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Development and validation of a
novel hypoxia-related signature
for prognostic and
immunogenic evaluation in
head and neck squamous
cell carcinoma

Su-Ran Li1, Qi-Wen Man1,2* and Bing Liu1,2*

1The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key
Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan
University, Wuhan, China, 2Department of Oral Maxillofacial Head Neck Oncology, School and
Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
Hypoxia plays a critical role in head and neck squamous cell carcinoma

(HNSCC) prognosis. However, till now, robust and reliable hypoxia-related

prognostic signatures have not been established for an accurate prognostic

evaluation in HNSCC patients. This article focused on establishing a risk score

model to evaluate the prognosis and guide treatment for HNSCC patients.

RNA-seq data and clinical information of 502 HNSCC patients and 44 normal

samples were downloaded from The Cancer Genome Atlas (TCGA) database.

433 samples from three Gene Expression Omnibus (GEO) datasets were

incorporated as an external validation cohort. In the training cohort,

prognostic-related genes were screened and LASSO regression analyses

were performed for signature establishment. A scoring system based on

SRPX, PGK1, STG1, HS3ST1, CDKN1B, and HK1 showed an excellent

prediction capacity for an overall prognosis for HNSCC patients. Patients

were divided into high- and low-risk groups, and the survival status of the

two groups exhibited a statistically significant difference. Subsequently, gene

set enrichment analysis (GSEA) was carried out to explore the underlying

mechanisms for the prognosis differences between the high- and low-risk

groups. The tumor immune microenvironment was evaluated by CIBERSORT,

ESTIMATE, TIDE, and xCell algorithm, etc. Then, we explored the relationships

between this prognostic model and the levels of immune checkpoint-related

genes. Cox regression analysis and nomogram plot indicated the scoring

system was an independent predictor for HNSCC. Moreover, a comparison

of predictive capability has been made between the present signature and
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existing prognostic signatures for HNSCC patients. Finally, we detected the

expression levels of proteins encoded by six-HRGs via immunohistochemical

analysis in tissue microarray. Collectively, a novel integrated signature

considering both HRGs and clinicopathological parameters will serve as a

prospective candidate for the prognostic evaluation of HNSCC patients.
KEYWORDS

head and neck squamous cell carcinoma, hypoxia, The Cancer Genome Atlas, Gene
Expression Omnibus, tumor microenvironment, prognostic signature
Introduction

Head and neck squamous cell carcinoma (HNSCC) ranks

sixth among malignant tumors worldwide, with 930,000 new

cases in 2020 (1, 2). The incidence of HNSCC keeps rising and is

expected to increase by 30% by 2030 (3). HNSCC makes up over

90% of head and neck cancers, and excessive consumption of

alcohol and tobacco has been widely recognized as a leading risk

factor (1). Over the past decades, although great progress has

been made in multidisciplinary therapy, the 5-year overall

survival rate of locally advanced HNSCC patients remains

around 50% (4–6). Given the growing incidence and poor

prognosis of HNSCC, better prognostic tools that allow

accurate prediction of tumor progression are an urgent

necessity to tailor comprehensive management strategies for

HNSCC patients.

In recent decades, a rising number of researches have shown

that the tumor microenvironment (TME) was closely related to

prognosis in multiple types of cancer, such as HNSCC (7), breast

cancer (8), and pancreatic cancer (9). Hypoxic TME is a

common feature of solid tumors (10). Hypoxic TME is formed

because of excessive metabolism of tumor cells and insufficient

oxygen supply compared to under physiological conditions.

Hypoxia induces the formation of tumor heterogeneity and

promotes the acquisition of more aggressive characteristics

(11). Substantial data suggest that hypoxic TME participates in

tumorigenesis, angiogenesis, immunosuppression, cancer

progression, and treatment resistance due to hypoxic changes

and increased tumor heterogeneity (12, 13).

In addition, studies have reported that hypoxia played a

crucial role in reprogramming the tumor immune

microenvironment (TIME) (14). The hypoxia-induced

acidification of TME impairs the proliferation and resultant

anti-tumor immune responses of T cells. Collectively, hypoxic

TME indicates an unfavorable prognosis (15). Given that

hypoxia is actively involved in tumor progression, an HRG-

based signature can enrich our knowledge of potential molecular

mechanisms and survival evaluation for HNSCC patients.
02
To date, the TNM staging criterion has been recognized as

an authorized system for the evaluation of survival outcomes

and a well-acknowledged guideline for the development of

treatment regimens (16). However, the TNM evaluation

system only considers the macroscopic indicators of the

tumor, including size, and lymph node metastasis, coupled

with distant metastasis, although intra-tumoral heterogeneity

is closely associated with patient prognosis. Additionally, the

TNM system could not achieve a prediction prognosis in an

accurate and individualized manner. Therefore, a novel

prognostic tool is in pressing need for earlier diagnosis and

treatment of HNSCC patients (17).

In this study, we constructed a novel and powerful

prognostic signature for HNSCC patients by combining

hypoxia-related genes (HRGs) expression profiles and patients’

information from The Cancer Genome Atlas (TCGA). Next, we

constructed a six-HRG prognostic signature by Cox regression

and LASSO regression analyses. The prediction capacity of the

HRG-based signature was further validated in GSE65858,

GSE41613, and GSE85446 from the Gene Expression Omnibus

(GEO) database. Then, we validated that the HRG-based

prognostic model was an independent evaluation indicator for

HNSCC patients. Furthermore, multiple methods were

employed to analyze the relationships between the prognosis

and TIME in HNSCC patients. Finally, the protein levels of six

HRGs were validated in 127 HNSCC patients and 28 normal

cases. In conclusion, we aimed to adopt a systematic and holistic

analysis strategy to construct a robust prognostic model based

on six HRGs, which could efficiently assess the survival

outcomes for HNSCC patients.
Materials and methods

Patients and datasets

RNA-seq data of 546 samples, including 502 tumor tissues

and 44 normal tissues, and corresponding clinicopathological
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data were obtained from TCGA database (18). Fragments per

kilobase million (FPKM) values were employed in the following

analyses. The demographic parameters of the HNSCC patients

were given in Table 1. RNA-seq data of 433 HNSCC samples

(GSE65858, GSE41613, and GSE85446) and the clinical data

were obtained from the GEO database (https://www.ncbi.nlm.

nih.gov/geo/). In addition, 127 tumor samples were collected

from HNSCC patients who underwent surgery at the

Department of Oral Maxillofacial Head and Neck Oncology of

the Hospital of Stomatology of Wuhan University from 2017.2

to 2018.7. All patients in this study provided informed consent

before surgery. The Ethics Committee of School & Hospital of

Stomatology, Wuhan University approved this study (IRB-ID:

2021B56). The samples from TCGA included 44 normal tissues

and 502 tumor tissues in this study. The RNA-seq data and

clinical information were processed using R (version 4.0.4).

Protein-coding genes were annotated and classified using the

Ensemble human genome browser GRCh38.p13 (http://asia.

ensembl.org/index.html) (19). patients with incomplete

prognostic information were excluded from our study.
Differentially expressed hub HRGs

The differential expression of HRGs between HNSCC

patients and the control group was determined by the “limma”

package, with the cut-off value of |log2 fold change| > 1 and false

discovery rate < 0.05. Gene Ontology (GO) and gene set

enrichment analysis (GSEA) enrichment analyses were

performed using the “clusterprofiler” package to explore the

underlying molecular mechanisms of these hub HRGs. The

“ggplot2” and “GOplot” packages in R software were

employed to visualize GO and GSEA analyses results.
Establishment of the prognostic HRG-
based signature

Univariate Cox regression analysis was performed to screen

prognosis-related HRGs using the “survival” package. P-value <

0.001 was considered an enormous significant difference. The

samples from TCGA were divided randomly into two cohorts,

the training cohort (n=251) and the validation cohort (n=248).

Univariate Cox analysis was utilized to identify prognosis-

associated HRGs. LASSO Cox regression analysis was

performed using the “glmnet” tool in the R package to

construct a prognostic signature using survival-related HRGs

in the training cohort. Risk scores were calculated using the

obtained coefficients and corresponding expression levels (risk

score = S relative expression (mRNAs) * coefficient).

Subsequently, HNSCC patients were divided into high- and

low-risk groups based on the median risk score. By using the
Frontiers in Oncology 03
R package “survival”, Kaplan–Meier survival analysis and a log-

rank test were performed to evaluate the association between

each HRG and patient survival.
Evaluation of the prognostic value of the
HRG-based signature

Patients were assigned to the high- and low-risk groups

based on the median score for the six-HRG signature. Next, we

conducted Kaplan–Meier survival analysis to assess the

association between HRG-based prognostic signature and

patient survival in the validation cohort. The three GEO

datasets were employed as an external validation cohort to

assess the predictive value of the six-HRG signature.

Furthermore, univariable and multivariable Cox regression

analyses with comprehensive clinicopathological information

were utilized to test whether the present signature was an

independent factor.
Evaluation of infiltrating immune cells,
immune score, and stromal score

TIMER, MCP-count, EPIC, quanTIseq, and xCell

algorithms were used to analyze the relative abundance of

infiltrating immune cells in each HNSCC patient. Next, a

Wilcoxon test was employed to assess the differences in the

degree of immune cell infiltration between the high- and low-

risk groups, and visualized by the “fmsb” package. ESTIMATE

algorithm was applied for the evaluation of the cell abundance

within TME and then calculated the Immune Score, Stromal

Score, and ESTIMATE Score based on the gene expression of

high- and low-risk groups (20).
Evaluation of immunotherapy

Moreover, for further analysis of the relationship between

the TME and immunotherapy efficiency, we selected a panel of

critical immune checkpoint molecules to explore the

expression of these candidates in high- and low-risk groups

and then evaluate potential treatment responses. The

responses to immune checkpoint inhibitors (ICI) were

evaluated by the Cancer Immunome Database. The

differences between the two groups were discovered using

the Wilcoxon test.
Genetic alteration among subgroups

Mutation data of HNSCC patients was obtained from TCGA

database. The top 20 genes with the highest mutation frequency
frontiersin.org
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TABLE 1 Demographic data from TCGA patients.

High Risk Low Risk

N % N %

Age (Years) 260 239

≥60 279 157 60.4 122 51.0

<60 220 103 39.6 117 49.0

Gender

Male 366 180 69.2 186 77.8

Female 133 80 30.8 53 22.2

Grade

1 61 30 11.5 31 13.0

2 298 167 64.2 131 54.8

3 119 56 21.6 63 26.4

4 2 0 0.0 2 0.8

X 16 6 2.3 10 4.2

Unknown 3 1 0.4 2 0.8

Stage

1 25 11 4.2 14 5.9

2 79 42 16.2 37 15.5

3 89 39 15.0 50 20.9

4A 287 159 61.1 128 53.6

4B 13 7 2.7 6 2.5

4C 3 1 0.4 2 0.8

Unknown 3 1 0.4 2 0.8

T

0 1 0 0.0 1 0.4

1 47 16 6.2 31 13.0

2 148 72 27.7 76 31.8

3 114 62 23.8 52 21.8

4 184 108 41.5 76 31.8

X 4 1 0.4 3 1.2

Unknown 1 1 0.4 0 0.0

M

0 484 250 96.2 234 98.0

1 4 3 1.1 1 0.4

X 11 7 2.7 4 1.6

N

0 212 118 45.4 94 39.3

1 75 30 11.5 45 18.8

2 197 104 40.0 93 38.9

3 9 5 1.9 4 1.7

X 5 2 0.8 3 1.3

Unknown 1 1 0.4 0 0.0

Race

AI/AN 2 0 0.0 2 0.8

Asian 10 6 2.3 4 1.7

Black 47 22 8.5 25 10.5

White 426 224 86.1 202 84.5

Unknown 14 8 3.1 6 2.5

HPV

(Continued)
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were identified. Oncoplots were sketched in the high- and low-

risk groups by “maftools” package.
Validation of independence and forecast
efficiency of prognostic signature

To determine whether the HRG-based prognostic signature

could be an independent tool for HNSCC patients, univariate

and multivariate Cox regression analyses were employed, with

age, gender, stage, T stage, N stage, M stage, and risk score as

variates. Then, we developed a nomogram based on risk score

and clinical indicators to evaluate the survival probability of 1-,

3-, and 5-year for HNSCC patients using the “rms,” “foreign,”

and “survival” packages.
Immunohistochemical (IHC) staining

We employed an HNSCC tissue microarray, which contains

28 oral mucosa tissues, 13 atypical hyperplasia tissues, and 127

HNSCC tissues to further confirm the relationship between

genes, prognosis, and clinical features. Antibodies of SRPX

(A1217, Wuhan, Abclonal), PGK1 (17811-1-AP, Wuhan,

Proteintech), STC1 (A6755, Wuhan, Abclonal), HS3ST1

(14358-1-AP, Wuhan, Proteintech), CDKN1B (25614-1-AP,

Wuhan, Proteintech), HK1 (19662-1-AP, Wuhan, Proteintech)

were used for IHC staining. IHC staining was carried out as we

previously described (21). In brief, the 4-mm sections were

dewaxed, rehydrated, antigen-retrieved, and blocked.

Subsequently, the sections were incubated with the primary

antibody at 4˚C overnight. Then corresponding second

antibodies were incubated. Subsequently, DAB staining and

Hematoxylin staining were performed. Finally, the sections
Frontiers in Oncology 05
were observed and scanned with a digital section scanner

(3DHISTECH, Hungary) and analyzed by ImageScope

software (Leica). The histoscore of each slide was calculated

according to the formula: (percentage of strong positive cells) ×

3 + (percentage of positive cells) × 2 + (percentage of weak

positive cells) × 1)/total cell number.
Statistical analysis

All data were analyzed by R software (version 4.0.4). P < 0.05

was determined as statistically significant. The independent

Student’s t-test for continuous data and the c2 test for

categorical data were employed for pairwise comparisons

between the two groups. The log-rank test was utilized to

compare two groups in Kaplan-Meier survival curves. The

Wilcoxon test was used to compare the abundance difference

of tumor-infiltrating immune cells in both groups.
Results

Identification of hypoxia-related genes

The whole research process was presented in Figure 1. 56,

753 genes were identified by analyzing the RNA-Seq data from

TCGA comprising 546 cases, including 502 cancer cases and

44 non-cancer cases. A total of 200 genes were screened as

HRGs. Then, Kaplan–Meier analysis was performed to

evaluate the relationship between single HRG and patient

survival. Results showed that prognostic evaluation for

HNSCC based on a single gene may be unstable, thus an

effective prognostic signature based on multiple genes

was necessary.
TABLE 1 Continued

High Risk Low Risk

N % N %

Unknown 397 216 83.1 181 75.7

Negative 72 39 15.0 33 13.8

Positive 30 5 1.9 25 10.5

Smoke

Yes 378 201 77.3 177 74.1

No 111 53 20.4 58 24.3

NA 10 6 2.3 4 1.6

Sample Type

Primary 499 260 100.0 239 100.0

Metastatic 0 0 0.0 0 0.0
frontiers
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Establishment of the predictive
six-HRG signature

200 HRGs in HNSCC patients were screened from the

Molecular Signatures Database (MSigDB version 6.0). 15

differentially expressed HRGs were considered to be

significantly related to the prognosis of HNSCC patients.

CDKN1B (HR: 0.976, 95% CI: 0.959−0.993, P = 0.006) and

CXCR4 were protective factors, and the other 13 HRGs were risk

factors (Figure 2A), such as HK1 (HR: 1.011, 95% CI: 1.004

−1.018, P = 0.003) and HS3ST1 (HR: 1.096, 95% CI: 1.026−1.170,

P = 0.007). LASSO regression analysis was conducted to

construct an excellent HRG-based prognostic model for

HNSCC patients (Figures 2B, C). Then, six HRGs (SRPX,

PGK1, STC1, HS3ST1, CDKN1B, and HK1) were selected

(Figure 2D). Among these selected HRGs, CDKN1B was

down-regulated, and other genes were the opposite in HNSCC

tissues compared to their counterparts in TCGA database. As
Frontiers in Oncology 06
expected, single gene-based model showed poor efficiency for

prognostic evaluation, such as SRPX (P = 0.113), STC1 (P =

0.648), CDKN1B (P = 0.076) (Figure 2E). In contrast, the

prognostic signature based on six HRGs exhibited more robust

evaluation efficiency.
Validation of the prognostic signature

HNSCC patients from TCGA were divided into a high-risk

group (n=260) and a low-risk group (n=239) based on the median

risk score. In the training cohort, the heatmap of 6 HRGs showed

a significantly higher expression of HK1, HS3ST1, PGK1, SRPX,

and STC1 in the high-risk group (Figure 3A). A scatterplot of

patient survival showed a significantly decreased survival time as

the risk score increased (Figure 3B). Survival rate was significantly

related to risk score in the training cohort (Figure 3C). Kaplan-

Meier survival analysis of the high-risk group and the low-risk
FIGURE 1

Flowchart of establishing a prognostic signature of head and neck squamous cell carcinoma in this study.
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group was performed in the training cohort (P < 0.001)

(Figure 3D). 1-year and 3-year survival ROC curves in the

training cohort were presented, and AUC values were 0.704 and

0.736, respectively (Figures 3E, F). The validation cohort was

applied to verify the accuracy of prognostic prediction. Heatmap
Frontiers in Oncology 07
of 6 HRGs (Figure 3G), scatterplot of patient survival (Figure 3H),

survival rate analysis (Figure 3I), Kaplan-Meier survival curves of

the high- and low-risk group (P = 0.003) (Figure 3J), as well as 1-

year and 3-year survival ROC curves (Figures 3K, L). Additionally,

to verify the evaluation capacity of the model, three external
A B

D

E

C

FIGURE 2

Construction of integrated risk score based on HRGs. (A) ALDOA, ANXA2, CDKN1B, CXCR4, HK1, HS3ST1, HSPAS, LDHA, LXN, P4HA1, PCK1,
PGK1, SRPX, STC1, and STC2 were significantly correlated with clinical prognosis in univariate Cox regression model. (B, C) The LASSO Cox
analysis identified six genes associated with prognosis. (D) SRPX, PGK1, STC1, HS3ST1, CDKN1B, and HK1 were differentially expressed between
normal tissues and HNSCC tissues. (E) Kaplan–Meier survival curves were plotted for each of the six genes to predict patient outcomes.
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A B

D E F

G IH

J K L

M N

C

O

FIGURE 3

Estimation of the prognostic model based on HRGs. (A) Heatmap of 6 HRGs in the training set. (B) Scatterplot of patient survival in the training
cohort. (C) Survival rate was significantly associated with risk score in the training cohort. (D) Kaplan-Meier survival curves of the high- and low-
risk groups in the training cohort. (E, F) ROC curves based on the risk score model in the training cohort. (G) Heatmap of 6 HRGs in the
validation cohort. (H) Scatterplot of patient survival in the validation cohort. (I) Survival rate was significantly associated with risk score in the
validation cohort. (J) Kaplan-Meier survival curves of the high-risk group and the low-risk group in the validation cohort. (K, L) ROC curve based
on the risk score model in the validation cohort. (M–O) External validation (GEO database) of an HRG-based prognostic signature.
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validation cohorts (GSE65858, GSE41613, GSE85446) were

integrated as a whole for 1-, 3-, and 5-year survival analyses.

ROC curves were plotted to evaluate the predictive value of the

prognostic signature. Expectedly, the AUC values of the 1-, 3-, and

5-year ROC curves were 0.696, 0.735, and 0.670, respectively

(Figures 3M–O), which supported our results that this model had

good accuracy for prognostic evaluation of HNSCC patients.

To explore whether the signature can serve as a clinically

independent prognostic factor for HNSCC patients, we

performed univariate and multivariate Cox regression analyses.

We found that age (HR: 1.034, 95% CI: 1.018-1.051, P < 0.001),

gender (HR: 0.614, 95% CI: 0.426-0.885, P = 0.009), clinical stage

(HR: 1.258, 95% CI: 1.025-1.544, P = 0.028), T stage (HR: 1.232,

95% CI: 1.034-1.470, P = 0.020), M stage (HR: 6.988, 95% CI:

2.192-22.275, P = 0.001), N stage (HR: 1.293, 95% CI: 1.073-

1.559, P = 0.007), and riskscore (HR: 1.080, 95% CI: 1.049-1.112,

P < 0.001) demonstrated excellent prognostic value in univariate

Cox regression analysis. Of these parameters, gender was the

only protective factor (Figure 4A). By contrast, in multivariate

Cox regression analysis, age (HR: 1.041, 95% CI: 1.023-1.059, P <

0.001), M stage (HR: 7.514, 95% CI: 2.278-24.788, P < 0.001), N

stage (HR: 1.381, 95% CI: 1.069-1.782, P = 0.013), and risk score

(HR: 1.087, 95% CI: 1.054-1.121, P < 0.001) could serve as

independent predictors for patients with HNSCC (Figure 4B).

Then, we incorporated these indicators with significant

prediction values, including age (P < 0.001), N stage (P <

0.001), M stage (P = 0.013), and risk score (P < 0.001), to

establish a nomogram model based on the entire cohort for

prognostic evaluation of HNSCC patients by combining this

model with other clinicopathological parameters, including age

and tumor stage. According to the total number of points in the

nomogram, we could offer an individualized and accurate risk

evaluation for HNSCC patients (Figure 4C). Results confirmed

that this signature could serve as a powerful and reliable tool for

the prognostic assessment of HNSCC patients. Finally, a

comparative analysis has been made to explore the differences

in prognostic evaluation between the present model and existing

prognostic models. Results demonstrated that AUC values of 1-

year (AUC=0.691), 3-year (AUC=0.677), and 5-year

(AUC=0.642) were higher than that of study by Yang C et al.

(AUC=0.433, 0.473, 0.475) (22), Zhao et al. (AUC=0.563, 0.586,

0.555) (23), and Wang H et al. (AUC=0.660, 0.631, 0.590)

(24) (Figure 4D).
Pathway enrichment analysis

GSEA analysis was conducted to uncover candidate

pathways involved in hypoxia. Results of the GSEA analysis

identified several pathways enriched in the high-risk group,

including DNA repair signaling pathways, E2F targets, G2M

checkpoint, hypoxia signaling, PI3K-AKT-mTOR signaling,
Frontiers in Oncology 09
etc. (Figure 5A). Pathways enriched in the high-risk group

were related to cell proliferation, such as DNA repair signaling

pathways, E2F targets, G2M checkpoint, and PI3K-AKT-

mTOR signaling. For example, members of the E2F family

are well-established candidates for the regulation of DNA

damage-response and checkpoint controls. Direct binding

between E2F and tumor suppressive molecules as well as

other genes has been found, which leads to the loss of gene

stability and then the formation of cancers (25). GO analysis

highlighted that HRGs with a statistical difference were

enriched in the regulation of the WNT signaling pathway,

synaptic cytoskeletal transport, chemoattractant activity,

CXCR chemokine receptor binding, and interleukin 1

receptor binding (Figure 5B). It was reported that hypoxia,

in lung cancer, activated the WNT signaling pathway by

increasing the stability of b-catenin and translocating it into

the nuclear to promote the expression of downstream target

genes in a HIF-2a-dependent manner. And subsequently, a

series of essential events, including cell migration, invasion as

well as colony formation were enhanced in the hypoxia

microenvironment (26). Chronic hypoxia elevated the

expression of CXCR1 and CXCR2 in prostate cancer cells

and then CXCRs promoted the secretion of IL-8. Activation of

IL-8 signaling was demonstrated to promote tumor growth

and progression, and on the other hand, blocking the IL-8

signaling pathway will improve treatment responsiveness (27).

Moreover, hypoxia was demonstrated to facilitate breast

carcinoma invasion by inhibiting glycogen synthase kinase

3b (GSK-3b) activity, increasing microtubule stability, and

regulating the microtubule-dependent trafficking of Rab11-

containing vesicles, and finally Rab11 targeted to the integrin

a6b4 to promote carcinoma cells migration (28). In short,

pathway enrichment analysis showed that hypoxia was closely

related to the growth and invasion of tumors, which

represented a poor prognosis.
The correlation between the prognostic
signature and genetic mutations

Next, gene mutation analysis was performed to gain in-

depth knowledge of the immunological characteristics of both

groups. We found a higher mutation frequency in the high-risk

group (P = 0.002). The missense mutation was the most

common among all mutation types, followed by the nonsense

mutation. We then presented the top 20 genes with the highest

mutation frequency in both groups. The mutation rates of

TP53, TTN, FAT1, CSMD3, MUC16, CDKN2A, and LRP1B

were over 15% in both groups, with TTN and TP53 genes being

the highest in both groups (Figure 6). Furthermore, the

mutation frequency of PIK3CA and FLG showed statistically

significant differences between the high- and low-risk groups
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(Table 2). PIK3CA is the most commonly mutated

oncogene in HNSCC and encodes a catalytic subunit of

phosphatidylinositol 3-kinase (PI3K). Overexpression of

PI3K can cause activation of the Akt/mTOR signaling
Frontiers in Oncology 10
pathway (29). Hyperactivation of PI3K/Akt/mTOR signaling

is often related to therapy resistance (30). In our research,

PIK3CA showed a higher mutation rate in the high-risk group,

indicating a poorer treatment response.
A B

D

C

FIGURE 4

An HRG-based signature as an independent prognostic model. (A, B) The univariate and multivariate Cox regression models indicated that the
risk score was an independent prognostic predictor for overall survival. (C) A nomogram to predict survival probability at 1-, 3‐, and 5‐year after
surgery for HNSCC patients based on the results deriving from the entire set. (D) ROC curves for different prognostic signatures. The AUC
values for the present signature of 1-year, 3-year, and 5-year were 0.691, 0.677, and 0.642, respectively, and these values were significantly
higher than another three existing models.
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Tumor immune landscape between low-
and high-risk HNSCC patients

Multiple algorithms were used to` estimate the TIME. We

used the CIBERSORT algorithm to analyze the abundance of

22 types of infiltrating immune cells in each HNSCC patient.

The abundance of 15 infiltrative immune cell types showed a

significant difference between the two groups. Specifically, the

infiltration levels of B cells naive, plasma cells, T cells CD8, T

cells CD4 memory activated, T cells follicular helper, T cells

regulatory, NK cells resting, Mast cells resting, etc. were

significantly lower in the high-risk group, whereas T cells CD4

memory resting, macrophages M1, dendritic cells activated,

mast cells activated, and neutrophils were the opposite

(Figure 7A). TIMER provides an open platform to assess the

abundance of infiltrating immune cells in TME (http://cistrome.

org/TIMER). Results showed that the abundance of B cells (P <

0.001) and CD8+ T cells (P = 0.001) were lower in the high-risk
Frontiers in Oncology 11
group (Figure 7B). Additionally, other algorithms were also used

to analyze the TIME, such as MCP-count (Figure 7C), EPIC

(Figure 7D), and quanTIseq (Figure 7E). Additionally, xCell

analysis showed that 13 out of 36 types of immune cells were

significantly different. B cells (P < 0.001), T cells CD4+ naïve (P =

0.004), T cells CD8+ naïve (P = 0.031), T cells CD8+ (P = 0.015),

cancer-associated fibroblasts (P < 0.001), neutrophils (P =

0.001), and B cells plasma (P = 0.001) were decreased in the

high-risk group (Figure 7F). The abundance of B cells exhibited a

consistent trend between the two groups (P < 0.05) in all the

above algorithms. These results further supported this six-HRG-

based prognostic signature as an excellent tool for profiling

immune cell infiltration in HNSCC patients.

Immune checkpoint genes (ICGs), such as CTLA-4 and PD-

1/PD-L1, have been considered potential targets for ICI therapy

(31). In our study, we explored the expression of 33 types of

ICGs (Figure 8A). The majority of ICGs exhibited lower

expression in patients in the high-risk group, such as LAG3,
A

B

FIGURE 5

Functional prediction of the HRG-based signature via GSEA. (A) The hallmark gene set was enriched between the high- and low-risk groups. (B)
The GO pathway set was enriched between the high- and low-risk groups.
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CD28, CTLA-4, etc. Downregulated expression of ICGs implied

fewer lymphocyte infiltration and poor prognosis (31).

Moreover, ESTIMATE serves as a method for the evaluation

of the abundance of stromal and immune cells in tumor tissues

(32). In our study, the risk score was negatively correlated with

ESTIMATE scores (P = 0.009) (Figure 8B) and the immune
Frontiers in Oncology 12
score (P = 0.00048) (Figure 8C), while the stromal score showed

no significant difference (P = 0.44) (Figure 8D), suggesting that

the lower the degree of immune cell infiltration, the higher the

risk score. In other words, the immune score and ESTIMATE

score can be powerful indicators for prognostic evaluation.

Interestingly, the TIDE score can be a good evaluation of the
A

B

FIGURE 6

Comparison of genetic mutations in the high- and low-risk group. (A) The top 20 most frequently mutated genes in the low-risk group. (B) The
top 20 most frequently mutated genes in the high-risk group.
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efficiency of ICI therapy (anti-PD1 and anti-CTLA4). A higher

TIDE score declares a greater chance of immune escape and a

lower ICI therapy reactivity (33). In this study, the Tide score

and Tide Dysfunction score were elevated in the high-risk group

(Figures 8E, F), with the Tide Exclusion score having no

significant difference (Figure 8G). The tumor mutation burden

(TMB) can be a helpful tool in predicting responses to ICI

therapy (34). Patients in the high-risk group showed a higher

TMB score (P = 0.0032) (Figure 8H). These results demonstrated

that patients in the high-risk group may show poor responses to

ICI therapy.
External validation of the expression of
the six HRGs in HNSCC samples

Next, we utilized IHC staining to detect the expression of the

proteins encoded by the six HRGs in HNSCC samples.

According to the formula (risk score = S relative expression

(mRNAs) * coefficient), we calculated the risk score for each

specimen, and the high- and low-risk groups were divided based

on the median. SRPX, PGK1, STC1, HS3ST1, HK1, and

CDKN1B were chosen as candidates, and their expressions in

both groups were presented. Compared with tissues of the low-

risk group, the relative protein levels of SRPX, PGK1, STC1,

HS3ST1, and HK1 exhibited significantly higher expression in

the other group, which was consistent with the results found in
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TCGA database. Of note, CDKN1B, a tumor suppressor gene,

was overexpressed in tissues of the high-risk group in the clinical

validation cohort but a lower expression of CHKN1B was found

in the high-risk group in TCGA. As indicated in the Human

Protein Atlas (HPA) database (www.proteinatlas.org), CDKN1B

is mainly located in the nucleus and involved in the cellular

transition toward a proliferative state. PGK1, HS3ST1, and HK1

are intracellular enzymes located in various organelles, such as

the Golgi apparatus and mitochondria. SRPX and STC1 are

secreted into extracellular space. These hypoxia-related

indicators are participated in cellular metabolism and activated

in a hypoxic microenvironment. Thus, the expression of the

above molecules was modestly increased in regions with higher

cell density (Figure 9A). Next, we plotted Kaplan-Meier survival

curves of the high- and low-risk groups in our patients (P = 0.03)

(Figure 9B), which verified the results of TCGA that patients

with higher risk scores suffered an unfavorable prognosis.
Discussion

Although great advances have been witnessed in surgical

therapy, chemotherapy, and radiation therapy, the overall

prognosis of HNSCC patients has not been significantly

improved due to a lack of sensitive and specific diagnosis

biomarkers, and common therapy resistance (35). Therefore, it

is necessary to define an effective assessment signature for
TABLE 2 Differences in mutated genes between high and low risk groups.

Gene symbol High-risk group Low-risk group P Value

Count % Count %

TP53 163 70 163 65 0.228937512

TTN 91 39 95 38 0.710814205

FAT1 56 24 53 21 0.418859743

CDKN2A 54 23 45 18 0.146332653

MUC16 42 18 48 19 0.689839556

CSMD3 42 18 45 18 0.800663644

PIK3CA 49 21 35 14 0.038182444 *

NOTCH1 47 20 35 14 0.065342009

SYNE1 44 19 45 18 0.711679777

LRP1B 42 18 33 13 0.132656887

KMT2D 37 16 35 14 0.516526375

PCLO 33 14 38 15 0.693726627

NSD1 30 13 23 9 0.183106551

DNAH5 30 13 35 14 0.669842237

USH2A 23 10 35 14 0.160947054

FLG 37 16 25 10 0.049515551 *

CASP8 23 10 28 11 0.600298919

PKHD1L1 28 12 20 8 0.130834019

RYR2 26 11 25 10 0.61897503

XIRP2 28 12 18 7 0.066587042
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FIGURE 7

The immune landscape of the TME in HNSCC and the differences between the high- and low-risk groups. Multiple violin plots showed the
abundance of infiltration immune cells in the high- and low-risk groups in the CIBERSORT algorithm (A), TIMER algorithm (B), MCP-count
algorithm (C), EPIC algorithm (D), quanTIseq algorithm (E), and xCell algorithm (F).
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accurate prediction of the tumor progression and survival

condition, coupled with treatment responses of HNSCC patients.

Hypoxia, a hallmark of solid tumors, plays wide-range effects

on angiogenesis, metabolism, proliferation, metastasis, and cell

differentiation (36). So far, a few HRG-based prognostic

signatures have been constructed in various types of cancer,

such as breast cancer (37), bladder cancer (38), hepatocellular

carcinoma (39), etc. However, robust and reliable prediction

models for HNSCC are insufficient. Therefore, a more effective

prognostic model for HNSCC patients is urgently needed.

Herein, our study made a comprehensive integration of

RNA-seq data from multiple datasets to construct a prognostic

signature based on 6 HRGs (SRPX, PGK1, STG1, HS3ST1,

CDKN1B, and HK1) in HNSCC. In comparison with a

signature based on a single gene, our prognostic signature

demonstrated higher stability in predicting tumor pathological
Frontiers in Oncology 15
characteristics (tumor stage and grade in both clinical and

pathological levels) as well as prognosis. Then, an

independence test of this prognostic signature was performed.

GSEA analysis showed that hub HRGs were largely associated

with tumor growth and invasion. Specifically, the TIME of the

high- and low-risk groups divided by HRG-based signature was

defined by multiple algorithms. For example, we analyzed the

differences in TME between 44 normal subjects and 502 HNSCC

patients. Finally, these six genes were further validated by

samples in GEO database and our patient tissues via IHC

staining. TCGA and GEO databases with large sample sizes

provided us with adequate samples and comprehensive clinical

data for signature establishment and validation, which

significantly improved the accuracy and reliability of the

prognostic model (17). Finally, we verified the prognostic

value of this HRG-based signature utilizing patient samples
A

B D

E F G

H

C

FIGURE 8

An HRG-based prognostic signature for the evaluation of immune checkpoint therapy. (A) The expression of 37 immune checkpoint genes.
(B) Boxplot showed differences between different groups in the ESTIMATE score. (C) Boxplot showed differences between different groups in
the stromal score. (D) Boxplot showed differences between different groups in the immune score. Boxplot showed differences of different
groups in the Tide score (E), TIDE Dysfunction score (F), and TIDE Exclusion score (G). (H) Boxplot showed differences in TMB score.
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from our hospital, which made the results more compelling and

reliable. Overall, the expression levels of these HRGs can help

evaluate the prognosis of HNSCC patients.

Of the six HRGs, three HRGs (STC1, HK1, and PGK1) have

been reported to be related to the formation and progression of

HNSCC. A study showed that STC1 and HK1 were both

glycolysis-related genes with significant prognostic value in

HNSCC (40). Zhang Y et al. demonstrated that hypoxia can

increase the abundance of PGK1, which increased glycolysis and

EMT by activating AKT signaling in OSCC (41). Cytoplasmic

CDKN1B can be a potential biomarker for predicting prognosis

and developing targeted therapeutic approaches (42). HS3ST1

was related to the NF-kB signaling pathway and selected to

construct a prognostic signature for bladder cancer (43). In

colorectal cancer, SRPX was used for the establishment of the

prognostic model (44). These results suggested that our
Frontiers in Oncology 16
prognostic signature constructed by these six HRGs and the

clinical characteristics can serve as a promising tool for HNSCC.

Moreover, the additional validation in protein levels can largely

increase the prediction value of this model. The spatial and

temporal alterations of mRNAs, the local availability for protein

biosynthesis, and post-transcriptional modification exert a

strong influence on the correlation between protein and their

encoding RNA levels (45). A recent study characterized the

correlation between proteome and transcriptome and illustrated

that phenotypes of genetic diseases can be explained by

proteomic information, not transcript data. Positive

correlations between protein and RNA levels were found in

about half of the genes, and negative correlations were shown in

60 genes (46). IHC assay is an excellent method to validate

signatures since pathologists can detect gene expression at the

protein level within the context of tissue sections (47). IHC was
A

B

FIGURE 9

The external validation of proteins encoded by six hub HRGs. (A) The expression of six HRGs in the high- and low-risk groups in HNSCC
patients. (B) Kaplan-Meier survival curves of HNSCC patients in the high- and low-risk groups.
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also performed by other researchers to validate the expression of

hub genes. For example, IHC data for HNSCC tissues and

normal tissues from the HPA database were used to validate

the differences in key genes expression (48, 49). The prognostic

value of a ferroptosis-related signature was validated by IHC

analysis (50).

There is an established correlation between hypoxia features

and the TIME. It was reported that hypoxia promoted tumor

immune escape and resistance (51). HIF signaling facilitates the

recruitment and maintenance of pro-tumor immune cells and the

inhibition of anti-tumor immune components, resulting in

immune evasion (52). In general, the TME of HNSCC is largely

infiltrated by immune cells, which mediates immune surveillance

or escape by various molecular mechanisms (3). Moreover,

multiple anti-cancer immune cells showed lower abundance in

the high-risk group, such as B cells in Timer, MCP-count, EPIC,

quanTIseq, and xCell algorithms. It was reported that B cells

within TME were responsible for the production of antibodies

and the promotion of T cell responses, including T cell priming,

proliferation, and memory formation (53). Therefore, a higher

abundance of B cells in the low-risk group can efficiently enhance

the strength of anti-tumor immune responses and then inhibit

tumor growth. These results confirmed the conclusions of

previous studies. For instance, a recent study revealed that B

cells showed a significantly high abundance in the low-risk group

in HNSCC (54). Notably, a few types of immune cells showed a

higher amount in the high-risk group, such as neutrophils in

CIBERSORT, MCP-count, quanTIseq, and xCell algorithms.

Proinflammatory neutrophils recruit monocytes and T

regulatory cells via secreting chemokines such as CCL2 and

CCL17. Consequently, T regulatory cells suppress other

inflammatory T cell subpopulations, promoting tumor growth

(55). Additionally, we evaluated ICI therapy efficacy. For

example, the TIDE score is closely associated with ICI therapy

responses. In our study, the Tide score and Tide Dysfunction

score were elevated in the high-risk group, and this predicted a

greater chance for immune evasion and ICI treatment resistance.

These results suggested that treatment should be tailored

according to patients’ comprehensive scores.

While some observations differ from the pioneering results.

For instance, activated NK cells showed a higher abundance in

the high-risk group, which probably came down that the hypoxic

TME can impair the cell-killing function of NK cells (56). Mast

cells are involved in various pathological processes under hypoxic

conditions. For example, exposure of mast cells to ionomycin and

substance P resulted in a significant initiation of the HIF1a
signaling pathway (57). Therefore, the six-HRGs prognostic

signature might mirror an ever-changing TIME for HNSCC

patients in the high-risk group. To sum up, the above findings

can at least partially shed a light on the underlying mechanisms

concerning the worse outcomes in the high-risk group.

To demonstrate the advantages of our six-HRGs prognostic

model over many existing ones, herein, we compared this
Frontiers in Oncology 17
signature with three published hypoxia signatures (22, 58, 59).

As we can see, there is a lack of ROC curves to verify the

predictive sensitivity and accuracy of the model (58). The

contents of TME were poorly described and there was no

external validation, such as data from the GEO database and

clinical samples (22). Only CIBERSORT was used to describe the

tumor microenvironment (59). By contrast, the present study

provided a detailed description of TME and an analysis of the

expression of immune checkpoint molecules. And more

importantly, the data in the GEO database and clinical

specimens were used as external validation sets to verify the

robustness and accuracy of the model.

In summary, an HRG-based prognostic model with excellent

capacity in assessing the overall outcomes of HNSCC patients

was established in this study, which can assist clinicians to

develop wise and comprehensive treatment strategies for

HNSCC patients. Firstly, we established and verified a robust

HRG-based prognostic model for HNSCC patients. Secondly,

this hypoxia model not only provided a detailed evaluation of the

TIME status of HNSCC patients in both high- and low-risk

groups but determined potential ICI targets for the treatment of

HNSCC. Thirdly, the expressions of hub HRGs were validated at

both the protein level via IHC staining and the RNA level via

databases. In addition to TCGA database, three GEO datasets

and our patient samples were incorporated to further validate

the prediction capacity of the established signature. The larger

sample size allows for a more comprehensive assessment with

minimal bias.

However, some limitations exist in the present study despite

the advantages above mentioned. First, the HRG-based signature

was constructed based solely on hypoxia-related hub genes,

ignoring the critical fact that hypoxia TME as a cancer

hallmark is associated with multiple gene networks. Therefore,

the prediction value and clinical applicability of this HRG-based

model are required to be further validated by combing it with

other hallmarks, such as inflammation-related genes. Besides,

there was no subgroup analysis for HNSCC samples in our study

compared to recent studies (22) (59) and HR values of Cox

regression analyses were not high (22). In addition, larger-size

samples and multi-centric experimental researches are of great

necessity to substantiate the prognostic value of hypoxia-related

genes for HNSCC and biological functions.
Conclusion

In conclusion, this work constructed a novel prognostic

model based on six hypoxia-related genes in HNSCC patients.

This prognostic signature was promising for the evaluation of

immune cell infiltration and the efficiency of immune

checkpoint therapy. Furthermore, the correlation of the HRG-

based signature with survival status in multiple datasets and our

samples revealed that it could be a powerful prognostic
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biomarker for HNSCC patients, and might be conducive to

individualized management for HNSCC patients.
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