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Introduction: Breast cancer is a heterogeneous tumor. Tumormicroenvironment

(TME) has an important effect on the proliferation, metastasis, treatment, and

prognosis of breast cancer.

Methods: In this study, we calculated the relative proportion of tumor infiltrating

immune cells (TIICs) in the breast cancer TME, and used the consensus clustering

algorithm to cluster the breast cancer subtypes. We also developed a multi-layer

perceptron (MLP) classifier based on a deep learning framework to detect breast

cancer subtypes, which 70% of the breast cancer research cohort was used for

the model training and 30% for validation.

Results: By performing the K-means clustering algorithm, the research cohort

was clustered into two subtypes. The Kaplan-Meier survival estimate analysis

showed significant differences in the overall survival (OS) between the two

identified subtypes. Estimating the difference in the relative proportion of TIICs

showed that the two subtypes had significant differences in multiple immune

cells, such as CD8, CD4, and regulatory T cells. Further, the expression level of

immune checkpoint molecules (PDL1, CTLA4, LAG3, TIGIT, CD27, IDO1, ICOS)

and tumormutational burden (TMB) also showed significant differences between

the two subtypes, indicating the clinical value of the two subtypes. Finally, we

identified a 38-gene signature and developed a multilayer perceptron (MLP)

classifier that combined multi-gene signature to identify breast cancer subtypes.

The results showed that the classifier had an accuracy rate of 93.56% and can be

robustly used for the breast cancer subtype diagnosis.

Conclusion: Identification of breast cancer subtypes based on the immune

signature in the tumor microenvironment can assist clinicians to effectively and

accurately assess the progression of breast cancer and formulate different

treatment strategies for different subtypes.

KEYWORDS

breast cancer, immune infiltration, subtype identification, tumor mutational burden,
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1 Introduction

Breast cancer is a disease with high morbidity and mortality,

only lower than lung cancer in women (1, 2). According to a

report by the American Cancer Society in 2019, in the last 5

years (2012-2016), the incidence of breast cancer has increased

slightly at a rate of 0.3% per year (3). Breast cancer is a highly

heterogeneous tumor (4); the tumor tissue not only includes

tumor cells, but also normal epithelial, stromal, and immune

cel ls that are associated with tumors . The tumor

microenvironment (TME) that is composed of these cells has

an important impact on the tumor proliferation, metastasis,

treatment, and prognosis (5–7).

Immune cells are scattered in the tumor center and

infiltration margin or adjacent tertiary lymphoid tissues, and

can be roughly divided into immunosuppressive and immune

effector cells (8, 9). The level of immune cells infiltration

reflectsthe degree of tumor development, affecting cancer

progression (10). The tumor immune microenvironment

(TIME) is composed of various cells that can inhibit the

tumor formation (11–13) and promote tumorigenesis (14, 15).

Quantification of the proportion of various cells in the TME is

important to understand the occurrence and development of

tumors. Yoshihara K et al. proposed a method (ESTIMATE) of

using gene expression profiles to calculate the ratio of stromal to

immunecells to reveal the tumor purity (16). Newman et al. utilized

the gene expression data to estimate the abundance of immune cells

in tumor samples, and developed the analysis tool CIBERSORT for

estimating and verifying the proportion of 22 immune cells (17).

Breast cancer is very difficult to cure; however, early

diagnosis and timely treatment can prolong the patients’

survival. Immunotherapy is considered the most promising

treatment for breast cancer currently and includes immune

checkpoint blocking (ICB) therapy (18, 19), adoptive T cell

immunotherapy (20), and tumor vaccine immunotherapy (21,

22). The US FDA has also approved few immunotherapy drugs

mainly Keytruda (Pembrolizumab), Opdivo (Nivolumab),

Tecentriq (Atezolizumab) among others.

Immunotherapy is not suitable for all breast cancer patients

(23–26), and hence, it is important to accurately determine the

cancer subtype in such patients so that appropriate treatment

can be administered. Perou et al. distinguished the breast cancer

subtypes based on the differences in mRNA expression patterns,

and proposed, for the first time, that breast cancer can be divided

into four subtypes (27). Subsequently, a 50-gene breast cancer

classification model (PAM50) was developed based on the gene

expression profile data (28), and is commonly employed in

clinical practice. Further, based on the molecular subtype

identification of triple-negative breast cancer, six (29), four

(30), and three (31) subtypes have been proposed, while a

model of six subtypes was also proposed based on the colon

cancer classification method (32). Although these subtype

classification methods elucidated the molecular markers,
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prognostic differences, and clinical significance of the subtypes;

TME and the influence of TIME on the occurrence,

development, and prognosis of tumors have not been

evaluated. Additionally, the association of immune checkpoint

molecules and breast cancer isnot comprehensively understood.

In this study, the ESTIMATE algorithm was used to

determine the individual and combined scores of the immune

and stromal cells of each sample in the breast cancer research

cohort. Further, we used the CIBERSORT algorithm to estimate

the scores of the 22 types of immune cells in the same research

cohort. We propose a method to identify breast cancer subtypes

by combining the estimated scores of the two immune

infiltrations. Two breast cancer subtypes were identified using

the consensus clustering algorithm, and the survival, immune cell

differential, immune checkpoint molecules differential, tumor

mutation burden correlation, differential gene enrichment, and

drug sensitivity analyses were performed for these two subtypes.

We showed that this classification into two subtypes has a

potential for clinical application. We also developed a multi-

layer perceptron (MLP) classifier based on a deep learning

framework to detect two breast cancer subtypes. By using the

training data to train the classifier model, the test results showed

that the classifier can distinguish the two subtypes.
2 Materials and methods

2.1 Data search strategy and collection

The breast cancer data used in this study were obtained from

the two public databases, The Cancer Genome Atlas (TCGA,

https://portal.gdc.cancer.gov/) and Gene Expression Omnibus

(GEO, https://www.ncbi.nlm.nih.gov/geo/). The TCGA data

included the transcriptome mRNA expression profile data of

female patients (n=1208, 1096 cancer and 112 normal samples),

clinical data (n=1085), and simple nucleotide variation (SNV)

data. The research cohorts selected from the GEO database were

GSE42568 (n=104) and GSE88770 (n=117), including the

mRNA expression profile files of the patient cohort and probe

files of the sequencing platform.
2.2 Data preprocessing

TCGA mRNA expression and clinical data were normalized

through the following steps: (1) mapping of the mRNA expression

data to the human genome annotation file, replacing Ensemble IDs

with gene names, and deleting the genes lacking a corresponding

mapping, (2) standardization of the mRNA expression data, (3)

conversion of FPKM standardization data into TPM

standardization; when the same sample was repeated, the average

value of gene expression was used instead. Further, the normal

samples were deleted, and (4) using perl language scripts to extract
frontiersin.org
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the clinical information, including the sample id, overall survival

(OS) in days, survival status, age, grade, and stage (T, M, and N

staging). The breast cancer data of the GEO database were

annotated with theprobe data of the sequencing platform

GPL570. We extracted the gene expression data and clinical

information separately. Finally, we consolidated and combined

the TCGA and GEO expression data.
2.3 Estimate the proportion of tumor-
infiltrating immune cells and
tumor purity

The proportion of 22 TIICs types were estimated by using

the CIBERSORT algorithm for each sample, and samples with a

p-value of <0.05 were selected for the survival analysis. For

tumor purity, we used the ESTIMATE algorithm for evaluation.

Two non-tumor components (immune and stromal cells) was

calculated by using the ESTIMATE algorithm and gene

expression profiles, and obtained three tumor purity signatures

(stromal, immune, and estimate scores).
2.4 Identification of breast
cancer subtypes

The R language “ConsensusClusterPlus” package was used to

perform the consistent clustering, and to separately save the graphs

of the clustering results for each K value (Integer K, 2≤K≤9 ). The

parameters of the unsupervised clustering weredefined, including

the clustering algorithm (clusterAlg=“km”), maximum number of

clusters (maxK=9), number of resampling (reps=50), sampling ratio

(pItem=0.8), characteristics sampling ratio (pFeature=1), and

clustering distance (distance=“euclidean”).
2.5 Statistical analysis

The statistical analysis was performed by Rstudio software, R

version 4.1.2. For clinical data, the R packages ßurvival” and

ßurvminer” were used for the survival analysis, and the Kaplan-

Meier survival curve was drawn. Using the “limma” package,

differentially expressed genes (DEGs) between subtypes, as well as

the expression differences of immune checkpoint molecules, tumor

mutational burden (TMB), and drug sensitivity were statistically

analyzed. “ggplot2” was used to draw the graphics and figures.
2.6 Breast cancer subtype classifier
based on the neural network

Deep learning algorithms are gradually being widely used in the

field of biomedicine (33–35).We designed anMLP classifier to identify
Frontiers in Oncology 03
the breast cancer subtypes. This classifier included an input, hidden,

and output layer. The input layer contains 38 nodes, which represent 38

DEGs. The activation function of the multilayer perceptronmodel uses

the “sigmoid”, and the mathematical formula is expressed as:

sigmoid =
1

1 + e−x
(1)

The loss function of the model used the cross entropy loss

function, and the mathematical formula is expressed as:

Loss = −
1
nox ylna + 1 − yð Þln 1 − að Þ½ � (2)

where, x represents the sample, y represents the true label, a

represents the predicted output value, and n represents the total

number of samples.

The optimization of the model uses the RMSProp optimization

algorithm and the mathematical formula is expressed as:

Sdw = bSdw + 1 − bð Þdw2

w = w − a dw
ffiffiffiffiffi

Sdw
p

(3)

Where dw is the gradient, Sdw is a value container, which

stores the result of the square weighted average of all the

gradients, a is the learning rate (general value: 0.001), b decay

factor (general value: 0.9). In order to obtain a classifier model

with robust performance and high accuracy, we also verified the

impact of the number of hidden layer nodes on the classification

results, ranging from 2 to 38.
3 Results

3.1 Estimate of the proportion of TIICs in
the breast cancer research cohort

The proportion of immune cells and tumor purity in the

research cohort were quantified by using CIBERSORT and

ESTIMATE algorithms (Table S1); based on the quantitative

score, the general landscape of TIICs interaction in breast cancer

TME was visualized by generating the correlation coefficient

heat map (Figure 1). The correlation analysis of TIICs showed

that the CD8 and memory-activated CD4 T cells and M0

macrophages had the strongest positive and negative

correlations, respectively. In addition, M1 macrophages and

CD8, memory-activated CD4, and follicular helper T Cells

showed strong positive correlations.
3.2 Subtype clustering and differential
analysis of immune cells

By performing the K-means clustering algorithm, 8 cluster

maps were generated (Figures 2A–H). Figure 2A shows two

subtypes with the best clustering results (Table S2). We define
frontiersin.org
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these two independent subtypes as ICS-A and ICS-B. In subtype

ICS-A, the scores of regulatory T cells and M0 and M2

macrophages were significantly higher than that of the subtype

IC-B (Figure 3). Further, in subtype ICS-B, the proportion of B

cells, CD8 T cells, memory activated CD4 T cells, memory
Frontiers in Oncology 04
resting CD4 T cells, NK cells, and M1 macrophages was

significantly higher than that of the subtype ICS-A. On the

other hand, no significant difference was observed in the

proportion of native CD4 T cells, follicular helper T cells,

eosinophils, and neutrophils between the two subtypes.
3.3 Kaplan−-Meier survival analysis

In order to investigate the clinical significance of the subtype

identification, we performed the Kaplan-Meier survival analysis

on the OS of the two subtypes. The survival curve showed that

the two subtypes had a significant difference in the OS, and the

median survival time of the subtype ICS-B was 8 years longer

than that of the subtype ICS-A (Figure 4).
3.4 Differential expression and drug
sensitivity analysis of immune checkpoint
molecules in the breast cancer

ICB therapy i s current ly the mos t promis ing

immunotherapy for the treatment of breast cancer. We

revealed differences in the expression levels of several key

immune-modulatory molecules, including the co-stimulatory

(CD27, ICOS, CD28, CD80, CD86, CD40, and CD276) and

co-suppressive molecules (PDL1, CTLA4, LAG3, TIGIT, and

IDO1) in the two subtypes. The expression levels of immuno-

modulators (PDL1, CTLA4, LAG3, CD27, ICOS, CD28, CD86,

CD40, TIGIT, and IDO1) in subtype ICS-B were significantly

higher, while the CD276 levels were significantly lower than that
B C D

E F G H

A

FIGURE 2

(A-H) respectively showed the consensus matrices of all breast cancer samples in the research cohort for each k (2≤k≤9 ), displaying the
clustering stability by performing 100 iterations of hierarchical clustering. Perform subtype clustering using the K-means clustering algorithm,
with k in the range of 2 to 9.
FIGURE 1

The general landscape of infiltrating immune cells interactions in
breast cancer. The color value and shape size of the pie chart
represent the correlation size between immune cells. The color
bar shows the positive and negative values of the correlation.
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of the subtype ICS-A (Figure 5). Furthermore, we investigated

the expression of the immunomodulators in the 60 human

cancer cell lines (NCI-60), and systematically tested the

correlation between their expression levels in the NCI-60 cell

lines with drug sensitivity of 218 FDA-approved chemotherapy

drugs (Table S3). Figure 6 shows the association between

expression of immunomodulatory molecules (PDL1 and

CTLA4) and drug sensitivity. We noticed that increased PDL1

expression was associated with increased cellular resistance to

chemotherapy drugs such as Tamoxifen and Nilotinib; we also

observed inverse associations of multiple genes to these drugs,

Furthermore, PDL1 was associated with increased sensitivity of

cells to Dasatinib (treatment for mantle cell lymphoma and
Frontiers in Oncology 05
chronic lymphocytic leukemia), while CTLA4 was associated

with increased resistance of cells to Dasatinib.
3.5 Analysis of TMB in two subtypes

Considering the impact of TMB in tumor development, we

further explored and revealed the correlation of TMBwith OS and

Age, respectively. We first counted the SNV of each sample in the

TCGA cohort, and the frequency (number of samples) of the

mutated genes in the research cohort (Table S4). The results

showed that the number of samples with PIK3CA mutation was

the largest, followed by TP53, TTN, CDH1, and GATA3. Further,

the TMB subtype ICS-A was significantly higher than that of

subtype ICS-B (Wilcoxon test p <0.001) (Figure 7). Furthermore,

TMB showed significant negative and positive associations with

the OS (Spearman coefficient: R = -0.12, p = 0.00043) and age

(Spearman coefficient: R =0.14, p = 1.8e-05) (Figures 8, 9).
3.6 Differentially expressed genes in the
two subtypes

By using the Bayesian estimation test, more than 5000 DEGs

were found between the subtypes ICS-A and ICS-B (Table S5).

Further, under the conditions of p value <0.05,| logFC| >1, and 95%

confidence interval (CI), a signature of 38 DEGs was used to

identify the two subtypes. Table 1 shows the list of genes identified.
3.7 Gene ontology and KEGG pathway
enrichment analysis

GO enrichment analysis covers three domains: cellular

component (CC), molecular function (MF), and biological

process (BP). Figures 10, 11 show the results of GO terms
FIGURE 5

Boxplots of differential expression of immune checkpoint
molecules. The analysis was performed using the Wilcoxon
signed-rank test, *p < 0.05, **p < 0.01, ***p < 0.001 (p-values
were adjusted using FDR correction).
FIGURE 3

Boxplots showing statistical differences in immune cells in the
two immune subtypes ICS-A and ICS-B. Comparison was
performed using the Wilcoxon signed-rank test. *p < 0.05, **p <
0.01, ***p < 0.001 (p-values were adjusted using
FDR correction).
FIGURE 4

Kaplan-Meier survival curves for the overall survival of all breast
cancer patients in the research cohort. Log rank test showed
that the overall survival of ICS-A and ICS-B subtypes were
significantly different (p-value = 0.013, p-values were adjusted
using FDR correction).
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and KEGG pathways enrichment analysis, respectively. The

top 5 BPs were significantly enriched in the T cell activation,

leukocyte mediated immunity, positive regulation of cell

activation, mononuclear cell differentiation, and positive

regulation of leukocyte activation. The CC analysis revealed

that DEGs were mainly enriched in the external side of the

plasma membrane, membrane raft, and membrane micro
Frontiers in Oncology 06
domain, while the MF significantly enriched in immune

receptor activity, cytokine receptor binding, cytokine activity,

and carbohydrate binding. KEGG pathway analysis showed

that cytokine-cytokine receptor interaction was the most

significant pathway for the DEGs enrichment, followed by

cell adhesion molecules, chemokine signaling pathway, and

hematopoietic cell lineage.
FIGURE 6

Scatter plot showing the association of expression of immune checkpoint molecules with drug sensitivity of NCI-60 cell line. Top 16 molecules
are listed; PDL1 and CTLA4 were significantly associated with the drug sensitivity.
FIGURE 7

Tumor mutational burden (TMB) differences between the ICS-A
and ICS-B subtypes. p-values were adjusted using
FDR correction.
FIGURE 8

Tumor mutational burden (TMB) correlation analysis with the
overall survival.
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3.8 Breast cancer subtype classifier
based on the neural network

The MLP classifier for identifying subtypes was defined as

three layers, including the input, hidden, and output layers,

while the number of nodes in each layer was respectively defined

as 38, 5, and 2, according to the training and testing results of the

program. Figure 12A shows the accuracy of the classifier model

with different numbers of nodes in the hidden layer.

4 Discussion

We performed a detailed and comprehensive assessment of

the TIICs in breast cancer using the research cohort from TCGA

and GEO databases (Figure 13). Compared with previous studies

(27, 29–32), this study determined the composition of TIICs in

breast cancer, and the research cohort was divided into two

subtypes, ICS-A and ICS-B, according to the composition of

TIICs. A 38-ene signature tumor marker was identified and a

classifier for subtype identification was developed using a deep

learning framework. Our study confirmed that the proportion of

immune cells and the expression level of immune checkpoint

molecules in subtype ICS- were significantly higher than those in

subtype ICS-A. Further, subtype ICS-B had better OS, suggesting

that it is more suitable for immune checkpoint blockade therapy

than subtype ICS-A. At the same time, we also conducted the

drug sensitivity (FDA-approved chemotherapy drugs) analysis

of theimmune checkpoint molecules that provided a reference

for the selection of these drugs for breast cancer patients.

The TIME has an important impact on tumor diagnosis,

treatment, and prognosis. The immune score has been used in
Frontiers in Oncology 07
renal and lung cancer studies in terms of estimating the relative

proportion fraction of TIICs in tumors, and has shown its

prognostic value (36–38). In this study, subtype ICS-B (with

higher levels of CD8 and memory resting CD4 T cells) was

found to be associated with better OS. CD8 T cells are key anti-

tumor effector T cells, and CD4 T cells can be further

differentiated to perform various functions (for instance, to

differentiate into CD8 memory T cells to suppress tumor

growth) (36, 39, 40); however the M2 macrophages can also

suppress anti-tumor immune responses by secreting multiple

mediators such as the inhibitory cytokines IL-10 or TGF-B,

down-regulating antitumor immune response, promotion of

angiogenesis, enhancement of cancer cell proliferation,

invasion, intravascular penetration, and spread have been

metastasized (41–44). This suggests that the immune

subtype ICS-A with a lower proportion of CD8 T cells but a

higher proportion of M2 macrophages may have an

immunosuppressive (immune rejection) phenotype, and M2

macrophages or CD8 T cells may provide a therapeutic target

for future breast cancer immunotherapy.

TMB has been recognized as a predictive marker of

immunotherapy response and a prognostic marker in various

tumor types (45–48). In this study, the TMB level of immune

subtype ICS-A was significantly higher than that of the subtype

ICS-B, indicating that patients with subtype ICS-A may produce

more neo-antigens and will adversely affect the patient survival.

Therefore, subtype ICS-B is indicative of better OS. This idea is

supported by the correlation analysis between the TMB and OS.

The level of TMB was significantly and negatively correlated

with the OS in breast cancer patients. Further, since the TMB

and age showed positive interaction, older patients had relatively

higher TMB. This is consistent with a recent study showing that

TMB increases with age, while the T cell receptor decreases (49).

This provides unique insights into clinical prognostic diagnosis.

Statistical analysis of SNV in the research cohort showed

that PIK3CA had the highest mutation frequency. PIK3CA is a

catalytic subunit of the key proto-oncogene PI3K in the PI3K-

Akt signaling pathway. Mutation of PIK3CA can lead to

enhanced kinase activity, which in turn continuously

stimulates downstream AKT (50), increases cell invasion and

metastasis, and promotes tumor development. PIK3CA is

located on chromosome 3, with a total of 20 exons, and 80%

of PIK3CA mutations occur in the two hotspot regions of the

helical region and the kinase region. The three most common

mutations are H1047R on exon 20, and E542k and E545K on

exon 9. Many studies have confirmed the existence of PIK3CA

mutations in various human solid tumors, and its positive rate in

breast cancer can reach 30-40% (51–53). This result has also

been confirmed in our study. There were a total of 980 samples

in our research cohort, of which 322 samples had PIK3CA

mutation, with a positivity rate of 32.86%. This indicates that
FIGURE 9

Tumor mutational burden (TMB) correlation analysis with age.
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PIK3CA can be used as a prognostic molecular biomarker and

therapeutic target for breast cancer. The development and use of

drugs targeting PIK3CA to block the PI3Ks pathway will play an

effective role in the treatment of breast cancer. In recent years,

the deep learning framework in the field of artificial intelligence

is gradually being applied in various disciplines and industries.

Although the interpretability of deep learning frameworks is still

debated, their ability to solve bioinformatics problems requires

further investigation. It has shown powerful functions in
Frontiers in Oncology 08
bioinformatics such as protein structure prediction (54, 55),

protein−protein interaction prediction (56, 57), RNA structure

prediction (58, 59), drug small molecule interaction prediction

(60, 61), and drug design (62–64). Based on the identification of

breast cancer immune subtypes, we designed and developed a

subtype ICS−A classifier based on a deep learning framework.

In order to improve the prediction accuracy of the model,

we used 70% of the data for model training and 30% of the

data for model testing. The number of iterations epoch is 1000
TABLE 1 Comparison of different obfuscations in terms of their transformation capabilities.

Gene logFC AveExpr t P.Value adj.P.Val B

MMP9 -2.16300 6.53699 -22.74219 2.30436E-95 4.0453E-91 206.0615

SPP1 -1.57532 7.40448 -16.51827 2.41593E-55 2.1206E-51 114.9107

GZMK 1.37200 3.62741 16.30778 4.08304E-54 1.7919E-50 112.115

CD8A 1.13855 3.83799 15.98659 2.9213E-52 8.7254E-49 107.8928

ITM2A 1.16847 5.33790 15.98503 2.9822E-52 8.7254E-49 107.8724

CD27 1.11183 3.84288 15.47268 2.41841E-49 6.065E-46 101.2505

GZMA 1.23115 4.50821 15.34996 1.17782E-48 2.5846E-45 99.68555

CD3D 1.20354 4.59038 14.98294 1.27527E-46 2.4875E-43 95.05518

CD2 1.18523 4.97137 14.40682 1.70525E-43 2.1383E-40 87.94169

CD3E 1.04785 3.94658 14.37973 2.38055E-43 2.786E-40 87.61205

CCL19 1.79801 5.54616 13.89503 8.65444E-41 7.2347E-38 81.78719

SELP 1.03400 3.15338 13.45229 1.66462E-38 8.3492E-36 76.59265

ACKR1 1.54096 4.60494 13.44081 1.90484E-38 9.2887E-36 76.45952

SELL 1.09100 4.24668 13.42028 2.42319E-38 1.1497E-35 76.22184

CD79A 1.30591 3.78360 12.93794 6.41371E-36 2.3457E-33 70.71375

TNFRSF17 1.04404 2.42067 12.93594 6.56205E-36 2.351E-33 70.69118

NKG7 1.04241 4.27307 12.85253 1.69539E-35 5.9525E-33 69.75416

IL33 1.12487 3.51383 12.67761 1.22287E-34 3.4084E-32 67.80383

IGHM 1.72575 6.90470 12.48471 1.0554E-33 2.6852E-31 65.67671

C7 1.29024 3.28276 12.26408 1.20419E-32 2.7454E-30 63.27449

CCL5 1.00413 6.27016 12.24827 1.43191E-32 3.2227E-30 63.1036

IGKC 1.59129 8.71681 12.10846 6.57321E-32 1.3418E-29 61.60006

MS4A1 1.08781 2.23466 11.89404 6.62999E-31 1.1999E-28 59.32029

IGLL5 1.39436 4.96581 11.54786 2.58583E-29 3.9473E-27 55.7075

IGLV1-44 1.46962 5.91042 10.94526 1.24059E-26 1.5446E-24 49.62315

MFAP4 1.03166 5.87060 10.67499 1.81439E-25 1.9784E-23 46.98055

CXCL9 1.28566 6.23401 10.33092 5.10202E-24 4.9484E-22 43.69549

CHRDL1 1.11266 3.84926 10.09488 4.77912E-23 4.216E-21 41.49378

CCL21 1.21797 4.35651 9.90108 2.90555E-22 2.4761E-20 39.71812

IGHD 1.06524 2.92884 9.80581 6.98186E-22 5.6744E-20 38.85589

MMP13 -1.08928 4.17293 -9.37678 3.31451E-20 2.3557E-18 35.06133

MMP12 -1.03738 2.61418 -9.27906 7.82465E-20 5.2831E-18 34.21744

IGLV6-57 1.17385 4.73478 9.11611 3.22241E-19 2.0203E-17 32.82725

COL11A1 -1.15667 5.69851 -9.08603 4.17467E-19 2.5625E-17 32.57302

ADH1B 1.16813 3.34122 9.08188 4.32622E-19 2.6462E-17 32.53801

MMP1 -1.25655 4.14037 -8.85569 2.96053E-18 1.6292E-16 30.6501

IGHG1 1.06179 7.57753 7.55540 8.29792E-14 2.9428E-12 20.61969

CXCL13 1.04036 4.59093 7.26950 6.51845E-13 2.0958E-11 18.60688
frontie
Condition employed: pvalue <0.05, | logFC | >1, and 95% confidence interval.
The results were obtained by using the R “limma” package Bayesian test.
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times. The loss and accuracy of the model during the training

process are shown in Figures 14, 15 shown. As the number of

training increases, the loss of the model decreases and tends to

stabilize. The accuracy improves continuously with the

increase of training times, and tends to stabilize after more

than 200 times. Further, comparative experiments were

conducted using other machine learning models, and

Table 2 shows the highest accuracy of each model on the

test dataset. The results show that Naive Bayes has the lowest

accuracy (89.36%), and the accuracy rates of SVM, RF, MLP

are 92.99%, 91.59% and 93.56%, respectively. The prediction

accuracy of the MLP model on the test dataset is slightly

higher than that of the SVM by 0.57%. However, with tuning

of the MLP hyperparameters (eg, number of model layers,

number of iterations for training), the prediction performance

could be improved. Figure 12A shows the accuracy of models

trained with different numbers of nodes in the hidden layer.

When the number of nodes were 2, 5 and 9 respectively, the

accuracy was the highest (93.56%), while with the number of

nodes at 33, the accuracy was the worst (87.11%); However,

when the number of hidden layer nodes is 5, the model obtains

the smallest loss during testing(Figure 12B). Hence, the

number of nodes in the hidden layer of the model was
FIGURE 10

Gene ontology term enrichment for DEGs of ICS−A and ICS−B
subtypes. The result shows the top 10 significantly enriched
terms on the BP, CC, and MF.
FIGURE 11

KEGG pathway enrichment for DEGs of ICS-A and ICS-B
subtypes. The result shows the top 10 significantly
enriched pathways.
B

A

FIGURE 12

(A) The dotted line graph shows the accuracy of the MLP
classifier, with different number of nodes in the hidden layer.
(B) The average loss of the model with different numbers of
hidden layer nodes during testing.
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finally determined to be 5. This classifier can effectively assist

clinicians in the diagnosis and subtype identification of

breast cancer.

In conclusion, the identification of breast cancer

subtypes based on the immune signature in the tumor

microenvironment can assist clinicians to effectively and

accurately assess the progression of breast cancer and

formulate different treatment strategies for different subtypes.

In the present study, we detailed the immune infiltration

landscape of the study cohort and demonstrated the clinical

utility of immune−based subtyping. Further, this study

explored the differences in immune checkpoint molecules,

DEGs, and pathway enrichment between the two subtypes,

and revealed that TMB in breast cancer patients was associated

with OS and age. These findings have the potential to provide a

new approach for the targeted therapy of breast cancer and lay
Frontiers in Oncology 10
a theoretical basis for the use of chemotherapy drugs for

patients. Finally, we developed a subtype classifier with high

robustness and accuracy, which can effectively assist clinicians

in medical diagnosis.
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FIGURE 13

Overview of the study design.
FIGURE 14

The change process of the loss, with the increase of training
epochs, when the number of nodes is 5 in the hidden layer.
FIGURE 15

The change process of the accuracy rate, with the increase of
training epochs, when the number of nodes is 5 in the hidden layer.
TABLE 2 Accuracy comparison of machine learning models.

Model Types Testing Accuracy

SVM Model 92.99%

Naive Bayes Model 89.36%

Random Forest Model 91.59%

MLP Model 93.56%
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Application advances of deep learning methods for de novo drug design and
molecular dynamics simulation. Wiley Interdiscip Reviews: Comput Mol Sci (2021)
12:e1581. doi: 10.1002/wcms.1581

63. Krishnan SR, Bung N, Vangala SR, Srinivasan R, Bulusu G, Roy A. De novo
structure-based drug design using deep learning. J Chem Inf Modeling (2021), 62
21:5100–5109. doi: 10.1021/acs.jcim.1c01319

64. Jing Y, Bian Y, Hu Z, Wang L, Xie X-QS. Deep learning for drug design: An
artificial intelligence paradigm for drug discovery in the big data era. AAPS J (2018)
20:1–10. doi: 10.1208/s12248-018-0210-0
frontiersin.org

https://doi.org/10.1186/s13058-015-0550-y
https://doi.org/10.1038/s41523-021-00345-2
https://doi.org/10.1001/jama.2017.7797
https://doi.org/10.1093/bib/bbaa237
https://doi.org/10.1109/TNNLS.2021.3129772
https://doi.org/10.1109/TNNLS.2021.3129772
https://doi.org/10.1111/cas.13996
https://doi.org/10.3389/fcell.2021.707143
https://doi.org/10.1016/j.cca.2020.04.036
https://doi.org/10.1186/s40425-018-0399-6
https://doi.org/10.1016/j.coche.2017.11.006
https://doi.org/10.1016/j.coche.2017.11.006
https://doi.org/10.1186/s12964-020-00557-2
https://doi.org/10.1186/s12964-020-00557-2
https://doi.org/10.1038/cddis.2015.162
https://doi.org/10.1016/j.immuni.2014.06.010
https://doi.org/10.1016/j.cell.2006.01.007
https://doi.org/10.1016/j.cell.2006.01.007
https://doi.org/10.1038/s41588-018-0312-8
https://doi.org/10.1158/1535-7163.MCT-17-0386
https://doi.org/10.1158/1078-0432.CCR-20-0458
https://doi.org/10.1158/2159-8290.CD-20-0522
https://doi.org/10.1016/j.celrep.2021.109599
https://doi.org/10.1038/s41467-017-02002-4
https://doi.org/10.1186/s13058-020-01284-9
https://doi.org/10.1056/NEJMra1704560
https://doi.org/10.1056/NEJMra1704560
https://doi.org/10.1056/NEJMoa1813904
https://doi.org/10.1038/s41586-021-03828-1
https://doi.org/10.1038/s41592-021-01360-8
https://doi.org/10.1016/j.cels.2021.08.010
https://doi.org/10.1021/acs.jcim.9b00445
https://doi.org/10.1126/science.abe5650
https://doi.org/10.1002/prot.26033
https://doi.org/10.1021/acs.jcim.7b00650
https://doi.org/10.1039/D1SC05976A
https://doi.org/10.1002/wcms.1581
https://doi.org/10.1021/acs.jcim.1c01319
https://doi.org/10.1208/s12248-018-0210-0
https://doi.org/10.3389/fonc.2022.943874
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Immune subtype identification and multi-layer perceptron classifier construction for breast cancer
	1 Introduction
	2 Materials and methods
	2.1 Data search strategy and collection
	2.2 Data preprocessing
	2.3 Estimate the proportion of tumor-infiltrating immune cells and tumor purity
	2.4 Identification of breast cancer subtypes
	2.5 Statistical analysis
	2.6 Breast cancer subtype classifier based on the neural network

	3 Results
	3.1 Estimate of the proportion of TIICs in the breast cancer research cohort
	3.2 Subtype clustering and differential analysis of immune cells
	3.3 Kaplan&minus;-Meier survival analysis
	3.4 Differential expression and drug sensitivity analysis of immune checkpoint molecules in the breast cancer
	3.5 Analysis of TMB in two subtypes
	3.6 Differentially expressed genes in the two subtypes
	3.7 Gene ontology and KEGG pathway enrichment analysis
	3.8 Breast cancer subtype classifier based on the neural network

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


