 1A, B). The prognostic model includes

13 genes (AFF3, B4GALNT4, CD38, CHRNA2, CST2, ADGRF5,

KLK14, LRRC31, MT1F, MT1G, SFTPA2, SLC7A4, TDRD1) and
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the risk score = (-0.1028 * ExpAFF3) + (0.2922 * ExpB4GALNT4) +

(-0.511 * ExpCD38) + (0.0072 * ExpCHRNA2) + (0.038318 *

ExpCST2) + (0.2041 * ExpADGRF5) + (0.1326 * ExpKLK14) +

(0.1493 * ExpLRRC31) + (-0.1262 * ExpMT1F) + (-0.0116 *

ExpMT1G) + (-0.1639 * ExpSFTPA2) + (-0.1697 * ExpSLC7A4)

+ (-0.4706 * ExpTDRD1) (Supplementary Figure 1C). After

performing survival analysis of these gene expressions with

recurrence-free survival, we found that the expression of AFF3,

CD38, MT1F, MT1G, SFTPA2, and SLC7A4 positively correlated

with recurrence-free survival, and the expression of B4GALNT4

was negatively correlated with recurrence-free survival (p<0.05).

Their coefficients are consistent with their responsiveness to

androgen (Supplementary Figure 2). Based on the optimal cutoff

value, the samples were divided into HS and LS groups (Cutoff

value=0.6855398). Principal component analysis (PCA) shows that

people in the HS group are distributed in different directions from

those in the LS group (Figure 2A). Figure 2B shows that the LS

group had significantly RFS than the HS group (p<0.0001),

demonstrating that a higher score indicates a worse prognosis
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and increased risk. To evaluate the clinical features of the HS and

LS groups, race, age, TNM stage, and Gleason score were compared

between the two groups (Table 1). The results showed that the

TNM stage and Gleason scores were higher in the HS group.

Subsequently, the predictive performance of the prognostic risk

model was evaluated by ROC curves with AUC of 0.84, 0.82, and

0.72 for 1, 3, and 5 years, respectively (Figure 2E). Then the

predictive capability of the prognostic model was validated in

MSKCC (Cutoff value=-1.790379) (p<0.0001), and GSE70770

(Cutoff value=-2.053357) (p=0.0041), all of which showed the risk

model was negatively correlated with RFS (Figures 2C, D). The

AUC was also assessed in the MSKCC dataset and GSE70770

dataset (Figures 2F, G). A nomogram of the risk model was created

(Supplementary Figure 1D) and the calibration plots revealed

remarkable accuracy in predicting biochemical recurrence

(Figure 2H). Subsequently, a clinical subgroup analysis was

conducted to verify the validity of the prognostic model in

various clinical subgroups. Whether stratified by age, T-stage, N-

stage, or Gleason score, the results indicated that the risk score was a
A B

D

E
F

C

FIGURE 1

Consensus clustering based on androgen biosynthetic and catabolic pathways. (A) The PPI network of ABCGs constructed in the STRING
database. (B) Gene expression correlation of ABCGs in TCGA cohort. (C) Consensus Clustering matrix (k =2). (D) Heatmap of ABCGs in two
clusters. (E) Kaplan-Meier curves of RFS. (F) The different expression genes (DEGs) between cluster1 and cluster 2.
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danger factor for RFS in each clinical subgroup (Figure 2I). The

forest plot illustrates the relationship between RFS and these clinical

phenotypes, fromwhich we could see that age, TNM stage (M-stage

was omitted because of the scarcity of M1 patients), Gleason score,

and risk score were negatively implicated in RFS (Figure 2J).
Functional enrichment analysis and
ceRNA network

To investigate the biological processes associated with the

difference in relapse-free survival between the two groups, we

performed a functional enrichment analysis of DEGs between

the HS and LS groups. 285 DEGs were identified, including 73

upregulated and 212 downregulated ones (Figure 3A).

Subsequently, we performed a GSEA analysis and the results

showed that the cGMP-PKG signaling pathway, JAK-STAT

signaling pathway, cell cycle, and neurodegeneration-multiple
Frontiers in Oncology 05
disease signaling differed between HS and LS groups (Figures 3B,

C). Moreover, E2F targets, G2M checkpoint, MYC targets,

androgen response, KRAS signaling, and TNFA via NF-kB
signaling were among the signaling pathways differently

enriched between the two groups (Figures 3D, E).

Subsequently, we explored the enrichment of two groups in 50

signaling pathways and 7 androgen-related pathways with

GSVA. The results showed that the 22 gene sets had

statistically significant differences in GSVA enrichment scores

between the two groups (Figure 3F). These results may help us to

discover the critical pathways associated with this risk model.

Finally, we constructed a ceRNA network containing 5 lncRNAs,

15 miRNAs, and 8 mRNAs based on genes in the risk model to

further understand how lncRNAs regulate mRNA expression

through sponging miRNAs. (Figure 3G). As an important

lncRNA, NEAT1 may be involved in regulating six miRNAs in

the ceRNA network and indirectly affect the expression of genes

in the model.
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FIGURE 2

Assessment of the risk model. (A) Principal component analysis (PCA) of TCGA PRAD cohort. (B–D) Kaplan-Meier curves of RFS between high risk (HS)
and low risk (LS) groups in TCGA (B), MSKCC (C), and GSE70770 (D) cohort. (E–G) Time-dependent receiver operating characteristic (ROC) analysis in
TCGA (E), MSKCC (F), and GSE70770 (G) cohort. (H) Calibration plots for the nomogram: 1-, 3-, and 5- year nomogram. (I) Clinical subgroup analysis.
(J) Univariate cox regression analysis of the clinical features and gene signature. (*P < 0.05, ***P < 0.001).
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Differential analysis of somatic mutations

Genetic mutations are associated with patient prognosis in

many malignancies (15). We consequently explored the

differences in genetic alterations in tumors in HS and LS

groups. Figures 4A, B showed the landscape of the top 20

highly mutated genes in the two groups. The results revealed

that in the HS group, TP53, FOXA1, and TTN had the highest

mutation frequencies of 19%, 12%, and 12%, respectively

(Figure 4A). As for the LS group, SPOP, TTN and TP53 had

the highest mutation frequencies of 12%, 10%, and 8%,

respectively (Figure 4B). The difference in frequency of TP53

and FOXA1mutations was quite substantial, implying that TP53

and FOXA1 mutations may have a role in patient prognosis. In

the following, we summarized the detailed gene mutations in the

HS and LS groups (Figures 4C, D).
Characterization of immune
cell infiltration in the
tumor microenvironment

Ongoing research into the TME highlighted the important

role that immune cell infiltration plays in tumor progression

(16). We found a higher infiltration of Macrophage M2 and a
Frontiers in Oncology 06
lower infiltration of memory-resting CD4 T cell in the HS group

compared to the LS group by the CIBERSORT method

(Figure 5A). Results of the xCell method showed differential

infiltration of CD4 Central Memory T (Tcm) cells, CD8 naive T

cells, M1 macrophages, M2 macrophages, and pro B cells in the

TME in two risk groups (Figure 5B). Subsequently, we used the

EPIC method to examine the TME of the two groups separately

and 7 cell types were assessed. Of these, cancer-associated

fibroblasts (CAFs) had a higher proportion, while CD4 T cells

had a lower infiltration in the HS group (Figure 5C). The

differences in the expression of the common immune

checkpoints between the two groups indicated that several

immune checkpoints were highly expressed in the HS group,

including TNFSF18, ADORA2A,HAVCR2, CD28, CD276,NRP1,

TNFRSF14, TNFRSF18, TNFRSF4, TNFRSF25 (Figure 5D).

These immune checkpoints, which are prominently expressed

in the HS group, may be potential targets for immunotherapy in

prostate cancer.
Drug sensitivity analysis and
target prediction

In order to guide clinical use based on the risk model, we

predicted the IC50 of four drugs (Bicalutamide, Cisplatin,
TABLE 1 Clinical features of TCGA cohort.

High risk Low risk P value
N=131 N=362

Race 0.467

asian 4 (3.05%) 8 (2.21%)

black 11 (8.40%) 46 (12.7%)

white 111 (84.7%) 298 (82.3%)

not reported 5 (3.82%) 10 (2.76%)

Age 62 [58;67] 61 [56;66] 0.034

T <0.001

T2 25 (19.1%) 163 (45.0%)

T3 100 (76.3%) 189 (52.2%)

T4 4 (3.05%) 6 (1.66%)

not reported 2 (1.53%) 4 (1.10%)

N <0.001

N0 81 (61.8%) 264 (72.9%)

N1 37 (28.2%) 39 (10.8%)

not reported 13 (9.92%) 59 (16.3%)

M 0.118

M0 118 (90.1%) 332 (91.7%)

M1 2 (1.53%) 0 (0.00%)

not reported 11 (8.40%) 30 (8.29%)

Gleason score <0.001

6-7 39 (29.8%) 256 (70.7%)

8-9 92 (70.2%) 106 (29.3%)
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Docetaxel, and Abiraterone) for two risk groups with CTRP and

GDSC databases, respectively. Bicalutamide, cisplatin, and

abiraterone had greater IC50 values in the HS group

(Figures 6A, B, D), indicating that patients in the HS group

were less susceptible to these three medications than those in the

LS group, but the sensitivity to docetaxel was higher in the HS

group (Figure 6C). These findings revealed that drug sensitivity

was one of the factors influencing the outcome of the two

groups. Since drug target genes positively correlated with risk

scores may have potential therapeutic significance, 2136 drug

target proteins were collected for screening candidate targets.

First, we calculated the correlation coefficients between drug

target gene expression levels and risk score and identified 294

drug target genes that were positively associated with the risk

score (Spearman’s r>0.2, p<0.05) (Figure 6E). Subsequently, we

further identified 48 drug targets with a negative correlation

(Spearman’s r <−0.6, P <0.05) between risk scores and CERES

scores of prostate cancer cell lines (Figure 6F). Ultimately, four

drug target proteins were matched, including B4GALT4, BIRC5,

RHOC, and SULT1E1. They were highly expressed in the high
Frontiers in Oncology 07
score population and were important for the growth and survival

of prostate cancer cells. Notably, the CERES scores of B4GALT4

and SULT1E1 were not less than zero in some prostate cancer

cell lines, indicating that B4GALT4 and SULT1E1might not play

an inhibitory role in PRAD. Thus, the drugs targeting BIRC5 and

RHOC may be potential targets in the treatment of prostate

cancer (Figures 6G, H).
Discussion

Androgens and androgen receptor play a critical role in

prostate cancer oncogenesis, and ADT has traditionally been an

essential first-line treatment for PCa (3). However, almost all

advanced prostate cancer patients experience a re-elevation of

PSA after treatment with ADT and enter the phase of castration-

resistant prostate cancer (3, 4). In this study, 498 prostate cancer

patients in the TCGA database were divided into two clusters

and 242 DEGs were screened. According to the expression

heatmap of these 13 original ABCGs in the TCGA PRAD
A
B

D E

F G

C

FIGURE 3

The enrichment of signaling pathways in HS and LS groups. (A) The DEGs between the HS and LS groups. (B–E) Gene Set Enrichment Analysis
(GSEA) of TCGA cohort to identify signaling pathways associated with the risk model. (F) Enrichment scores of Gene Set Enrichment Analysis
(GSVA) among 22 gene sets which are significant differences between the HS and LS groups. (G) Competing endogenous RNAs (ceRNA)
network based on the genes in the risk model.
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database (Figure 1D), WNT4, HSD17B6, and SRD5A2 were

highly expressed in cluster1, and SRD5A3, HSD17B11, MED1,

and SPP1 were highly expressed in the cluster2. Previous studies

have shown that AR protein expression can be strongly

suppressed by Wnt activation (17). The protein encoded by

HSD17B6 has both oxidoreductase and epimerase activities and

is involved in androgen metabolism (18). In contrast, SRD5A3 is

involved in the production of the androgen 5-alpha-

dihydrotestosterone (DHT) from testosterone and maintains

the androgen and androgen receptor activation pathway (19).

HSD17B11, MED1, and SPP1 are involved in androgen

synthesis and AR receptor activation (20–22). This suggests

that in cluster2, androgen synthesis and AR receptor activation

may be more active. According to survival analysis, patients in

cluster 2 have a worse prognosis, which could be attributed to

androgen signaling activation (Figure 1E).

Numerous research has reported the 13 genes in the model.

High AFF3 expression in ER+ breast cancer was linked to a poor
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overall survival rate, and upregulation of AFF3 underlies

tamoxifen resistance in ER+ breast cancer (23). Interestingly,

the effect of AFF3 on prostate cancer appears to be the inverse of

that on ER+ breast cancer, implying that AFF3 in androgen and

estrogen metabolism warrants additional exploration

(Supplementary Figure 2A). B4GALNT4 is linked to malignant

behavior and maybe a new prognostic marker for esophageal

squamous cell carcinoma (24). The protein CD38 participates in

the pathogenesis and regulation of metabolism in a variety of

diseases, including obesity, diabetes, heart disease, asthma, and

inflammation (25). Several CD38-targeting antibodies,

daratumumab, isatuximab, and MOR202, have been developed

for the treatment of multiple myeloma (26). The role of CD38 in

tumor progression has also been reported in prostate cancer, and

multiple studies suggest that CD38 could be a potential

immunotherapy target (27). However, a recent phase I/II

open-label, multicenter study observed a lack of efficacy of

isatuximab (anti-CD38 monoclonal antibody) in metastatic
A

B

D

C

FIGURE 4

Differential analysis of somatic mutations. (A–B) The top 20 highly mutated genes in HS (A) and LS (B) groups. (C–D) Detailed gene mutation
summary in HS (C) and LS (D) groups.
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castration-resistant prostate cancer (28). CHRNA2 was

discovered to promote thermogenesis in uncoupling protein 1

(Ucp1)-positive beige adipocytes through a cAMP- and protein

kinase A-dependent pathway. Further research on its role in

prostate cancer and androgen metabolism is required (29). CST2

encodes a thiol protease inhibitor which was found to be

associated with tumorigenesis as well as poor prognosis in

breast and gastric cancers (30, 31). ADGRF5 (GPR116),

predicted to enable G protein-coupled receptor activity, has

previously been shown to promote breast cancer metastasis

(32). KLK14 is a Protein Coding gene encoding a member of

the kallikrein subfamily of serine proteases which has been

reported to be associated with the progression of various

cancers including prostate cancer and breast cancer (33–35).

LRRC31 was found to act as a DNA repair inhibitor that

sensitizes breast cancer brain metastasis to radiation which can

be targeted for cancer radiosensitizing therapy (36). MT1F and

MT1G belong to Metallothioneins (MTs), which enable zinc ion

binding activity and involve in the cellular response to the metal

ion, DNA damage, and oxidative stress. MTs also play a pivotal

role in the progression and drug resistance of multiple tumors

(37). Studies have shown that SFTPA2(Surfactant Protein A2)

mutations are associated with interstitial lung disease and lung

cancer, but its role in other tumors, including prostate cancer,

requires further study (38). SLC7A4 is involved in amino acid

transmembrane transport activity and has been shown to have a
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higher expression in melanoma tissues than in normal skin

tissues, while the relatively high expression of SLC7A4 has a

poorer prognosis in skin cutaneous melanoma (SKCM) patients,

which indicates that it may serve as a novel tumor marker in

SKCM (39). TDRD1 has been discovered to be a direct target of

(ETS-related gene) ERG, which promotes tumor initiation and

progression in TMPRSS2-ERG fusion prostate cancer and could

be a new immunotherapy target (40–42).

The construction of the risk model allowed for the accurate

prediction of patient RFS and treatment guidance. The results of

GSEA and GSVA revealed that the HS and LS groups differed in

several signaling pathways (Figures 5B–E). In prostate cancer,

MYC amplification, and TP53 mutation are common genetic

changes (43). GSVA showed that the MYC targets were enriched

in the HS group, and the mutation analysis revealed TP53

mutation rates of up to 19% in the HS group, compared to 8%

in the LS group (Figures 3A, B, 5F). Mutations in the tumor

suppressor gene TP53 promote cancer growth in a variety of

ways (44). TTN mutations cause changes in cell signaling

pathways, the expression of immunological checkpoints, and

immune cell infiltration (45). The TP53 mutation rate was

higher in the HS group than in the LS group, which, on the

one hand, reflects the relationship between differences in TP53

and TTN mutations in the two groups and the prognosis of

prostate cancer, and on the other hand, whether the difference in

TP53 and TTN mutations rate between the two groups of
A B

DC

FIGURE 5

Differences in immune cell infiltration and immune checkpoints. (A–C) Assessment of tumor microenvironment and immune cell infiltration by
methods CIBERSORT (A), xCell (B), and EPIC (C) in HS and LS groups. (D) differences analysis of immune checkpoints between HS and LS
groups. (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
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patients is related to androgen metabolism requires further

study. Neuroendocrine prostate cancer accounts for a minimal

number of pathological types of prostate cancer, but

neuroendocrine differentiation plays an important role in the

progression of drug resistance in some prostate cancer patients

(46). GSEA illustrated that neurodegeneration-multiple disease

signaling was enriched in the HS group, which further validated

the impact of neuroendocrine differentiation on PCa prognosis

and suggested the potential role of androgen metabolism on

neuroendocrine differentiation.

The immune system has a dual role in cancer, as immune cells

not only destroy cancer cells to inhibit tumor proliferation but also

participate in the regulation of TME to speed up tumor progression

(47). Several studies have shown that the infiltration level of tumor-

associated macrophages correlates with tumor aggressiveness. After
Frontiers in Oncology 10
treatment with ADT, CD68+ and CD163+ macrophage infiltration

was increased in the tumor tissues of patients (48). Hence, due to

the differential infiltration of macrophages in the HS and LS groups

(Figures 5A–C), which further suggests that androgen metabolism

may play a role in the tumor microenvironment, the causal

relationship needs to be further explored. All the above suggested

that this risk model was related to tumor immune infiltration and

provided a reference for personalized immunotherapy.

Bicalutamide is a nonsteroidal anti-androgen and

abiraterone is a selective inhibitor of CYP17 to suppress

androgen biosynthesis (49, 50). The sensitivity to abiraterone

and bicalutamide was higher in the LS group compared to the

HS group, and GSVA also showed that androgen response and

biosynthetic processes were enriched in the LS group. Therefore,

these 13 genes in the model may be correlated with drug
A B D

E

F

G

H

C

FIGURE 6

Drug sensitivity and identification of potential drug targets. (A–D) Estimated IC50 indicates the efficiency of four common drugs in prostate
cancer (Bicalutamide (A), Cisplatin (B), Docetaxel (C), and Abiraterone (D)) in HS and LS groups. (E) Volcano plot of Spearman’s correlations and
significance between risk score and expression of drug targets. Red dots indicate the significant positive correlations (Spearman’s r>0.2, p<0.05).
(F) Volcano plot of Spearman’s correlations and significance between risk score and CERES score of drug targets. Blue dots indicate the
significant negative correlations (Spearman’s r <−0.6, P <0.05). (G) Scatter plots of Spearman’s correlations and significance between risk score
and expression of BIRC5 (left) and RHOC (right). (H) Scatter plots of Spearman’s correlations and significance between risk score and CERES
score of BIRC5 (left) and RHOC (right). (*P < 0.05, **P < 0.01, ****P < 0.0001).
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sensitivity and have an impact on patient prognosis. However,

the potential impact of androgen biosynthetic and catabolic

pathways on these genes needs to be further investigated.

RHOC, encoding a member of the Rho family of small

GTPases, acts as a molecular switch to regulate signal

transduction pathways during the cell cycle and the formation of

myosin contractile loops in the cytoplasmic division (Figures 6G,

H). It has been shown to play an indispensable role in promoting

the invasion and metastasis of breast, pancreatic, and lung cancers

(51). A phase I/II clinical trial showed that a vaccine targeting

RHOC was well tolerated and safe in prostate cancer patients,

induced effective and durable T-cell immunity, and delayed tumor

metastasis and recurrence (52). Animal models indicated that it is

not necessary for embryogenesis (53), which opens up the

possibility of serving as a tumor marker and therapeutic target.

There are some limitations to our study. First, the risk model

needs to be further validated in a larger cohort as well as in a

prospective study. Second, we only performed a rough study on

the prognostic significance of androgen biosynthetic and catabolic

pathways in prostate cancer, and its specific mechanisms were not

explored. Third, we lacked data on patients with recurrence of 10

to 15 years and it is necessary to expand the sample of advanced

nonlocalized prostate cancer. In addition, the findings for patients

receiving local treatment were limited, and the clinical

information on the samples needs to be expanded.
Conclusion

Overall, we developed a prognostic model for prostate

cancer based on androgen biosynthetic and catabolic

pathways, and multi-omics analyses demonstrated that the

signature was related to tumor mutations, immune infiltration,

and drug sensitivity, which influenced prostate cancer prognosis.

In-depth investigations of the genes in this model to explore

their potential as tumor markers and therapeutic targets may be

useful for our understanding of the molecular mechanisms of

prostate cancer progression and recurrence.
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SUPPLEMENTARY FIGURE 1

LASSO Cox regression and construction of nomogram. (A) Coefficient
profiles of variables in the LASSO Cox regression model. (B) Tenfold
cross-validation for turning parameter selection in the LASSO Cox

regression model. (C) Heatmap of 13 genes in the risk model in HS and
LS groups. (D) The nomogram of the prediction model.

SUPPLEMENTARY FIGURE 2

Single-gene survival analysis of 13 genes in the prognostic model. (A-M)
Single gene survival analysis of 13 genes (AFF3, B4GALNT4, CD38,
CHRNA2, CST2, ADGRF5, KLK14, LRRC31, MT1F, MT1G, SFTPA2,

SLC7A4, TDRD1) in prostate cancer.
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