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Objective: We aim to leverage deep learning to develop a computer aided

diagnosis (CAD) system toward helping radiologists in the diagnosis of follicular

thyroid carcinoma (FTC) on thyroid ultrasonography.

Methods: A dataset of 1159 images, consisting of 351 images from 138 FTC

patients and 808 images from 274 benign follicular-pattern nodule patients,

was divided into a balanced and unbalanced dataset, and used to train and test

the CAD system based on a transfer learning of a residual network. Six

radiologists participated in the experiments to verify whether and how much

the proposed CAD system helps to improve their performance.

Results: On the balanced dataset, the CAD system achieved 0.892 of area

under the ROC (AUC). The accuracy, recall, precision, and F1-score of the CAD

method were 84.66%, 84.66%, 84.77%, 84.65%, while those of the junior and

senior radiologists were 56.82%, 56.82%, 56.95%, 56.62% and 64.20%, 64.20%,

64.35%, 64.11% respectively. With the help of CAD, the metrics of the junior and

senior radiologists improved to 62.81%, 62.81%, 62.85%, 62.79% and 73.86%,

73.86%, 74.00%, 73.83%. The results almost repeated on the unbalanced

dataset. The results show the proposed CAD approach can not only achieve

better performance than radiologists, but also significantly improve the

radiologists’ diagnosis of FTC.

Conclusions: The performances of the CAD system indicate it is a reliable

reference for preoperative diagnosis of FTC, and might assist the development

of a fast, accessible screening method for FTC.

KEYWORDS

follicular thyroid carcinoma, computer aided diagnosis, deep learning, thyroid
ultrasonography, transfer learning
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.939418/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.939418/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.939418/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.939418/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.939418&domain=pdf&date_stamp=2022-11-16
mailto:yguo56@uis.edu
mailto:duguoqing@gdph.org.cn
https://doi.org/10.3389/fonc.2022.939418
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.939418
https://www.frontiersin.org/journals/oncology


Zheng et al. 10.3389/fonc.2022.939418
1 Introduction

Follicular thyroid cancer (FTC) accounts for 11.5%-13.4% of

differentiated thyroid cancer (DTC) patients (1, 2). FTC is more

likely to develop distant metastasis and has a higher mortality

rate than papillary thyroid cancer (PTC). Survival in FTC

patients was 77.0% at 10 years, and 33.7% at 20 years (3).

Although collectively referred to as DTC, if FTC and PTC are

combined to study, the disease characteristics of FTC will be

occluded by PTC. Therefore, it is necessary to study FTC alone.

Meanwhile, the diagnosis of FTC is more challenging than

PTC and other types of thyroid cancer. For follicular patterned

thyroid lesions, ultrasound is difficult to distinguish them among

FTC, thyroid follicular adenoma (FA), and follicular

adenomatoid (hyperplastic) nodules. The commonly used

thyroid ultrasound image classification evaluation system (such

as American College of Radiology Thyroid Imaging Reporting

and Data System, short for ACR TIRADS) is not reliable for the

identification of follicular tumors. Neither fine needle aspiration

biopsy (FNA) can provide an accurate diagnosis of benign and

malignant in follicular tumors. Even frozen sections are not

suitable for the diagnosis of follicular tumors, because the

detection rate of capsules or blood vessel infiltration in a single

frozen section is very low in the case of FTC (4).

Nowadays, various computer aided diagnosis (CAD) systems

using thyroid ultrasound (TUS) images present excellent

performances in treating with PTC. For example, the

classification accuracy of the CAD model for thyroid nodule

proposed by Chi et al. reached 99.10%, the sensitivity 99.10%,

and the specificity 93.90% (5). However, there are only two studies

of CADs focusing on differentiating follicular neoplasm on TUS

before, and their diagnostic performances of FTC are not as

satisfying as that of PTC. Seo et al. conducted an image

recognition model using a convolutional neural network (CNN)

that concentrated on capturing the features of the boundary region

of thyroid follicular neoplasms and disregarded features of intro

area of thyroid nodule images, achieving the positive predictive

value (PPV) of 67.49% (27/40), the sensitivity of 71.05% (27/38),

and the accuracy of 89.52% (205/229). This study used only 39 FAs

and 39 FTCs to train the CNN model, and, with these extremely

small training data sets and their model, tested 191 FAs and 38

FTCs (6). Yang et al. took the whole lesions of follicular neoplasms

into account in their CNN model, as a result, the classification

accuracy of FTC and FA was improved to 96%. There were 830

images included in this study for training and validation, without

the exact information of FA/FTC ratio (7).

Efforts on CAD systems to recognize FTC are far from

enough and effective preoperative diagnosis of FTC is needed,

because it could not only avoid excessive diagnostic surgical

resection, but also avoid treating FTC as a benign tumor.

Therefore, aiming to identify FTC on TUS, we have developed

a novel CAD system based on deep learning on an ultrasound
Frontiers in Oncology 02
image for FTC diagnosis. Our study on CAD of FTC is different

from previous CAD works. We not only simply propose a CAD

system for FTC and justify its performance on different subsets

of the TUS images, but also verifies its efficiency on facilitating

and improving the performance of physicians with different

levels of experience. The new contribution of this study includes

two folders: 1) a novel CAD system for FTC diagnosis is

proposed using a transfer learning on a deep residual

convolutional neural network (CNN); 2) clinical experiments

are studied to justify the performance improvement of

radiologists with CAD’s help. In addition, we consider

adenomatoid nodules besides FA and FTC, which is confusing

to classify with follicular neoplasms on TUS and cytology, and

we balanced the dataset of benign and malignant cases.

The rest of the paper is organized as: the proposed method is

given in Section 2, Section 3 demonstrates the experimental results

and comparative analysis of different methods, and a detailed

discussion is given in Section 4. Finally, Section 5 concludes the

whole paper.
2 Materials and methods

2.1 Materials

A total of 1159 images were obtained from 412 patients at

Guangdong Provincial People’s Hospital from January 1st, 2012,

to December 12th, 2020, consisting of 351 images from 138 FTC

patients, and 808 images from 184 FA patients and 90 patients

with adenomatoid nodules. All of the patients included have

been performed TUS examination, thyroid resection and

paraffin pathological diagnosis in hospital. All samples have

been categorized into two classes: malignant class (FTC images),

and benign class (FA images and adenomatoid nodule images).

Table 1 shows the basic characteristics of subjects studied.

Among 412 patients, 274 are benign cases and 138 are in

malignant group. In benign group, 89 are male and 185 are

female, and they are 44.12 ± 13.26 years old and nodule size is

averagely 3.88 ± 1.48 cm. Among the malignant cases, 31 are

male and 107 are female, and their age is 43.85 ± 15.78 years old

and the average nodule size is 3.74 ± 1.97 cm.
TABLE 1 Characteristics of study subjects.

Benign group
(n = 274)

Malignant group
(n = 138)

Gender

Male 89(32.48%) 31(22.46%)

Female 185(67.52%) 107(77.54%)

Age (y) 44.12 ± 13.26 43.85 ± 15.78

Nodule size (cm) 3.88 ± 1.48 3.74 ± 1.97
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Ultrasound images acquisition: The US scans were

performed by radiologists with 1–18 years of experience in

thyroid imaging with a 7–12 or 6-13 or 7-14 MHz linear array

probe of different ultrasound machines, including HITACHI Hi

Version Ascendus, HITACHI Hi Version Preirus, HITACHI Hi

Version Avius, TOSHIBA Aplio 500, TOSHIBA Aplio 400,

Mindray Resona 8, Philips EPIQ 7, Supersonic Image

Aixplorer®. Image quality requirements are as follows: 1. Gray

scale ultrasound images are in JPG format and single-frame, and

dual-frame images need to be cut in two; 2. Images mustn’t be

covered with any manual mark, such as arrowhead,

measurement line, annotation, etc. Specially, the US images

needn’t any manual segmentation.
2.2 Proposed method

The process of constructing and validating the proposed

CAD system is shown in Figure 1 briefly. A database of 1159

images has been collected consisting of 351 malignant images

(MI) and 808 benign images (BI), and then was divided into two

subsets according to the ratio between benign and malignant

groups to train and test the proposed CAD system, which is

developed based on a transfer learning of a residual network

(ResNet) to extract features on TUS. Six radiologists with

different experiences participated in the experiments to verify

whether and how much the proposed CAD system helps to

improve their diagnostic performance.

In the proposed CAD system, a deep residual network is

redesigned by changing the architecture and output parts to

classify the TUS images. Firstly, basic layers in CNN are

introduced as follows.
Frontiers in Oncology 03
2.2.1 CNN
In deep learning networks, multiple layers are stacked one by

one, and the output of one layer becomes the input for the

following layer. A convolution layer is a basic layer where

different filters perform a convolution operation to extract the

features from the input images or the feature maps of former

layers with different kernels (8). The kernel weights are tuned

using a gradient descent approach with backpropagation.

Different activation functions such as rectified linear units

(ReLU), Sigmoid, Tangent, and softmax functions, are used in

activation layers to convert the nonlinear values into linear values.

Max pooling, Average pooling, Global Max pooling, and Global

Average pooling methods are used in the pooling layers to reduce

the redundant parameters. The fully connected layer is usually

directed to the final output layer where each neuron is connected

from the previous layer. The outputs of the fully connected layers

are interpreted as the estimated probability of the input images

belonging to a certain class. A global average pooling layer

calculates the spatial average of the feature maps from the

previous layer as the confidence to different categories, which is

more meaningful and interpretable because it corresponds to

feature maps with categories.

A residual network (ResNet) (9) proposed skip connections,

or short-cuts, to jump over some layers. Typically it consists of

convolutional layers, rectified linear units (ReLU) layers, and

layer skips.

2.2.2 Proposed transfer learning network
Transfer learning approach redesigns the pre-defined

network to make it finish different classification tasks, which is

able to reduce the time in training and improves the network’s

generalization ability. In our proposed transfer learning
FIGURE 1

Flowchart of the construction and validation of the proposed CAD.
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network, rather than building a model from scratch, a pre-

trained ResNet50 network, which was trained using ImageNet, is

selected as a backbone to extract the features from TUS images.

Inside it, a fully connected layer is modified to match the output

numbers of classified categories, and a binary cross-entropy

function is used as the loss function which computes the

binary cross-entropy (BCE) between predictions and targets

(10). The original ResNet is improved by adding a fully

connected layer for feature extraction and adding a global

average pooling to interpret these features in the classification

task. The idea is to generate one feature map for each

corresponding category of the classification task in the last

convolutional layer. Thus the feature maps can be interpreted

as categories confidence maps. Also, the global average pooling is

a structural regularizer to prevent overfitting for the

overall structure.
2.2.3 Gradient-weighted class
activation mapping

The proposed CAD system aims to help radiologists by

providing both the classification results and the salient features

on TUS images. The gradient-weighted class activation mapping

(Grad-CAM) method generates an activation map that

highlights the crucial areas (11). In the Grad-CAM method,

the gradients of the layers after the final convolutional layer

produce a map to highlight important areas, where each neuron

is assigned significance values which respondents to class-

specific information. The proposed CAD system uses the

Grad-CAM method to provide the visuality by focusing

attention on the critical lesion regions on TUS images.
3 Results

3.1 Platform settings

The modified deep learning model was trained on a server

with a 2 x Six-Core Intel Xeon processor and 128GB of memory.

The server is equipped with an NVIDIA Tesla K40 GPU with

12GB of memory.

To verify the efficiency of the proposed CAD system, a web-

based graphic user interface (WGUI) program was designed to

provide a platform for radiologists to perform diagnoses on TUS

images using the help of CAD. This WGUI randomly selects

images from the dataset, displays them in front of radiologists,

and provides diagnosis options for radiologists to select. It also

assists radiologists by providing the diagnosis results of CAD,

displaying color Grad-CAM maps, and marking salient feature

reference regions. An example is shown in Figure 2 in

demonstrating the diagnosis procedure with the WGUI.
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3.2 Image dataset settings

In the TUS dataset, to evaluate the classification performance

on the datasets with different ratios of two categories, images have

been selected twice to construct a balanced dataset and an

unbalanced dataset. There are 351 malignant images, 351

benign images and 702 images in total in the balanced dataset,

with each category represented by the same number of images.

The unbalanced dataset included all images without considering

the balanced among different categories, in which there are 351

malignant images, 808 benign images and 1159 images as a whole.
3.3 Evaluation metrics

A confusion matrix is used to evaluate classification

performance. In it, each row represents the instances of a

predicted class, and each column represents the instances of an

actual class. Given that a row of the confusion matrix corresponds

to a specific true value, two evaluation metrics, precision, and recall

(sensitivity) are calculated for multiple classifications as follows:

Precision ið Þ = Mii

ojMji
(1)

Recall ið Þ = Mii

ojMij
(2)

where Precision(i) is the fraction of samples where the

algorithm correctly predicted class i out of all predictions using

the algorithm, and Recall(i) is the fraction of cases where the

algorithm correctly predicted i out of all the true cases of i.Mij the

samples whose true class is i and prediction class is j.

F1-score is also used to evaluate classification performance

and defined as:

F1 ið Þ = 2� Precision ið Þ � Recall ið Þ
Precision ið Þ + Recall ið Þ (3)

Accuracy is one metric for evaluating classification

performance, which is defined as a fraction of correct

predictions out of total predictions as:

Accuracy =
Number   of   correct   predictions
Total   number   of   predictions

= oiMii

oijMij
(4)
3.4 Evaluation results on the
balanced dataset

In the balanced dataset where each category was represented

by the same number of images, 702 images were selected
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randomly from the whole dataset. In the balanced dataset, 75% of

the images were used for training and 25% for testing. 526 images

were in the training set, and 176 in the testing set.

Table 2 shows the confusion matrices on the proposed CAD

approach. In the tables of the confusion matrix, the rows

correspond to the predicted class and the columns correspond

to the true class. The diagonal elements correspond to correctly

classified observations, and the off-diagonal cells correspond to

incorrectly classified observations. Using the value from

confusion matrix, Recall, Precision, and F1-score were

calculated and shown in Table 3. Figure 3 shows the receiver

characteristics curve (ROC) and the area under ROC (AUROC)

is 0.892. The proposed CAD system achieves precision, recall,
Frontiers in Oncology 05
and F1-score values of 87.50%, 82.80% and 85.08% for

diagnosing benign cases, 81.82%, 86.75%, and 84.21% for

malignant cases. These results of the evaluation metrics also

indicate the proposed model achieves better performance than

all radiologists shown in Figure 4.

Table 4 shows the confusionmatrices on the evaluations of the

radiologists’ performance without and with the help of the

proposed CAD. We employed two groups of radiologists with

different levels of experience. Among them, three junior

radiologists had less than 3 years’ experience and three senior

radiologists had more than 5 years’ experience in TUS diagnosis.

The values of Recall, Precision, and F1-score are compared in

Table 5 which are results of the radiologists with and without
TABLE 2 Confusion matrix of the proposed CAD on the balanced
data set.

Actual

Predicted Benign Malign Total

Benign 77 16 93

Malign 11 72 83

Total 88 88
TABLE 3 Evaluation results of CAD on the balanced set.

Categories Precision Recall F1-score

Benign 87.50% 82.80% 85.08%

Malign 81.82% 86.75% 84.21%

Average 84.66% 84.77% 84.65%

Total accuracy 84.66%
fron
A

B

FIGURE 2

An example of the diagnosis procedure with the WGUI. (A) Diagnosis interface with the diagnosis results from the CAD. (B) Diagnosis interface
with Gad-CAM map.
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CAD’s helps. Figure 4 shows evaluation results for the proposed

CAD and different radiologists’ performance on balanced dataset.
3.5 Evaluation with the
unbalanced dataset

In the unbalanced dataset, all 1159 images were selected

from the original dataset. The same ratio (75% and 25%) was

used to split the dataset into the training and testing sets. From

the 1159 images, 869 were selected for training and 290

for testing.

Tables 6 and 7 show the confusion matrices and results of

the evaluation matrix of our proposed model on the unbalanced

dataset. Figure 5 shows the ROC and the value of AUROC is

0.932. Table 8 shows the confusion matrices of different
Frontiers in Oncology 06
radiologists’ performance without and with the help of the

proposed CAD on unbalanced dataset and Table 9 shows their

evaluation results. Figure 6 compares valuation results for the

proposed CAD and different radiologists’ performance on

unbalanced dataset.
4 Discussion

The proposed CAD system using the transfer learning of the

ResNet model was employed to identify FTC on TUS images. To

evaluate the classification performance of the CAD and the

ability to assist radiologists, a TUS dataset was collected, and six

radiologists were involved in the verification experiments.

Different images were selected to construct a balanced set and

an unbalanced set to evaluate the classification performance on
FIGURE 3

ROC curve of the proposed model on balanced data set.
FIGURE 4

Evaluation results for CAD and different radiologists on the balanced data set.
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the dataset with different ratios of two categories. The proposed

CAD system was trained and tested in the two datasets,

respectively. The results demonstrate that the proposed CAD

system accomplished high classification precisions on two sets.

The quantitative metrics results also justify its better

performance. The experimental results on the ability to assist

radiologists demonstrated that the CAD system can significantly
Frontiers in Oncology 07
increase the radiologists’ performance on the FTC diagnosis

on TUS.

Six radiologists participated in this study and were divided

into junior and senior groups according to their experience on

thyroid diseases diagnosis. Radiologists inside each group have

similar prior experience levels, which can prevent bias due to

experience inequalities. The performance in the identification of

FTC lesions of senior radiologists was better than junior ones;

however, the accuracy of both groups was not high. With the

assistance of the proposed CAD system, junior radiologists

achieved an accuracy similar to seniors, and both accuracies

are improved significantly. This finding provides evidence of the

CAD’s ability to help more physicians efficiently utilize TUS for

FTC evaluation and follow-up. This finding has much

practical significance.

Ultrasonography is limited in suggesting benign or malignant

in follicular tumors, although previous studies have reached some

positive conclusions. For example, Li et al. believed that an

interrupted halo and satellite nodule(s) with or without halo ring

are risk factors for FTC on ultrasound images (12), and Lee et al.

found that US characteristics of rim calcifications help to

differentiate FTC from FA (13). Those findings have limits to rely

on, partly because FTC and FA are highly similar in histopathology,

immunohistochemistry, genomics, and proteomics (14, 15), making

the US features of the two sharing a large overlap. As a result, in

human’s observation on TUS, FTC appears in similar sonographic

characteristics to the benign category (16).

FNA is challenging to distinguish between FA, FTC and

adenomatoid nodules, either. Combining TUS with FNA does

not work well in this situation, leaving a lot of controversies in

the clinical management of follicular pattern nodules (17).
TABLE 4 Confusion matrices between radiologists of different level
on the balanced data set.

Actual

Predicted Benign Malign Total

Junior radiologists

Benign 168 132 300

Malign 96 132 228

Total 264 264

Junior radiologists with CAD

Benign 159 91 250

Malign 105 172 277

Total 264 263

Senior radiologists

Benign 183 108 291

Malign 81 156 237

Total 264 264

Senior radiologists with CAD

Benign 205 79 284

Malign 59 185 244

Total 264 264
all numbers count all cases diagnosed by three radiologists.
TABLE 5 Evaluation results of radiologists on the balanced set.

Junior Radiologists Senior Radiologists Junior Radiologists with
CAD

Senior Radiologists with
CAD

Categories Precision Recall F1-score Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score

Benign 63.64% 56.00% 59.57% 69.32% 62.89% 65.95% 60.23% 63.60% 61.87% 77.65% 72.18% 74.82%

Malign 50.00% 57.89% 53.66% 59.09% 65.82% 62.28% 65.40% 62.09% 63.70% 70.08% 75.82% 72.83%

Average 56.82% 56.95% 56.62% 64.20% 64.35% 64.11% 62.81% 62.85% 62.79% 73.86% 74.00% 73.83%

Total accuracy 56.82% 64.20% 62.81% 73.86%
fro
TABLE 6 Confusion matrix of the proposed model on the
unbalanced data set.

Actual

Predicted Benign Malign Total

Benign 188 23 211

Malign 14 65 79

Total 202 88
TABLE 7 Evaluation results of CAD on the unbalanced set.

Categories Precision Recall F1-score

Benign 93.07% 89.10% 91.04%

Malign 73.86% 82.28% 77.84%

Average 83.47% 85.69% 84.44%

Total accuracy 87.24%
n
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According to the promising results in our study, CAD may shed

light on the diagnosis of FTC on TUS.

Several previous studies have demonstrated that AI classifier

matches or exceeds radiologists while qualitatively analyzing

thyroid nodules (18–20). It can easily identify and model a
Frontiers in Oncology 08
complicated nonlinear relationship in the image, and extract and

quantify key image features, whereby image diagnosis converts

from a subjective qualitative task to objective quantitative

analysis and this might sharply reduce the differences in

judgments among US professionals (21).

In our experiment, it was interesting that the performance of

radiologists with the assistance of the CAD system on the

diagnosis of FTC was still inferior to the proposed CAD system,

which was contrary to the experiment designer’s assumption. It

might be because the characteristics of many FTC cases are

ambiguous which make the diagnosis subjective, and senior

radiologists depend on more their experiences than the results

by CAD, which are more objective and consistent, displaying

remarkable advantages in diagnosis. Many factors hold the

practice of AI models back in the real world, such as lack of

explanation for conclusions from a black-box algorithm to solidify

the trust among CAD systems, physicians and patients (22, 23).

Humans indeed are required for oversight of AI’s algorithmic

interpretation of images and data, because of its potential pitfalls

and inherent biases which may increase systemic risks of harm,

raise the possibility of errors with high consequences, and amplify

complex ethical and societal issues (24).

It is insufficient for clinical decision-making with the

computer alone. Humans are the main subject of medical

practice. Some explanation techniques were used in our

proposed CAD system to facilitate the utilization. The output

of our CAD system was presented as diagnosing results with

probability, highlighted critical lesion regions, and Grad-CAM

maps. Clinicians can enter the field easily and give their verdicts
FIGURE 5

ROC curve of the proposed model on unbalanced data set.
TABLE 8 Confusion matrices between radiologists of different level
on the unbalanced data set.

Actual

Predicted Benign Malign Total

Junior radiologists

Benign 335 100 435

Malign 271 164 435

Total 606 264

Junior radiologists with CAD

Benign 395 85 480

Malign 211 179 390

Total 606 264

Senior radiologists

Benign 383 88 471

Malign 223 176 399

Total 606 264

Senior radiologists with CAD

Benign 461 76 537

Malign 145 188 333

Total 606 264
all numbers count all cases diagnosed by three radiologists.
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according to the visualized diagnostic results by the CAD system

as well as their own experience.

Currently, the diagnosis of FTC relies on a fairly complete

pathological evaluation of the tumor envelope. It has great clinic

significance accurately distinguish FTC from FA and

adenomatoid nodules before surgery to avoid rashly

performing thermal ablation. Further efforts will be taken,

such as grading the risk of suspicious follicular tumors based

on image characteristics and providing relevant suggestions to

distinguish what kind of nodules are not suitable for thermal

ablation. CAD has a lot of room for development in these efforts.

Compared to the previous CNN models on FTC TUS, the

total accuracy of our CAD system (84.66%on the balanced set and

87.24% on the unbalanced set) seems not outstanding, as Seo’s

model achieved an accuracy of 89.52%, and Yang’s model gained

an accuracy of 96%. However, the number of FAs is more than 5

times of FTCs in Seo’s testing set, and Yang’s testing set had no

exact information about FA/FTC ratio (6, 7). The huger the

number difference between the two compared groups is, the
Frontiers in Oncology 09
higher the accuracy is. Our testing sets are more balanced with

FA/FTC 351/351 in the balanced set and 808/351 in the

unbalanced set. What’s more, we consider adenomatoid

nodules besides FA to differentiate with FTC, which is more

confusing on TUS.

More improvements will be considered in future research.

For this study is a single study in one hospital, there may be

some differences on image acquirement in other hospitals and

the model needs to be refined on different images, and

prospective validation studies are also needed.
5 Conclusion

The proposed CAD system has promising performance in

the diagnosis of FTC and is able to facilitate the diagnosis

performance of radiologists with different levels. It is a reliable

complement for TIRADS and FNA in preoperative diagnosis of

follicular pattern nodules, which is challenging in clinic
FIGURE 6

Evaluation results for CAD and different radiologists on the unbalanced data set.
TABLE 9 Evaluation results on the unbalanced set.

Three Junior Radiologists Three Senior Radiologists Three Junior Radiologists
with CAD

Three Senior Radiologists
with CAD

Categories Precision Recall F1-score Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score

Benign 55.28% 77.01% 64.36% 63.20% 81.32% 71.12% 65.18% 82.29% 72.74% 76.07% 85.85% 80.66%

Malign 62.12% 37.70% 46.92% 66.67% 44.11% 53.09% 67.80% 45.90% 54.74% 71.21% 56.46% 62.98%

Average 58.70% 57.36% 55.64% 64.93% 62.71% 62.11% 66.49% 64.09% 63.74% 73.64% 71.15% 71.82%

Total accuracy 57.36% 64.25% 65.98% 74.60%
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medicine. It also might assist the development of a fast,

accessible screening method for thyroid diseases.
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