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The detection of prostate
cancer based on ultrasound
RF signal
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Guoqing Wu1, Jinhua Yu1*and Ligang Cui2*

1School of Information Science and Technology, Fudan University, Shanghai, China, 2Department of
Ultrasound, Peking University Third Hospital, Beijing, China
Objective: The diagnosis of prostate cancer has been a challenging task.

Compared with traditional diagnosis methods, the radiofrequency (RF) signal

is not only non-invasive but also rich in microscopic lesion information. This

paper proposes a novel and accurate method for detecting prostate cancer

based on the ultrasound RF signal.

Method: Our approach is based on low-dimensional features in the frequency

domain and high-throughput features in the spatial domain. The whole process

could be divided into two parts: first, we calculate three feature maps from the

ultrasound original RF signal, and 1,050 radiomics features are extracted from

the three feature maps; second, we extracted 37 spectral features from the

normalized frequency spectrum after Fourier transform.

Results:We use LASSO regression as the method for feature selection; moreover,

we use support vectormachine (SVM) for classification 10-fold cross-validation for

examining the classification performance of the SVM. An AUC (area under the

receiver operating characteristic curve) of 0.84 was obtained on 71 subjects.

Conclusions: Our method is feasible to detect prostate cancer based on the

ultrasound RF signal with superior classification performance.

KEYWORDS

prostate cancer, RF time series, feature map, spectral feature, radiomics
Introduction

Prostate cancer is one of the most common cancers among men worldwide,

accounting for about 21% of all male cancers, and the fatality rate is about 8% (1),

which ranks sixth among all male cancers. In 2019, there were an estimated 1.276 million

new cases of prostate cancer worldwide and about 359,000 patients died of prostate
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cancer (2). For the diagnosis of prostate cancer, digital rectal

examination (DRE) can only identify tumors in the posterior-

surrounding area, so it cannot detect tumors that are located in

the anterior periphery, central area, and transition area (3).

Moreover, small tumors cannot be detected by palpation.

Prostate-specific antigen (PSA) test based on blood tests is

accompanied by a high risk of overdiagnosis and

overtreatment (4). Magnetic resonance imaging (MRI) can

provide functional tissue and anatomical information. T1-

weighted imaging, T2-weighted imaging, diffusion-weighted

imaging, and dynamic contrast-enhanced (DCE) multi-

parameter MRI are commonly used in prostate diagnosis (5).

However, studies have shown that MRI is also equally challenged

in detecting prostate cancer, because generally MRI did little to

predict the probability of either capsular invasion, seminal

vesicle invasion, or lymph node metastasis (6).

Ultrasound RF signals contain richer tissue acoustic

information than ultrasound images and have become a

research area of interest in ultrasound tissue characterization

in recent years. Khojaste and Imani (7) presented a feasibility

study on differentiating between lower- and higher-grade

prostate cancer using ultrasound RF time-series data. In the

leave-one-out cross-validation strategy, an area under the

receiver operating characteristic curve (AUC) of 0.78 has been

achieved, and the overall sensitivity and specificity were 79% and

78%, respectively. Feleppa et al. (8) reported prostate tissue

characterization methods that combine a set of features

extracted from a spectrum analysis of RF signals with clinical

data and used neural networks for classification and required

results up to 80% in accuracy. Lin et al. (9) solved the problem of

targeting and monitoring breast cancer with neural-network

classification based on a spectrum analysis of ultrasound RF

signals, and the AUC reached 0.804. However, in existing

research, only some traditional texture features or some

general spectral features were used (10, 11). Our method not

only uses the spectral characteristics of the RF signal itself but

also utilizes high-throughput spatial features from feature maps

calculated from the RF signal; moreover, our method requires no

additional equipment, and the selection of the region of interest

is as simple as drawing a rectangular box within the lesion.

Rectangular box size selection and placement tasks are much less

subjective than manually drawing lesion outlines.
Material and methods

Data acquisition

Clinical data were collected from the Ultrasound

Department, Peking University Third Hospital. The total 71

cases included 42 malignant cases and 29 benign cases.

The IC5-9D frequency conversion intracavitary probe of the

LOGIQ E9 ultrasound diagnostic apparatus (GE Healthcare,
Frontiers in Oncology 02
USA) was used to perform transrectal prostate scanning and

obtain the patients’ RF data. For patients who require prostate

puncture, RF data were collected before puncturing the

corresponding area of each tissue strip. The specific operation

steps are depicted as follows: first confirming the puncture site,

keeping the probe stable, turning on the “Collect RF Data”

button which stays for 3 s, again clicking “Collect RF Data” to get

the RF data of the area, puncturing the corresponding area, and

then saving the regular gray-scale image. The puncture

equipment uses BARD (Bard Peripheral Vascular, USA)

disposable automatic puncture biopsy and an 18-G, 20-cm

biopsy needle. The biopsy needle sampling slot is 2.2 cm long.

For healthy young patients, the RF data of four slices of the

base, middle, apex, and mid-sagittal plane of the prostate were

obtained. The final pathological results were not obtained for

this part of the patients.
Feature extraction

In total, we extracted three types of features: 1) time domain

features, 2) frequency domain features, and 3) feature map. The

first two types of features reflect the characteristics of time

dimension and frequency dimension, respectively; because the

RF signal is a time-series signal, the characteristics of time and

frequency dimension are complementary. On the other hand,

the RF signal also contains very rich features of ultrasonic

attenuation, scattering, etc. Therefore, features only extracted

from the time domain and frequency domain cannot guarantee

the completeness. Therefore, we transformed the RF signal into

the feature map, respectively, from the statistical distribution of

signals, the energy attenuation, and non-linear signal (signal

asymmetry) to extract the feature map. Combined with the high-

throughput feature extraction method of radiomics, the features

of these feature maps are extracted.

The general procedure can be roughly described as follows:

acquire the ultrasound echo RF signal of the tissue, analyze and

read the ultrasound RF file, extract a certain frame of ultrasound

RF data, perform the Hilbert transformation on the extracted

ultrasound RF data, display the ultrasound B-mode image, and

select the region of interest (ROI) on the B-mode image. For the

classification of cancerous and normal classes, we use some

spectral features and a group of traditional texture features and

extract them from the discrete Fourier transform (DFT) for the

RF signals. For spectral features, spectral analysis is conducted

using the Fourier transform of the Hamming-windowed 1-mm

by 1-mm patch-wise RF sequences, where the Hamming

window is used to suppress the high-frequency components at

the start and end of the RF signal.

According to the center frequency of 4 MHz of the probe, a

frequency range of 0–25 MHz is used, covering the vibration

frequencies of 4, 8, 12, 16, 20, and 24 MHz. We divide the

entire frequency band into seven sub-bands of [0, 1.5], [1.5, 6.5],
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[6.5, 10.5], [10.5, 14.5], [14.5, 18.5], [18.5, 22.5], and [22.5, 25]

MHz, where the lowest and highest sub-bands have a frequency

interval of 1.5 and 2.5 MHz, respectively, whereas the middle five

sub-bands have a frequency interval of 4 MHz. The rationale of

this division is as follows: first, the low-frequency components

are more susceptible to white noise and thus are not considered.

Second, the six vibration frequencies fall into the centers of the

respective sub-bands instead of sub-band edges. Third, the

magnitude of the frequency spectra is significantly lower at

higher harmonics (16, 20, 24 MHz) compared with the lower

harmonics (4, 8, 12 MHz).

From the estimated power spectrum, the following features

(12) were computed:

Signal power—it gives the power of the signal in the

frequency band

of=fl
f=fu

P fð ÞDf (1)

where P(f) is the estimated power spectral density (PSD) and

fu and fl represent the upper and lower limits of the given

frequency band, respectively.

Spectral centroid—it represents the weighted average

frequency of the area under the PSD of the specified frequency

band. Therefore, if there is a main peak, this feature can identify

its location.

of=fl
f=fu

fP fð ÞDf
of=fl

f=fu
P fð ÞDf

(2)

Spectral bandwidth—it represents the weighted average of

the squared distances between the different frequency

components and the spectral centroid (SC), where the weight

is an estimate of the PSD at each frequency.

of=fl
f=fu

f − SCð Þ2P fð ÞDf
of=fl

f=fu
P fð ÞDf

(3)

Spectral flatness—also called tonality coefficient; it quantifies

the pitch of the signal, not the noise. For a completely flat power

spectrum, i.e., white noise, it evaluates to 1. Spectral flatness is

calculated as the ratio of the geometric mean to the arithmetic

mean of the PSD, as shown in the following equation:

(
Qf=fl

f=fu
P fð Þ) 1

fu−fl

1
fu−fl o

f=fl
f=fu

P fð ÞDf
(4)

Crest factor—it has a similar definition to signal tonality.

Functionally, it can be used to distinguish between wideband

signals (with a smaller crest factor) and narrowband signals

(with a larger crest factor).

max P fð Þð Þ
1

fu−fl o
f=fl
f=fu

P fð ÞDf
(5)
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Each RF time series is a discrete signal of length N. After

removing the mean and zero padding of the length of the time

series, we use the fast Fourier transform (FFT) algorithm as

implemented in MATLAB, to estimate the frequency spectrum

of the RF time series and then to normalize the spectrum. We fit

a regression line to values of the spectrum (versus normalized

frequency). The intercept (S1) and the slope (S2) of this line are

used as two more features (13). A total of 37 spectral features are

extracted for each patient.

We extract high-throughput spatial features from feature

maps calculated from the RF signal and use the following three

feature maps: Nakagami distribution mean diagram (NDM),

direct energy attenuation diagram (DEA), and RF signal

skewness intensity diagram (RF-I).

The Nakagami statistical model, as a great model which

simulates the shape of the probability density function of the

backscattered echoes, is general enough to describe a wide range

of the scattering conditions in medical ultrasound (14),

including pre-Rayleigh, Rayleigh, and post-Rayleigh

distributions. The pdf f(r) of the ultrasound backscattered

envelope R under the Nakagami statistical model is given by

(15):

f rð Þ = 2mmr2m−1

G mð ÞWm exp −
m
W
r2

� �
U rð Þ (6)

where m = (E½r2�)2
Var½r2� , W= E[r2] The Nakagami parameter m is a

shape parameter that determines the statistical distribution of

the ultrasound backscattered envelope (16), and m is obtained

from

m =
E R2
� �� �2

E R2 − E R2ð Þ½ �2 (7)

The Nakagami image is based on the Nakagami parameter

map, which is constructed by using a local sliding window to

process the raw envelope image. This involves first using a

window within the envelope image to collect the local

backscattered-signal envelopes for estimating the local

Nakagami parameter (m), which is assigned as the new pixel

located in the center of the window. This step is then repeated

with the window moving throughout the entire envelope image

in steps of one pixel, which yields the Nakagami image as the

map of m values. The window size determines the resolution of

the Nakagami image: using a smaller window will improve the

resolution, but it will also yield fewer envelope data points,

which can lead to unstable estimates of m (overestimation).

DEA means the scatterers absorb or scatter and attenuate,

offset, or even exceed the increase in the intensity of the scatter

signal caused by the increase in the concentration of the

scatterers in the region of interest, resulting in the attenuation

of the middle and deep scatter signals in the ultrasound image.

The specific algorithm is as follows: set length segment = 64 (in

pixels, the same below), seg interval = 16, sample rate = 3.2*107
frontiersin.org
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Hz, sound speed = 154,000 cm/s. For the direct energy

coefficient (DEC) at a certain point on a certain beam of the

RF input signal, first, this point is taken as the starting point and

the length segment as the length of this RF signal for fast Fourier

transform (FFT), and then the total energy E0 of this segment of

the signal is calculated. Then, fast Fourier transform is

performed on this segment of the RF signal starting from the

point at a seg interval from this point, where the length segment

is the length, and then the total energy E1 of this segment of the

signal is also calculated. Then, the DEC at this point is defined as:

DEC =
10lg E0

E1

� �
S1*S2
2S3

(8)

where S1 is the segment interval, S2 is the sound speed, and

S3 is the sample rate.

After doing the same calculation program for all beams, the

DEC of all points can be calculated to form a DEA feature map.

RF signal skewness intensity diagram (17): generally, RF

signal intensity includes the average value, standard deviation,

skewness, and kurtosis. Skewness is a measure of the direction

and degree of skewness of statistical data distribution and a

numerical feature of the degree of asymmetry of statistical data

distribution. The specific calculation formula is shown below:

Skew Xð Þ = E
X − E Xð Þ
s Xð Þ

� 	3
 �
=

k3
s Xð Þð Þ3 =

k3

k
3
2
2

(9)

where E(X) is the mean, s(X) is the standard deviation, E is

the expectation operator, k3 is the third central moment, and ki is

the ith cumulants.

For each feature map, 16 histogram features, 54 texture

features, and 280 wavelet features of four different frequency
Frontiers in Oncology 04
sub-bands are extracted. The detailed introduction of radiomics

features is defined in the appendix.

The specific description of the 16 histogram features and

four different types of texture features are presented in Table 1. A

total of 1,050 features are extracted for each patient from three

ultrasound feature maps.

In the “Results” section, we extract the features proposed in

two previous papers and compare the results with our features.

In Khojaste and Imani’s paper (7), it proposes 60 spectral

features of RF time series based on SVM with a radial basis

kernel function for the detection of prostate cancer. In Zheng

and Lin’s study (18), they extracted three different dimensions of

parameters of the ROI, namely, time domain, frequency domain,

and fractal dimension (FD), for cervical cancer diagnosis.

Fourteen spectrum characteristic parameters were extracted, of

which spectral fractal dimension (SFD) and Higuchi FD belong

to FD parameters. Slope, intercept, mid-band fit, and four

features which are the average value of the normalized

spectrum in four quarters of the frequency range are the

frequency domain parameters. Fuzzy entropy, kurtosis, peak,

cross zero count, and cross zero standard deviation (Std) are the

time-domain parameters.
Feature selection

In order to enhance the generalization ability of the model,

reduce overfitting, and enhance the understanding of features

and eigenvalues, we need to choose a feature selection method to

reduce the number of features to prevent dimensional disasters.

Since the total number of features extracted is large (>1,000) and

our purpose is to select a specific feature subset for subsequent
TABLE 1 All extracted features.

Feature
type

Feature name Feature
amount

Histogram 1) Energy, 2) entropy, 3) kurtosis, 4) mean, 5) mean absolute different (MAD), 6) media, 7) range, 8) uniformity, 9) variance, 10) root mean
square (RMS), 11) skewness, 12) deviation, 13) kurtosis, 14) mean, 15) variance, 16) skewness

16

GLCM 17) Energy, 18) entropy, 19) dissimilarity, 20) contrast, 21) inversed difference, 22) correlation, 23) homogeneity, 24) autocorrelation, 25)
cluster shade, 26) cluster prominence, 27) maximum probability, 28) sum of squares, 29) sum average, 30) sum variance, 31) sum entropy, 32)
difference variance, 33) difference entropy, 34) information measures of correlation1, 35) information measures of correlation2, 36) maximal
correlation coefficient, 37) maximal correlation coefficient, 38) inverse difference normalized, 39) inverse difference moment normalized

23

GLRLM 40) Short-run emphasis, 41) long-run emphasis, 42) gray-scale non-uniformity, 43) run-length non-uniformity, 44) run percentage, 45) low
gray-level run emphasis, 46) high gray-level run emphasis, 47) short-run low gray-scale emphasis, 48) short-run high gray-scale emphasis, 49)
long-run low gray-level emphasis, 50) long-run high gray-level emphasis, 51) gray-level variance, 52) run-length variance

13

GLSZM 53) Small zone emphasis, 54) large zone emphasis, 55) gray-scale non-uniformity, 56) zone-size non-uniformity, 57) zone percentage, 58) low
gray-level zone emphasis, 59) high gray-level zone emphasis, 60) small zone low gray-level emphasis, 61) small zone high gray-level emphasis,
62) large zone low gray-level emphasis, 63) large zone high gray-level emphasis, 64) gray-level variance, 65) zone-size variance

13

NGTDM 66) Coarseness, 67) contrast, 68) busyness, 69) complexity, 70) strength 5

wavelet
features

The 70 features after wavelet transform are completely consistent with those in the table above, except that they correspond to four sub-bands
with different frequencies.

280

Total number of all features: 350
fron
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research, a large number of features either have multicollinearity

or have little effect on classification, which need to be eliminated

in our subsequent research; that is, sparse models need to be

generated. For this reason, we choose the Least Absolute

Shrinkage and Selection Operator (LASSO) logistic regression

algorithm as our feature selection method (19). In our paper,

LASSO is used for initial feature selection. Since three types of

features are extracted from the RF signal, the feature dimension

of each case is high. For classification, some features are

redundant and not conducive to the final classification

decision. Therefore, the classical LASSO regression is used for

initial feature selection, and the features with high redundancy

and little contribution to classification have been removed.

LASSO is a contraction estimation method based on the idea

of feature dimension reduction, and it obtains a relatively refined

model by constructing a penalty function. Using it to compress

some coefficients, while setting some coefficients to zero, retains

the advantage of subset shrinkage and is a biased estimate for

dealing with complex collinear data.

The statistical correlation between some of our proposed

features is fairly high. For example, the correlation coefficient of

S1 and S5 is 0.91 in our dataset, and this is due to the fact that

both of these values are highly affected by the pattern of the low-

frequency band of the spectrum. That is why we choose LASSO

regression as a feature selection method to avoid the curse

of dimensionality.
Classification and validation

We use the support vector machine (SVM) for classification

based on the proposed features and use 10-fold cross-validation

for examining the classification performance of the SVM. In the

10-fold cross-validation strategy, we repeat the 10-fold cross-

validation process 50 times, each time with a different

partitioning of the data in 10 parts. We report the mean and

standard deviation of the outcomes of these 50 trials. After

obtaining the probability that the input data belong to a certain

class, these predicted probabilities are arranged from small to
Frontiers in Oncology 05
large, and then the classification threshold is set to different

probability values in the [0, 1] interval and the sensitivity and

specificity calculated at this time. Values of sensitivity plotted

versus specificity create the ROC curve.
Results

Patient baseline information

We collected the clinical data from the Ultrasound

Department, Peking University Third Hospital. The total 71

cases included 42 malignant cases and 29 benign cases. We

counted the baseline information of all cases, which includes age,

PSA information, and TRUS information. The statistical results

are presented in Table 2.
Study results

Table 3 illustrates the statistical differences of the intercept,

slope, and average value of five-spectral-feature band in ROIs

belonging to benign and malignant classes. Except for the slope

and intercept, each sub-band takes five identical features. It is

inconvenient to list all 37 features here, so the average value of all

sub-bands is taken for these five features. Because the sample size

of the data is small (<100), here we choose the T-test to prove the

statistical significance. The smaller the P-value, the higher the

possibility of a difference between benign and malignant classes.

When the P-value is less than 0.05, there is a significant

statistical difference between them. According to the table, the

overall best feature appears to be the three-dimensional feature

vector of signal power, spectral flatness, and crest factor. The P-

value of the intercept is extremely close to 0.01, whereas the P-

value of the spectral bandwidth is significantly higher than 0.01.

For texture features, as the number of extracted features reaches

as many as several hundred, only the final filtered features can be

statistically analyzed. The selected texture features are as follows:

DEA—histogram energy, histogram kurtosis, gray-level
TABLE 2 Baseline information of all 71 cases.

Demographic or clinical characteristic Average value (std) P-value

Malignant Benign

Age (year) 70.29±8.16 67.43±8.89 0.196

tPSA 24.32±26.44 14.26±11.93 0.063

fPSA 3.43±5.22 2.66±4.03 0.528

TRUS transverse diameter (cm) 4.87±0.98 5.41±0.82 0.024

TRUS vertical diameter (cm) 4.27±0.96 5.01±1.31 0.015

TRUS anteroposterior diameter (cm) 3.59±0.86 4.29±1.19 0.011

Prostate volume (cm3) 44.20±44.65 68.22±49.36 0.051
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concurrence matrix (GLCM) sum variance; NDM—histogram

entropy, GLCM homogeneity, neighborhood gray-tone

difference matrix (NGTDM) contrast; RF-I—histogram mean,

histogram skewness, histogram kurtosis. The normalized feature

value of these features is presented in Figures 1–3.

Table 4 shows the classification results. The ROC curve for a

set of features is illustrated in Figure 4. However, it should be

noted that although we successfully detected the examined

cancerous ROIs in all cases, the false-positive rate is relatively

low (specificity of 79.7%). The relatively low specificity of the

results might be an indication of insufficient training of the

classifier on the benign data that can potentially be addressed by

increasing the number of benign ROIs. Moreover, it should be

noted that an alternative theory explains that the low specificity

is the presence of “different types of benign tissue” in the

prostate. It is a well-known fact that prostate tissue can exhibit

benign histological variations (including but not limited to

benign prostatic hyperplasia). These conditions are specifically

common in patients with prostate cancer and are characterized
Frontiers in Oncology 06
by cellular microstructures that do not match either normal or

cancerous classes.

In order to verify the accuracy of our selection of SVM as the

classification method, we select SVM, random forest, and K-

nearest neighbor as the classification methods and compared the

final classification results. The comparison results are shown in

Figure 5. The results show that the AUC of SVM, random forest,

and K-nearest neighbor classification results are 0.842, 0.825 and

0.785, respectively. The comparison results show that SVM is

still the best classification method for small samples, whereas

random forest and K-nearest neighbors, which are better at

dealing with high-dimensional data and multi-classification

problems, perform slightly worse.

In this part, we compare our method with others. In

Khojaste and Imani’s paper (7), we use their features

presented in their paper for our data; the comparison of the

results is presented in Figure 6 and Table 5. Compared with their

frequency domain features, wavelet transform features and

traditional texture features comprehensively reveal more
TABLE 3 T-test results to prove the statistical significance between malignant and benign classes.

Parameter Average value (std) P-value T value

Malignant Benign

Intercept 0.21±0.048 0.19±0.03 0.010 -3.390

Slope -0.26±0.06 -0.24±0.04 0.049 1.987

Signal power 258.4±10.06 223.6 ± 9.85 <0.010 -5.268

Spectral centroid (MHz) 4.24±0.57 4.35 ± 0.74 0.034 1.259

Spectral bandwidth (MHz) 2.61 ± 0.24 2.53 ± 0.31 0.065 2.027

Spectral flatness 0.87 ± 0.09 0.68 ± 0.07 <0.010 -4.812

Crest factor 1.96 ± 0.34 1.72 ± 0.25 <0.010 -3.681
front
FIGURE 1

Normalized feature value of features selected from the feature map direct energy attenuation diagram (DEA).
iersin.org
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tumor tissue details. Therefore, our feature amount is evidently

more than theirs. Furthermore, our classification results are

slightly better than theirs. Because of the algorithm’s

complexity and time consumption, our method could still be

used to accurately characterize prostate cancer and distinguish

benign and malignant tumors.

In Zheng and Lin’s study (18), we used all their features with

our data for comparison of results, and the comparison of the

results is presented in Figure 6 and Table 5. The frequency

domain and FD of ultrasound RF time-series signals are

parameters that reflect the complexity, roughness, and

irregularity of the tissue surface, which may overlap with

traditional gray-scale ultrasound imaging in identifying tissues.

However, compared with our texture and wavelet features, the
Frontiers in Oncology 07
time-domain features’ statistic difference between benign and

malignant tissues is not significant, which may be the main

reason for lower results compared with ours.
Discussion

This study aims to detect prostate cancer based on the

ultrasound RF signal, utilizing low-dimensional features in the

frequency domain and high-throughput features in the spatial

domain. For each patient, we extracted 37 spectral features in

the frequency domain and extracted a total of 1,050 features

(included histogram features, texture features, and wavelet
FIGURE 2

Normalized feature value of features selected from the feature map Nakagami distribution mean diagram (NDM).
FIGURE 3

Normalized feature value of features selected from the feature map RF signal skewness intensity diagram (RF-I).
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features) from three ultrasound feature maps (DEA, NDM, RF-

I) in the spatial domain. After using LASSO as the feature

selection method, we used SVM for classification based on the

proposed features and use 10-fold cross-validation for

examining the classification performance of the SVM. In the

results section, a T-test for spectral features showed that there

is a significant statistical difference between these spectral

features. Signal power, spectral flatness, and the crest factor

are the overall best feature vector. With the use of SVM and 10-

fold strategy classification, the selected features provide a
Frontiers in Oncology 08
diagnostic method with the area under the ROC curve of

0.84 and accuracy of 0.82.

Compared with Khojaste and Imani’s paper (7), both

papers have extracted spectral features, but the feature

amount of theirs (60 spectral features) is much less than

ours. However, with the utilization of wavelet transform

features and traditional texture features, our features could

comprehensively reveal more tumor tissue details. Thus, our

classification performance is better in comparison with theirs

(AUC: 0.8, ACC: 0.78). Compared with Zheng and Lin’s study
TABLE 4 The classification results of different feature sets.

AUC (std) ACC (std) SENS (std) SPEC (std)

All features 0.842 (0.12) 0.821 (0.08) 0.808 (0.06) 0.797 (0.04)

DEA 0.720 (0.09) 0.691 (0.06) 0.662 (0.08) 0.696 (0.07)

NDM 0.748 (0.07) 0.702 (0.06) 0.684 (0.09) 0.725 (0.06)

RF-I 0.703 (0.12) 0.659 (0.04) 0.621 (0.06) 0.608 (0.03)

Intercept 0.639 (0.08) 0.605 (0.03) 0.616 (0.03) 0.598 (0.04)

Slope 0.608 (0.09) 0.583 (0.08) 0.596 (0.04) 0.562 (0.06)

Signal power 0.757 (0.10) 0.714 (0.05) 0.725 (0.06) 0.701 (0.06)

Spectral centroid 0.708 (0.09) 0.682 (0.06) 0.679 (0.05) 0.654 (0.05)

Spectral bandwidth 0.712 (0.08) 0.695 (0.09) 0.662 (0.05) 0.687 (0.07)

Spectral flatness 0.749 (0.11) 0.726 (0.06) 0.704 (0.04) 0.716 (0.06)

Crest factor 0.732 (0.13) 0.708 (0.05) 0.717 (0.05) 0.689 (0.07)
f

FIGURE 4

ROC curve acquired using the selected feature vector along with an SVM classifier. The blue line represents the ROC curve acquired using all
features we have extracted and selected, the green line represents the ROC curve acquired using the features extracted from the NDM feature map,
the black line represents the ROC curve acquired using the features extracted from the DEA feature map, the orange line represents the ROC curve
acquired using the features extracted from the RF-I feature map, and the red line represents the ROC curve acquired using the spectral features.
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FIGURE 6

ROC curve acquired using our features and Khojaste and Imani’s features. The blue line represents the ROC curve acquired using our features;
the red line represents the ROC curve acquired using Khojaste and Imani’s features; the green line represents the ROC curve acquired using
Zheng and Lin’s features.
FIGURE 5

Comparison of classification results of three classification methods.
TABLE 5 The classification results of our features and Zheng and Imani’s features.

AUC (std) ACC (std) SENS (std) SPEC (std)

Our features 0.842 (0.12) 0.821 (0.08) 0.808 (0.06) 0.797 (0.04)

Khojaste, Imani et al. (7) 0.809 (0.07) 0.785 (0.07) 0.721 (0.09) 0.796 (0.06)

Zheng, Lin et al. (18) 0.796 (0.09) 0.784 (0.10) 0.759 (0.05) 0.742 (0.08)
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(18), they extracted FD features in addition to time domain

features and frequency domain features, having good

sensitivity and specificity for identifying cervical cancer.

However, as to our data, no statistically significant

differences about the FD features were found among benign

and malignant cases with different degrees of differentiation.

This may indicate that the FD features are not effective enough

for identifying prostate cancer; also, the FD feature is also a

kind of texture feature, which may overlap with our extracted

texture features.

Currently, conventional B-mode ultrasound is the standard

means of imaging the prostate for guiding prostate biopsies and

planning radiotherapy. Yet, B-mode images essentially do not

allow visualization of cancerous lesions of the prostate. Our

paper provides a non-invasive method to detect prostate cancer

and makes full use of the original RF signal information missing

from the B-mode ultrasound, providing a reliable reference for

clinicians to identify prostate cancer.

However, since there is no gold standard for pathological

areas in the ultrasound gray-scale images of the original data

provided by the hospital, and the position of the probe in some

gray-scale images is extremely inconspicuous, it is difficult to

obtain accurate ROI, so this study sets a square in the

parenchymal region of the prostate near the needle as ROI

without a precise ROI outline, which may lead to poor results.

Therefore, we plan to discover accurate ROI outline methods in

subsequent research to further improve the results. Furthermore,

the amount of case data in this study is not enough, and follow-

up work will further collect data to enhance the stability of

the results.
Frontiers in Oncology 10
Data availability statement

The original contributions presented in the study are

included in the article/supplementary material. Further

inquiries can be directed to the corresponding authors.

Author contributions

TX, QW and JY contributed to conception and design of the

study. WS and LC organized the database. TX wrote the first

draft of the manuscript. TX, JY, and GW contributed to

manuscript revision, read, and approved the submitted version.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. Fan Y-T, Zhao HC. Key points of the update of the 2020 European
society of urology guidelines for the treatment of prostate cancer. Chin J
Endomorphic Urol (Electronic Version) (2020) 14(6):404–. doi: 10.3877/
cma.j.issn.1674-3253.2020.06.001

2. Li X, Zeng X Y. Progress in the epistemology of prostate cancer in China.
Cancer Res Prev Treat (2021) 48(1):5. doi: 10.3971/j.issn.1000-8578.2021.20.0370

3. McNeal JE, Redwine EA, Freiha FS, Stamey TA. Zonal distribution of
prostatic adenocarcinoma - correlation with histologic pattern and direction of
spread. Am J Surg Pathol (1988) 12(12):897–906. doi: 10.1097/00000478-
198812000-00001

4. Giannini V, Vignati A, Mazzetti S, De Luca M, Bracco C, Stasi M, et al. A
prostate cad system based on multiparametric analysis of dce T1-W, and dw
automatically registered images. In: Conference on Medical Imaging - Computer-
Aided Diagnosis; 2013 Feb 12-14; Lake Buena Vista (2013).

5. Peng YH, Jiang YL, Yang C, Brown JB, Antic T, Sethi I, et al. Quantitative
analysis of multiparametric prostate Mr images: Differentiation between prostate
cancer and normal tissue and correlation with Gleason score-a computer-aided
diagnosis development study. Radiology (2013) 267(3):787–96. doi: 10.1148/
radiol.13121454

6. Khan FA, Laniado ME, Holloway B, Kaisary A. Mri is too insensitive to
stage early prostate cancer. Eur Urol Suppl (2003) 2(1):76. doi: 10.1016/s1569-9056
(03)80300-7

7. Khojaste A, Imani F, Moradi M, Berman D, Siemens DR, Sauerberi EE, et al.
Characterization of aggressive prostate cancer using ultrasound Rf time series.
Computer-aided diagnosis (CAD). In: Conference at the SPIE Medical Imaging
Symposium, 2015 Feb 22-25 Orlando, FL (2015).

8. Feleppa EJ, Ketterling JA, Kalisz A, Urban S, Scardino PJ. Prostate imaging
based on Rf spectrum analysis and nonlinear classifiers for guiding biopsies and
targeting radiotherapy. Proc Spie Int Soc Optical Eng (2001) 4325:371–9.
doi: 10.1117/12.428213

9. Lin C, Zou B, Zhou J. Classification of benign and malignant lesions of breast
lesions based on ultrasound radio frequency time series analysis. J Biomed Eng Res
(2018). 37:21–6. doi: 10.19529/j.cnki.1672-6278.2018.01.05

10. Moradi M, Mousavi P, Boag AH, Sauerbrei EE, Abolmaesumi P.
Augmenting detection of prostate cancer in transrectal ultrasound images using
svm and Rf time series. IEEE Trans Biomed Eng (2009) 56(9):2214–24.
doi: 10.1109/TBME.2008.2009766

11. Moradi M, Abolmaesumi P, Siemens R, Sauerbrei E, Isotalo P, Boag A, et al.
P6c-7 ultrasound Rf time series for detection of prostate cancer, in: Feature
Selection and Frame Rate Analysis; IEEE Ultrasonics Symposium (2007).

12. Karimi D. Spectral and bispectral analysis of awake breathing sounds for
obstructive sleep apnea diagnosis. Master's Thesis. Winnipeg, Canada: University of
Manitoba (2013).

13. Tsui PH, Chang CC. Imaging local scatterer concentrations by the nakagami
statistical model. Ultrasound Med Biol (2007) 33(4):608–19. doi: doi.org/10.1016/
j.ultrasmedbio.2006.10.005

14. Destrempes F, Meunier J, GirouxMF, Soulez G, Cloutier G. Segmentation in
ultrasonic b-mode images of healthy carotid arteries using mixtures of nakagami
frontiersin.org

https://doi.org/10.3877/cma.j.issn.1674-3253.2020.06.001
https://doi.org/10.3877/cma.j.issn.1674-3253.2020.06.001
https://doi.org/10.3971/j.issn.1000-8578.2021.20.0370
https://doi.org/10.1097/00000478-198812000-00001
https://doi.org/10.1097/00000478-198812000-00001
https://doi.org/10.1148/radiol.13121454
https://doi.org/10.1148/radiol.13121454
https://doi.org/10.1016/s1569-9056(03)80300-7
https://doi.org/10.1016/s1569-9056(03)80300-7
https://doi.org/10.1117/12.428213
https://doi.org/10.19529/j.cnki.1672-6278.2018.01.05
https://doi.org/10.1109/TBME.2008.2009766
https://doi.org/doi.org/10.1016/j.ultrasmedbio.2006.10.005
https://doi.org/doi.org/10.1016/j.ultrasmedbio.2006.10.005
https://doi.org/10.3389/fonc.2022.946965
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xiao et al. 10.3389/fonc.2022.946965
distributions and stochastic optimization. IEEE Trans Med Imaging (2009) 28
(2):215–29. doi: 10.1109/TMI.2008.929098

15. Ho MC, Lin JJ, Shu YC, Chen CN, Chang KJ, Chang CC, et al. Using
ultrasound nakagami imaging to assess liver fibrosis in rats. Ultrasonics (2012) 52
(2):215–22. doi: 10.1016/j.ultras.2011.08.005

16. Nan YM, Yao XX, Guo RJ. Study on ultrasonic backscattering integral of
fatty liver in rabbit. In: The 12th National Academic Conference of Viral Hepatitis
and liver Disease of Chinese Medical Association (2005).
Frontiers in Oncology 11
17. Lizzi FL, Greenebaum M, Feleppa EJ, Elbaum M, Coleman DJ. Theoretical
framework for spectrum analysis in ultrasonic tissue characterization. J Acoustical
Soc America (1983) 73(4):1366–73. doi: 10.1121/1.389241

18. Zheng QQ, Lin CY, Xu D, Zhao HC, Song M, Ou D, et al. A preliminary
study on exploring a potential ultrasound method for predicting cervical cancer. J
Cancer (2022) 13(3):793–9. doi: 10.7150/jca.60413

19. Sauerbrei W, Royston P, Binder H. Selection of important variables and
determination of functional form for continuous predictors in multivariable model
building. Stat Med (2007) 26(30):5512–28. doi: 10.1002/sim.3148
frontiersin.org

https://doi.org/10.1109/TMI.2008.929098
https://doi.org/10.1016/j.ultras.2011.08.005
https://doi.org/10.1121/1.389241
https://doi.org/10.7150/jca.60413
https://doi.org/10.1002/sim.3148
https://doi.org/10.3389/fonc.2022.946965
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xiao et al. 10.3389/fonc.2022.946965
Appendix

The detailed introduction of radiomics features

The histogram features (also called first-order histogram

features) describe features associated with the distribution of pixel

intensities within the ROI, excluding their spatial interaction, and

can be calculated by histogram analysis. These features can reflect

the symmetry, uniformity, and local intensity distribution of the

measured pixels. It usually includes some basic statistical features,

including mean, median, minimum, maximum, standard deviation,

skewness, and kurtosis. However, depending on the actual task,

further complex statistical features can be designed.

The texture features (also called second-order histogram

features) describe the intensity level of pixel spatial distribution.

Image texture refers to the spatial variation that can be perceived or

measured at the intensity level. It is regarded as a gray level, which

is a visual perception of the synthesis of image local features. It

includes gray-level co-occurrence matrix (GLCM), gray-level run-

length matrix, GLRLM), gray-level size zone matrix (GLSZM), and

neighborhood gray-tone difference matrix (NGTDM). GLCM is a

matrix whose row number represents the gray value and cells
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contain the number of times the gray value is in a certain

relationship (angle, distance), also known as the second-order

histogram. The features computed on GLCM include entropy

(second-order entropy, related to heterogeneity), energy (also

defined as angular second moments, again describing image

uniformity), contrast (its measure of local variation),

homogeneity (a measure of image local gray-level equilibrium),

dissimilarity, and correlation. The GLRLM is used to describe the

number of consecutive neighbors j of a pixel value i of an image

along a certain direction q. A value in GLRLM is denoted as D(i,

j,q), where i is the pixel value or gray value, j is the continuous

adjacent number, q is the angle or direction, and generally the

values of q are 0°, 45°, 90°, and 135°. GLSZM is a matrix where the

elements at the rows and columns store the number of regions with

grayscale levels and sizes (connected pixels with the same grayscale

level). GLSZM includes features that describe the distribution of

small/large areas and low/high gray areas. NGTDM, whose ith

term is the sum of the differences between the average values of all

pixels with gray tone i and their surrounding pixels. The radiomics

features of NGTDM include roughness, contrast, redundancy,

complexity, and texture intensity.
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