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Universitéde Montpellier,
France

*CORRESPONDENCE

Xionghui Mao
xiaomao.1900@163.com
Susheng Miao
drmiaosusheng@126.com

†These authors have contributed
equally to this work and share first
authorship

SPECIALTY SECTION

This article was submitted to
Molecular and Cellular Oncology,
a section of the journal
Frontiers in Oncology

RECEIVED 08 May 2022
ACCEPTED 29 June 2022

PUBLISHED 22 July 2022

CITATION

Wang L, Wang X, Guo E, Mao X and
Miao S (2022) Emerging roles of
platelets in cancer biology and their
potential as therapeutic targets.
Front. Oncol. 12:939089.
doi: 10.3389/fonc.2022.939089

COPYRIGHT

© 2022 Wang, Wang, Guo, Mao and
Miao. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author
(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Review
PUBLISHED 22 July 2022

DOI 10.3389/fonc.2022.939089
Emerging roles of platelets in
cancer biology and their
potential as therapeutic targets

Lei Wang1†, Xueying Wang2†, Erliang Guo3†, Xionghui Mao1*

and Susheng Miao1*

1Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China,
2Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University,
Changsha, China, 3Department of Surgery, The Second Affiliated Hospital of Harbin Medical
University, Harbin, China
The main role of platelets is to control bleeding and repair vascular damage via

thrombosis. They have also been implicated to promote tumor metastasis

through platelet-tumor cell interactions. Platelet-tumor cell interactions

promote tumor cell survival and dissemination in blood circulation. Tumor

cells are known to induce platelet activation and alter platelet RNA profiles.

Liquid biopsies based on tumor-educated platelet biomarkers can detect

tumors and correlate with prognosis, personalized therapy, treatment

monitoring, and recurrence prediction. Platelet-based strategies for cancer

prevention and tumor-targeted therapy include developing drugs that target

platelet receptors, interfere with the release of platelet particles, inhibit

platelet-specific enzymes, and utilize platelet-derived “nano-platelets” as a

targeted drug delivery platform for tumor therapy. This review elaborates on

platelet-tumor cell interactions and the molecular mechanisms and discusses

future research directions for platelet-based liquid biopsy techniques and

platelet-targeted anti-tumor strategies.

KEYWORDS

platelet activation, platelet aggregation activity, immune escape, NETosis, tumor
metastasis, liquid biopsy, tumor treatment
1 Introduction

Mature megakaryocytes produce platelets, which are the smallest circulating blood

cells. In 1968, Gasic and colleagues discovered a relationship between platelets and tumor

metastasis (1). Clinical data suggest that high platelet counts are consistently associated

with the increased potential risk of tumor progression in patients with cancer (2).
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Platelets play an important role in hemostasis and thrombosis;

they also promote tumor metastasis through platelet-tumor cell

interactions, which are associated with thrombosis formation.

Tumor cells induce platelet activation and alter platelet RNA

profiles (3). Activated platelets aggregate around circulating

tumor cells (CTCs) to form a platelet protective barrier that

protects tumor cells from immune destruction. Furthermore,

platelets also promote tumor cell migration and invasion of

distant organs by inducing tumor cell epithelial-mesenchymal

transition (EMT), angiogenesis, anoikis resistance, and

extravasation (4). This article reviews platelet-tumor cell

interactions and the specific molecular mechanisms. We

describe a liquid biopsy technique based on tumor-educated

platelets (TEPs). Here, we discuss platelet-based strategies for

cancer prevention and tumor-targeted therapy and highlight the

opportunities and challenges of aspirin and other platelet

inhibitors in cancer therapy.
2 Platelet structure and function

Platelets are small, specialized, non-nucleated blood cells.

The bone marrow and lung are the sites of considerable platelet

production, and the lung is an organ with considerable

hematopoietic potential. Functional platelets are 2-5 mm non-

nucleated discoid cell components with an average volume of 6-

10 femtoliters, and approximately 400 billion circulating

platelets are present per liter of blood. The mean survival time

of platelets after shedding from megakaryocytes is 5-7 days. The

cytoskeleton consists of many cross-linked actin filaments that
Abbreviations: ADP, adenosine disphosphate; ATP, adenosine triphosphate;

ATX, autotaxin; CAFs, cancer-associated fibroblasts; cAMP, cyclic AMP;

CCL, chemokine ligand; CLEC-2, C-type lectin-like receptor-2; COX2,

cyclooxygenase2; CTC, circulating tumor cell; CXCL, C-X-C motif ligand;

ECM, extracellular matrix; EGF, epidermal growth factor; EGFR, epidermal

growth factor receptor; EMT, epithelial-mesenchymal transition; GP,

glycoprotein; HT, hydroxytryptamine; H3Cit, citrullinated histone H3; IFN,

interferon; IL, interleukin; LPA, lysophosphatidic acid; MMP, matrix

metalloproteinase; MPO, myeloperoxidase; NE, norepinephrine; NET,

neutrophil extracellular trap; NK, natural killer; NKG2D, Natural-killer

group 2 member D; PAR, protease-activated receptor; PCR, polymerase

chain reaction; PDGF, platelet-derived growth factor; PD-1, programmed

cell death protein 1; PD-L1, programmed death-ligand 1; PGE2,

prostaglandin E2; PKA, protein kinase A; PSGL, P-selectin-glycoprotein

ligand; PM, platelet membrane; TCIPA, tumor cell-induced platelet

aggregation; TEP, tumor-educated platelet; TGF, transforming growth

factor; TLR, toll-like receptor; TME, tumor microenvironment; TSP,

thrombospondin; TXA2, thromboxane A2; VEGF, vascular endothelial

growth factor; 12-HETE, 12-hydroxyeicosatetraenoic acid.
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control the shape of the platelet. The structural rearrangements

of the cytoplasm in these cells include forming a dividing

membrane system, assembling dense tubular networks, and

forming granular platelet components. The platelet surface is

covered with a glycoprotein membrane, and the invaginated

plasma membrane of platelets increases the effective surface area

for absorption of coagulation protein and allows small molecules

to pass through and transfer their cytoplasmic contents to other

cells. Microparticles and exosomes derived from platelets are

biological carriers for intercellular communication (5). Platelets

contain approximately 40-80 alpha granules, 4-8 dense granules,

and a few lysosomes (6). Alpha granules contain various

proteins, including pro-angiogenic and anti-angiogenic factors,

whereas dense granules contain small molecular substances such

as calcium ions, 5-hydroxytryptamine (HT), and adenosine

triphosphate (ATP), and adenosine diphosphate (ADP).

Platelet-derived exosomes can deliver specific miRNAs, such

as miR-21, miR-223, miR-339, and miR-328 (7), which have

potential value in tumor detection and diagnosis (8).

In addition to hemostasis and thrombosis, platelets have

important roles in many physiological processes, including

inflammation, wound healing, angiogenesis, immune responses,

cancer, and neurodegenerative diseases (9) (Figure 1).
3 Role of platelets in cancer
dissemination

The metastatic potential of tumor cells is influenced by the

tumor microenvironment (TME). Tumor cells first leave their

primary growth site. After tumor cells enter the blood circulation

system and survive via platelet-mediated protection, the CTCs

undergo extravasation, anoikis resistance, and angiogenesis. The

interaction between tumor cells and platelets plays an important

role in all stages of tumor progression (Figure 2).
3.1 Tumor-cell-induced platelet
activation and aggregation

Tumor cell-induced platelet aggregation (TCIPA) is an

important process by which tumor cells stimulate platelet

aggregation through different mechanisms and release particle

contents (10). Almost immediately after CTCs enter the blood

circulation, platelets bind to CTCs and form TCIPA around

them (i.e., platelet-platelet, platelet-tumor, and tumor-platelet-

leukocyte aggregation). The TCIPA protects CTCs from high

shear stress and immune surveillance in the bloodstream,

promotes tumor metastasis, increases the risk of thrombosis,

and is inversely associated with prognosis and survival (11). The

ability of different tumor cells to induce TCIPA is related to their

different metastatic potential.
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TCIPA is associated with a higher risk of thrombosis. On the

one hand, in cancer patients, tumor-associated tissue factor

expressed by tumor cells interacts with platelet-derived

coagulation factors and produces thrombin. Thrombin not only

activates platelets and stimulates tumor cell growth, but also

promotes the adhesion of CTCs to platelets (12). Thrombin,

ADP, and thromboxane A2 (TXA2) interact with G protein-

coupled receptors P2Y1 and P2Y12 on the platelet surface and

initiate specific downstream signaling cascades (13). Upon

activation by thrombin, platelets can release granular factors that

promote TCIPA andmediate immune responses (14). On the other

hand, C-type lectin-like receptor (CLEC) -2, glycoprotein (GP) VI,

and FcRgIIA are tyrosine-activated motif immunoreceptors on

platelets. CLEC-2 mediates the binding of its immunoreceptor

tyrosine-phosphorylated Hemi-ITAM in the cytoplasm to

tyrosine kinase Syk to form a signaling complex (15). GPVI

cytoplasmatic tail and the FcRg cross-link and aggregate via a salt

bridge, leading to phosphorylation of the ITAM motif in the FcRg
Frontiers in Oncology 03
chain and activation of Syk, which downstream assembles LAT and

SLP76 signaling complex that ultimately leads to platelet activation

and aggregation (16). Tumor microparticles released by tumor cells

contain tissue factor and P-selective glycoprotein ligand (PSGL) -1

that bind to platelet P-selectin to activate and recruit platelets (17).

Integrin aIIbb3 on the activated platelets binds to the fibrinogen of

tumor cells, and outside-in signaling stimulates Rap1b-GTP and

phospholipase C and subsequently accelerates platelet activation

(18). High-mobility group box 1 released by tumors interacts with

toll-like receptor (TLR) 4 on platelets for local platelet activation

(19). Platelets are also activated by direct contact with molecules on

the tumor cell membrane surface (20) (Figure 3).

Tumor growth is accompanied by an increased risk of

platelet abnormalities and thromboembolic disease (21).

Platelets and coagulation proteins can form protective

thrombi around CTCs. A case-control study of 3220

participants showed that the risk of venous thrombosis or

embolism was 4–7.5 times higher in patients with malignant
FIGURE 1

Platelet activation and function. Thrombin activates G protein-associated PARs on the platelet surface during platelet activation, triggering
intracellular calcium flux and cAMP reduction. Other platelet activators include subendothelial matrix collagen, ADP, and TXA2 exposed during
vascular injury. TXA2 binds to the G protein-coupled receptors P2Y and TBXA2 receptor, stimulating platelet degranulation and release of their
contents. Platelets are important in hemostasis and thrombosis, inflammation, wound healing, immune responses, angiogenesis, and vessel
stability. ADP, adenosine disphosphate; cAMP, cyclic adenosine monophosphate; PAR, protease-activated receptor; TXA2, thromboxane A2.
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FIGURE 2

Platelet-tumor cell interactions in early steps of the metastatic cascade. After dissociating from the primary tumor, tumor cells enter the blood
vessels and rapidly pass through the circulation into the vasculature of secondary organs. Platelets aggregate around CTCs or around stalled
tumor cells to form a platelet protective barrier. Tumor cells promote platelet induction of NETs. Extravasation typically occurs within 1 to 3
days of the initial arrest, seeding into the stroma of the target tissue or organ and recruiting myeloid cells to the early metastatic niche. Tumor
cells may remain dormant or start growing again to initiate metastases, with only a few cells completing the metastatic cascade and forming
clinically relevant metastatic tumors. CTC, circulating tumor cell; NET, neutrophil extracellular trap.
FIGURE 3

CTCs interact with constituents of the blood circulation. (A) Cell adhesion molecules mediate adhesion and signal transduction between cells
and between cells and the extracellular matrix to promote tumor metastasis. Integrins and selectins play important roles in this process. On the
one hand, selectins can bind to leukocytes or endothelial cells to enable and maintain cell rolling. On the other hand, GPVI and podoplanin can
be involved in platelet-mediated tumor metastasis. (B) Platelets promote recruit neutrophils to generate extracellular traps, and NETs interact
with CTCs to form a protective barrier that facilitates CTC extravasation and the formation of metastatic niches. CTCs promote platelet-induced
NETosis, associated with increased complications such as tumor-associated thrombosis, venous thromboembolism, and tumor metastasis.
(C) Growth factors secreted by platelets (such as VEGF, PDGF, and FGF) bind to the corresponding receptors (such as integrins, Notch signaling
receptors), which may regulate tumor angiogenesis and vascular integrity. CTC, circulating tumor cell; EGF, epidermal growth factor; GP,
glycoprotein; NET, neutrophil extracellular trap; PDGF, platelet-derived growth factor; VEGF, vascular endothelial growth factor.
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tumors versus patients with non-malignant tumors (22). The

incidence of venous thrombosis and embolism was higher in

patients with pancreatic cancer, brain cancer, gastric cancer

(23), or gynecologic malignancies (24). Thrombocytosis has

been observed to be associated with poorer progression-free

survival and overall survival in lung, colorectal, gastric, breast,

kidney, brain, pancreatic, and some gynecologic tumors (2,

25–27).
3.2 Platelets promote tumor evasion of
immune destruction

Natural killer (NK) cell patrolling is the predominant form of

anti-tumor surveillance by the immune system during the

cascade of tumor metastasis (28). Cell lysis occurs through

different mechanisms: binding of death receptors, secretion of

the tumor suppressor interferon (IFN) -g, and release of cytotoxic
particles. Activated platelets can aggregate on the surface of CTCs

to form a thrombus and protect the CTC from high shear forces

in the blood circulation and from NK cell-dependent tumor cell

lysis (29). Tumor cells masquerade themselves as platelets by

displaying platelet cell receptors on their surface, which
Frontiers in Oncology 05
essentially consists of major histocompatibility complex I

expressed in high levels by platelets and then transferred to the

CTC surface (30). This “platelet mimicry” enables tumors to

evade recognition and attack by NK cells (31). NK group 2

member D (NKG2D) is the only in vivo receptor that can

recognize soluble major histocompatibility complex I molecule-

associated protein A/B, which can inhibit NK cell toxicity and

anti-tumor activity (32). TEPs secrete large amounts of platelet-

derived growth factors (PDGFs), such as IFN-g or transforming

growth factor (TGF) -b. TGF-b downregulates the expression of

the NKG2D receptor and thereby reduces the anti-tumor effect of

NK cells (33). Platelet-derived ADAM10 can regulate NKG2D

receptor expression by NK cells and promote NKG2D ligand

release (34). Similarly, TGF-b is closely related to the

overexpression of glucocorticoid-induced TNF receptor-related

ligand in activated platelets that can interact with related

receptors on NK cells and inhibit their action (35). TGF-b also

inhibits NK cell function by inhibiting the mammalian target of

rapamycin activity (36).

In addition to NK cells, platelet-derived TGF-b converts

CD4+ T cells into inducible regulatory T cells and exerts anti-

tumor immunity by attenuating tumor-infiltrating lymphocytes

(37). In head and neck squamous cell carcinoma, platelets can
FIGURE 4

Escape of tumor cells from immune surveillance. (A) Platelets bind to tumor-derived HMGB1 via TLR4 and interact with podoplanin-expressing
tumor cells via CLEC2 to stimulate their activation. (B) Activated platelets and fibrinogen can form a protective barrier against the mechanical
forces of blood flow and also against NK cell attack. In addition to providing physical shielding, platelets can protect CTCs from circulating NK
cell-mediated tumor lytic activity and can interfere with tumor cell recognition by NK cells. (C) TEPs as a noninvasive biomarker source for
cancer detection and progression monitoring. The examination of TEPs mainly includes ultra-deep, massively parallel, and long-read
sequencing of TEP transcripts and possible detection of epigenetic transcriptional signatures. Improving the sensitivity and accuracy of
detection techniques and the specific selection of tumor-affected platelets can improve diagnostic accuracy and treatment prediction. CLEC-2,
C-type lectin-like receptor-2; CTC, circulating tumor cell; HMGB1, high-mobility group box 1; NK cell, natural killer cell; TEPs, Tumor-educated
platelets; TLR, toll-like receptor;.
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reduce the expression of programmed cell death protein 1 (PD-

1) on CD4+ T cells and inhibit the production of IFN‐g and

TNF-a cytokines (38). Platelets may also inhibit IFN-g
production and T cell proliferation by releasing lactate (39).

Platelets reduce tumor cell recognition and cytotoxicity by NK

cells by reducing the expression of CD112 and CD155 on tumor

cells and their related receptors CD226 and CD96 on the NK

cells (40) (Figure 4).
3.3 Platelet interactions with neutrophils
of the tumor microenvironment

Platelets and neutrophils are two key players in the early

innate immune response in blood circulation. Neutrophils in the

TME expel intracellular contents and DNA in cobweb-like

chromatin structures in the form of neutrophil extracellular

traps (NETs). Cell death occurring by NADPH oxidase mediated

by NET capture is known as NETosis (41). NETs have been

identified as an important factor in tumor-associated

thrombosis, venous thromboembolism, and tumor metastasis

(42). Neutrophils can cause histone citrullination by the enzyme

peptide arginine deiminase 4 (43). NET activates platelets by

releasing norepinephrine (NE), citrullinated histone H3 (H3Cit),

and myeloperoxidase (MPO), all three of which are the most

reliable markers of persistent NETosis (44). High levels of H3Cit

have been observed in the plasma of cancer patients and have

been associated with poor prognosis (45).

Extracellular DNA in NETs affects platelet activation and its

prothrombotic function by enhancing the TCIPA formation

(46), and tumor-activated platelets are a pro-NETosis

component in the TME (47). Similar to the platelet protective

barrier, NETs interact with CTCs via b1-integrin to form a

protective barrier, thereby promoting the survival and

extravasation of CTCs in the blood circulation (48). Cytokines

expressed by tumor cells, such as granulocyte colony-stimulating

factor and interleukin (IL)-8, directly induce NETosis in tumor

cells (49). Similarly, tumor-derived fibronectin ED-A stimulates

platelet aggregation and thrombosis through TLR4 and

promotes platelet-induced NETosis (50). Furthermore,

lipopolysaccharide stimulation of platelets or tumor-derived

factors via TLR4 enhances platelet-neutrophil adhesion and

induces NETosis, but does not promote platelet aggregation or

upregulate P-selectin expression (51). Activated platelets expose

P-selectin on the surface, which interacts with the neutrophil

PSGL-1 receptor, promoting neutrophil activation and

thrombosis (52). Studies have shown that in mice

overexpressing P-selectin, platelets can induce NETosis,

whereas, in those deficient, tumor angiogenesis cannot be

induced (53) (Figure 3).
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3.4 Platelets induce an invasive
epithelial-mesenchymal transition
phenotype of tumor cells

The metastatic potential of tumor cells is closely related to

EMT; tumor cells gradually lose epithelial identity and

morphology and acquire mesenchymal properties such as cell

motility, invasiveness, and resistance to apoptosis (54). Platelet-

treated tumor cells show downregulated E-cadherin levels (55)

and upregulated expression of mesenchymal markers such as

Snail, vimentin, fibronectin, plasminogen activator inhibitor 1,

and matrix metalloproteinase (MMP)-9. Transferred signaling is

thereby activated in platelet-treated tumor cells (56).

Tumor cell invasion-metastasis cascade is initiated via the

TGF-b/Smad and NF-kB signaling pathways activated by

platelet-derived TGF-b. The TGF-b/Smad pathway can also be

activated by direct contact with integrin a2b1 (37). CLEC-2 on

platelets binding with podoplanin on tumor cells can induce

platelet release of TGF-b and promote EMT (57). Inhibition of

podoplanin inhibits metastatic progression in lung squamous

cell carcinoma (58). Platelet-mediated EMT of tumor cells is

promoted by many microRNAs and other mediators released by

platelets in addition to TGF-b, including prostaglandin E2

(PGE2), PDGF, and lysophosphatidic acid (LPA) (59). PGE2

promotes tumor cell EMT and invasion by interacting with

oncogenic signals, including epidermal growth factor (EGF) and

epidermal growth factor receptor (EGFR) (60). In renal cancer,

PGE2 promotes progression by activating the cyclic AMP

(cAMP)/protein kinase A (PKA)-cyclooxygenase2 (COX2)

signaling pathway (61). Thrombospondin (TSP) 1 and

platelet-derived PDGF promote tumor invasion and metastasis

by upregulating MMP2/MMP9 expression and inducing EMT

through the p38 MAPK signaling pathway (62, 63). Platelet-

derived LPA stimulates the secretion of IL-6 and IL-8 by

activating the autotaxin (ATX)/LPA signaling axis, which

suppresses immune responses and promotes cancer cell

invasion and metastasis, upregulates oxidative stress and drug

resistance-related gene expression, and stabilizes nuclear factor-

like 2 to induce chemoresistance (64). Platelet-derived LPA, in

turn, is promoted by the interaction of platelets with tumor cell

CD97 and subsequent activation of platelets through LPA-

mediated signaling (65). Both tumor mesenchymal stem cells

and tumor-activated platelets may release the chemokine ligand

5 (CCL5) (66). CCL5 and EGF can induce tumor cell invasion by

promoting IL-8 secretion from tumor cells via Akt signaling

activation (67). CCL5 released by tumor-activated platelets

mediates migration and chemotaxis of T lymphocytes and

monocytes, and anti-chemokine receptor-5 therapy causes

tumor-associated macrophages to switch from pro-tumor to

anti-tumor roles in patients with liver metastases (68).
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EMT plays an important role in tumor resistance, recurrence,

and metastasis. EMT is also said to contribute to treatment

resistance because of reversible epigenetic changes observed in

acquired chemoresistance due to molecular and phenotypic links

that exist between drug resistance and EMT changes in tumor

cells. EMT may also promote radio-resistance in multiple tumors,

potentially providing important new avenues for the development

of new therapeutic strategies (69, 70).
3.5 Platelets facilitate tumor anoikis
resistance and extravasation

Extravasation usually occurs within 1-3 days of tumor cells

entering the circulation. Anoikis is programmed cell death

resulting from the detachment of cells from the extracellular

matrix (ECM) (71). Before metastasis, CTCs lose their platelet

protective barrier during extravasation. Successful metastasis of

tumor cells requires the formation of an early metastatic niche to

acquire an anoikis resistance (72).

Platelet-derived PDGF, LPA, and 12-hydroxyeicosatetraenoic

acid (12-HETE) promote the release of MMPs from the CTCs (73).

During metastasis, MMPs and platelets decompose most of the

ECM components and increase endothelial cell permeability, and

the exposed collagen proteins induce platelet recruitment to

endothelial cells (74). Additionally, ATP binds to the vascular

endothelial receptor P2Y2 and increases endothelial permeability

(75). Furthermore, platelet-derived ATX can convert

lysophosphatidylcholine to LPA (76). which then binds to LPA

receptor-1 on the CTC, enabling tumor cells to acquire anoikis

resistance by induction of the RhoA-Ga12/13-YAP-1 signaling

(77). Additionally, PDGF-BB can promote pancreatic tumor cell

anoikis resistance through YAP signaling (78).

Platelets release chemokines or cytokines, including TGF-b,
platelet factor 4/C-X-C motif ligand (CXCL) 4, CXCL7, stromal

cell-derived CXCL12, vascular endothelial growth factor (VEGF),

and CCL5, to promote the activation of endothelial cells or induce

the recruitment of bone marrow-derived cells to distant organs

(79). CCL and CXCL promote vascular extravasation by recruiting

lymphocytes, granulocytes, and monocytes to form an early

metastatic niche (80). TGF-b, expressed by tumor cells or

platelets, initiates the early metastatic niche and growth of

fibroblasts at metastatic sites by enhancing the expression of the

ECM proteins periostin and tenascin (81). Similarly, VEGF-A

released by CTCs increases the permeability of vascular

endothelial cells via von Willebrand factor secretion (82).
3.6 Impact of platelets on tumor
angiogenesis and vascular remodeling

When tumors reach a critical size of a few cubic millimeters,

they induce angiogenesis for the supply of oxygen and nutrients
Frontiers in Oncology 07
and the removal of metabolic waste. Most of the angiogenesis-

related factors in the circulation are released by platelets, thereby

regulating tumor angiogenesis and maintaining vascular

integrity (83). Platelets can actively synthesize proteins upon

stimulation, or megakaryocytes can selectively transfer a subset

of proteins or mRNAs to platelets (84). Platelets take up these

factors by endocytosis and segregate them into distinct a-
granules, such as VEGF, PDGF, basic fibroblast growth factor,

and EGF (85). VEGF is one of the most important proteins

stimulating angiogenesis in distant metastases (86).. Platelets

activate selective protease-activated receptor (PAR) 1 to

stimulate the release of VEGF-containing particles while

reducing angiogenic endostatin expression. Conversely,

platelets activate selective PAR4 to stimulate the release of

endostatin-containing particles (87).

Thrombin is a key factor involved in tumor angiogenesis.

Thrombin induces the proliferation of transformed cells and

enhances VEGF expression by activating the PAR-1 receptor

(88). ADP stimulation of platelets also promotes VEGF release

and inhibits endostatin release, thereby favoring tumor

angiogenesis (89). The CD40 on platelets also promotes

angiogenesis (90). Furthermore, platelet-secreted CXCL12 can

recruit hematopoietic progenitor cells and thus promote

angiogenesis (91). Along with regulating tumor angiogenesis,

platelets also regulate tumor vascular integrity by inhibiting

immune cell invasion into the tumor tissue. Platelet-secreted

5-HT maintains tumor vascular stability by counteracting tumor

cell-derived VEGF (92) (Figure 3).
4 Tumor-educated platelets as
biomarkers of cancer

4.1 Tumor-educated platelets
transcriptomes

Tumor cells can induce alterations in the platelet

transcriptome profile either directly (by transferring tumor-

derived RNA) or indirectly (by releasing signals that regulate

platelet mRNA processing), thereby stimulating protein

synthesis to generate tumorigenic platelets (93). Platelets can

uptake circulating proteins and several types of RNA, including

mRNA, miRNA, circRNA, lncRNA, and mitochondrial RNA,

from the TME (94). Platelet microparticles serve as intercellular

carriers to deliver mRNA regulatory Ago2•microRNA

complexes to endothelial cells and potentially to other

recipient cells in the circulation (95). This communication

model suggests that the platelet transcriptome can influence

gene expression in recipient cells (93). Tumor cells “educate”

platelets in at least the following three ways: 1) by inducing

protein translation and subsequent RNA decay; 2) by

stimulating specific RNA splicing events; 3) by isolating and
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releasing RNA from the circulation (56). TEPs are advantageous

as biomarkers because they are abundant, are easy to isolate, and

possess the ability to process RNA in response to external signals

(96). Other platelet-derived liquid biopsy biomarkers include

platelet count, artificially educated platelets, and platelet RNA

and proteomic analysis.
4.2 Emerging technologies for tumor-
educated platelets biomarkers

Platelets are a source of RNA biomarkers that exchange

information. Detection of tumor-derived RNA requires ultra-

deep massive parallel sequencing or targeted methods, droplet

digital polymerase chain reaction (PCR), real-time PCR, or

amplification refractory mutation system PCR. Therefore, an

optimal biomarker-to-background ratio is required to ensure the

identification and development of tumor biomarker assays. The

transcriptome potential of diagnostic TEPs was first investigated

in 2010 by using microarray analysis on platelet mRNA from

metastatic lung cancer patients and healthy donors, which found

that platelets can induce tumor growth and progression by

releasing epigenetic silencing factors (97). Nilsson et al. found

tumor-derived PCA3 transcripts and EGFRvIII in platelets

isolated from prostate cancer and glioma patients, respectively,

which demonstrated that tumor cells could transfer RNA into

platelets (98). Davizon et al. demonstrated the remarkable

stability of platelet RNA over time (99). Altered spliceosome

function in cancer may explain the distinct splicing events

observed in the TEP RNA signature profile (100). The

efficiency of surrogate TEP RNA signature in detecting

mutations was evaluated by comparing targeted deep

amplification sequencing of KRAS and EGFR mutations. The

wild-type/mutation ratio of specific mutant tumor markers

detected in plasma was found to be more reliable (101).

Importantly, TEP mRNA sequencing was able to identify

cancer with 96% accuracy and distinguish six primary tumor

types with 71% accuracy, including non-small cell lung cancer,

glioblastoma, colorectal cancer, pancreatic cancer, hepatobiliary

cancer, and breast cancer (101).

This RNA modification in the TEP transcriptome may

represent a new diagnostic biomarker. Another potential

biomarker found in platelets is circRNA, produced from

precursor mRNAs by a back-splicing mechanism. CircRNAs

can act as sponges for miRNAs and RNA-binding proteins.

CircRNAs can be selectively released into vesicles by platelets

and may be involved in signaling pathways (102). Compared to

several types of nucleated cells, circRNAs are 17-188-fold

enriched in platelets (103). Furthermore, open reading frames

in circRNAs can be translated to produce functional

polypeptides (104). Third-generation or long-read sequencing

may be another potential approach to improve the assessment of
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variants present in platelet transcriptomic profiles. Oxford

Nanopore Technologies has now developed a direct

sequencing protocol for RNA molecules, and this protocol is

immune to reverse transcription and RNA amplification and

enab l e s the de t e c t ion o f ep i t r ansc r ip tomic ba se

modifications (105).

As mentioned earlier, combining liquid biopsy sources for

cancer detection and localization is effective. In patients with

metastatic colorectal cancer and upper urinary tract cancer with

a tumor diameter >3 cm, the platelet/lymphocyte ratio was

found to be correlated with tumor location and prognosis

(106, 107). In patients with oral and lingual squamous cell

carcinoma, the platelet-to-neutrophil ratio can predict lymph

node metastasis (108). Further research is needed to understand

the mechanism of RNA transfer between platelets and tumor

cells; this would include the use of mouse models,

megakaryocyte analysis, and platelet RNA and proteomic

multi-omics analysis. Tumor cells are injected intravenously

into experimental mice, which is generally considered a

standard model for studying hematogenous spread. Despite

some limitations (for example, no primary tumor, tumor cells

are injected in a single event rather than dispersed over a long

period, etc.), this experimental setup also provides fundamental

advantages: 1) it allows close temporal monitoring of early

interactions between individual tumor cells and the host TME;

2) it allows precise characterization of specific steps of the

metastatic cascade affected by specific experimental treatments

(109). Zaslavsky et al. demonstrated that tumor education of

macrophages could affect platelet content (110). Bone marrow

macrophages show high expression of anti-angiogenic TSP1,

which may be responsible for the different TEP phenotypes

(111). An important method to study the platelet release in vitro

is mass spectrometry-based proteomics, including targeted

analysis, post-translational modification, and multi-omics

approaches (112). In ovarian cancer, the multi-omics analysis

identifies the key genes associated with N6-methyladenosine

RNA modification and are mainly involved in the platelet

activation pathway (113). Designing extensive prospective

studies to statistically validate individual TEP markers or their

RNA signatures can help us better understand and monitor

cancer progression (Figure 4).
5 Therapeutic use of platelet
inhibitors and targeted drug
delivery platform

Platelet-based tumor-targeted therapy strategy consists of a

targeted drug delivery platform for tumor therapy by developing

antiplatelet drugs and by using platelet-derived “nano-platelets”.

Many drugs targeting platelet receptors, interfering with the
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release of platelet particles, or inhibiting platelet-specific enzymes

are already in clinical use or preclinical development (Table 1).
5.1 Platelet inhibitors and anticoagulants
in cancer therapy

5.1.1 Aspirin use in cancer therapy
Aspirin inhibits COX isoform-related inflammation and

apoptosis and inhibits the release of MMPs from platelets,

thereby preventing the degradation of ECM and reducing CTC

invasion (114). Additionally, aspirin may also inhibit the IkB
kinase b signaling and extracellular signal-regulated kinase

(115). Aspirin inhibition depends on the dose, duration, and

even cancer type.

In 2007, the United States Preventive Services Task Force

recommended against the routine use of aspirin to prevent any

cancers (116). The ARRIVE trial (Aspirin Reduces Risk of Initial

Vascular Events) found that routine use of aspirin increases

cancer incidence (117). Results of the ASPREE trial (Aspirin in

Reducing Events in the Elderly) showed that there were 127
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lower GI bleeds (73 in aspirin and 54 in the placebo arm, HR

1.36, 95% CI 0.96 to 1.94, p=0.08) and 137 upper GI bleeds (89 in

aspirin arm and 48 in the placebo arm, HR 1.87, 95% CI 1.32 to

2.66, p<0.01). Long-term use of low-dose aspirin in healthy older

adults substantially increased the risk of gastrointestinal bleeding

(118). However, these trials had certain limitations: For example,

as follow-up was < 5 years, the benefit of aspirin in reducing

tumorigenesis may not have emerged; also, the study subjects in

both trials were older than 70 years and had a higher incidence

of early-stage undiagnosed cancers. ASPREE-XT (Aspirin in

Reducing Events in the Elderly Extension observational cohort

study) is an ongoing follow-up observational study of the

ASPREE trial to study the effect of aspirin on subjects of

different ages and tumor stages (118). Two ongoing trials are

expected to be completed in 2026: the ASCOLT (Anglo-

Scandinavian Cardiac Outcomes Trial) investigating the effect

of aspirin on post-surgical prognosis and standard

chemotherapy in Dukes B and C colorectal cancer patients,

and the Add-Aspirin trial investigating disease recurrence and

survival after primary therapy for non-metastatic solid

tumors (119).
TABLE 1 Platelet inhibitors and anticoagulants in cancer therapy.

Receptor Ligand Pathway Drug

GPIb(GPIX,GPIbb,GPIba,
GPVcomplex)

VWF FAK/Factin,CaM/Lyn/Syk/SLP76/Btk/PI3K/PLCg2 GSK2256098C,
PF562271PC,
Y15 & Y11PC, CEP37440PC

defactinibC,
PF573228PC,
H6B4PC,
NIT family mAbPC

GPIIb/IIIa (aIIb/b3) fibrinogen FAK/CIB-1/actin, ARP 2/3/actin polymerization,FAK/paxillin/RhoGEF abciximabC,
eptifibatideC,
tirofibanC,
mAb10E5PC, XV454PC

GPVI collagen CaM/Lyn/Syk/SLP76/Btk/PI3K/PLCg2 losartanPC,
scFv 9012PC, revaceptC

CLEC-2 podoplanin Syk/PLCg2 2CPPC, Mabs

P-selectin mucins, P-, E-, L-
selectins

Shc·Grb2·Sos1 rivipanselC,
Anti–P-selectin antibodyPC,
crizanlizumabC,
anti-CD24 antibody FL80PC,
heparinsC

avb3 fibrinogen
vitronectin

c-Src, FAK, paxillin, PI3K SB-273005PC,
SC-68448C,
EMD121974C, vitaxinC

PAR1 antagonist ADP GPCR/Gq/RhoGEF/Rho/ROCK/LIMK/cofilin/actin/MLCK/myosin,b-
arrestin

voraxoparC,
CH79797C,
RWJ 56110PC

P2Y12

Receptor
antagonists

ADP Gai2/AC clopidogrelC, ticlopidineC,
prasugrelC, ticagrelorC,
cangrelorC, elinogrelC

EP3, prostaglandin
E2 receptor antagonist

PGE2 GPCR/Gaq/PLCg/P/IP2/IP3/IP3R/Ca2+release/DAG/PKC/CalDAGGEF1/
Rap1B/RIAM/actin

DG 041PC
PC, pre-clinical; C, clinical.
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5.1.2 Platelet P-selectin
Selectin is a transmembrane cell adhesion molecule

expressed by platelets, endothelial cells, and leukocytes.

Selectins recognize ligands containing the tetrasaccharide sialic

acid Lewis a and x antigens, which are upregulated in many

tumors. P-selectin present in platelets has two major ligands,

PSGL-1 and CD44 (120). Following platelet activation, P-

selectin is released from alpha granules and translocated to the

platelet membrane (PM), where it is activated upon

ligand binding.

P-selectin plays a key role in tumor proliferation,

angiogenesis, and EMT by acting as a platelet molecular

switch to promote platelet adhesion and aggregation (121).

Furthermore, P-selectin promotes tumor metastasis by

functional inhibition of CD4+ and CD8+ T cells via

infiltration of regulatory T cells and aggregation of other cells

(122). The binding of P-selectin to leukocytes can support and

maintain cell rolling. Non-mucin ligands of P-selectin regulate

platelet binding to neutrophils to form NET, and NET can

recruit platelets and aid in immune escape and extravasation of

CTCs (123).

In mouse models, inhibiting P-selectin can reduce tumor

metastasis (124). P-selectin knockdown in mice with colon

adenocarcinoma resulted in reduced platelet-tumor cell

aggregation and, therefore, metastasis (125). Platelet P-selectin

inhibitors have been used clinically (126), but it remains to be

assessed whether they are safe, effective, and tolerable in cancer.

5.1.3 Platelet integrins
Integrins are heterodimers composed of alpha and beta

subunits (127). The four integrins identified in TEPs to play

roles in tumor progression include aIIbb3, avb3, a6b1, and
a2b1 (128). Integrin avb3 binds to fibrinogen and promotes the

formation of cross-linked barriers by platelets on the surface of

CTCs (129). Integrin avb3 binds to tumor cell CD97 and

promotes ATX-mediated anoikis res is tance (130) .

Furthermore, integrin a6b1-dependent platelet-tumor cell

interaction promotes the release of platelet granules and

increases the expression of MMP-1 and MMP-2 in CTCs,

favoring the extravasation of tumor cells (131). The interaction

between integrin a6b1 and MMP-9 expressed by CTCs

promotes efficient lung cancer metastasis (132).

Integrin aIIbb3 plays a central role in platelet activation,

adhesion, aggregation, and thrombus consolidation (133).

Activation of integrin aIIbb3 is dependent on the stimulation

and regulation of talin and kindlin cytoplasmic proteins (134).

such as GPVI, GPIB-IX-V, TXA2, thrombin, and ADP (135).

GPVI forms a cross-linked chain with integrin aIIbb3 on the

CTC surface binds to the collagen to form a cross-linking

barrier, and binds to Galectin-3 expressed by CTCs to

promote the secretion of TGF-b, EGF, and PDGF (136).

Antiplatelet GPVI antibodies cause tumor bleeding without
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systemic bleeding complications (4). JAQ1F(ab′)2 treatment

can inhibit the expression of GPVI and thereby significantly

inhibit the platelet cross-linking barrier formation and tumor

metastasis (75).

In a mouse model, platelet integrin aIIbb3 antagonists

inhibited hematogenous metastasis to the same extent as after

platelet depletion. However, long-term use of integrin aIIbb3
inhibitors increases the risk of bleeding (137). Currently,

molecular imaging of the active conformation of integrin

aIIbb3 on platelets has been used to detect activated platelets

noninvasively. Clinical safety and efficacy of bivalent humanized

nanobodies and aptamers with high binding affinity for von

Willebrand factor to block platelet aggregation is being evaluated

(138). Receipt (AdvanceCOR) is a soluble fusion protein that, at

clinically relevant concentrations, effectively prevents platelet-

induced upregulation of COX-2 and EMT markers in cancer

cells without reducing the expression of platelet GPVI receptors

or affecting platelet counts (139). Abciximab is a chimeric

human/mouse antibody directed against the integrin aIIbb3
receptor that binds to integrin avb3 on the tumor and

endothelial cells leading to integrin aMb2 expression on

leukocytes. This cross-reactivity on both platelets and

endothelial cells may contribute to the inhibition of tumor

angiogenesis (140).

5.1.4 Platelet CLEC-2
Podoplanin is a mucin-type transmembrane protein, also

known as D2-40, M2A, and AGGRUS (141). Podoplanin on

tumor cells is the only known endogenous ligand of CLEC-2, a

platelet receptor. CLEC-2-expressing platelets can be aggregated

and activated through the Src and PLCg-2 signaling pathways

(142). Podoplanin is widely expressed in the brain, lung, heart,

kidney, bone, and lymphoid organs (143), and high expression

of podoplanin is associated with an increased risk of venous

thromboembolism in tumor patients (144). Podoplanin is widely

used as a specific marker of lymphoid organs and lymphatic

vessels in the TME, and the number of Podoplanin-positive

vessels in the TME is often used as a diagnostic marker (143).

In the TME, podoplanin promotes platelet degranulation

and regulates signal transduction. Podoplanin-expressing tumor

cells have promoted hematogenous metastasis through the

CLEC-2-induced platelet aggregation (145). Podoplanin is

upregulated in cancer-associated fibroblasts (CAFs) and

immune cells of tumor stroma in adenocarcinoma and

colorectal cancer (146). Although associated with poor patient

outcomes (147), the effect of podoplanin expression in CAFs

may depend on the type of tumor cells and the tissue from which

the CAF originated. One study found that podoplanin

expression in colonic CAFs had a better prognosis and

podoplanin knockdown in transwell assays enhanced tumor

cell invasiveness (147). In vitro studies demonstrated that

forced expression of podoplanin in podoplanin-deficient cells
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resulted in a more mesenchymal phenotype and promoted

tumorigenesis and metastasis (143).

CLEC-2 inhibitors can potentially serve as new anti-tumor

therapeutic agents. For example, injecting podoplanin-positive

melanoma cells into the tail vein of mice pretreated with CLEC-2

antibody resulted in a significant reduction in CTCs, lung tumor

niches, and intratumoral thrombus (146). In addition, a

podoplanin-competitive platelet antagonist also showed anti-

metastatic properties (148). Although blocking podoplanin

inhibits tumor cell metastasis, platelet-targeting CLEC-2

inhibitors might be preferred as they reduce hematogenous

metastasis rates without a significant increase in bleeding risk

(149) (Figure 4).

5.1.5 Platelet PAR1 inhibitors
PAR1 is a GP-coupled transmembrane protein highly

expressed on platelets (150). In many tumors, PAR-1

expression levels correlate with poor prognosis (151). PAR-1

inhibitors can inhibit tumor metastasis by reducing the number

of platelets and targeting tumor cells (152). Some small molecule

inhibitors of PAR1 include Vorapaxar, Atopaxar, and PZ-128;

PZ-128 may be associated with a reduced risk of bleeding (153).

In a breast cancer model, silencing of PAR1 expression

with short interfering RNA or treatment with pepducin

PZ-128 inhibited PAR1-GP signaling and, therefore, PAR1-

related lung (154). However, PAR-1 inhibitors showed

opposite effects in pancreatic cancer and could not limit tumor

development (155).

5.1.6 Platelet P2Y12 inhibitors
The platelet surface GP-coupled receptor P2Y12 interacts with

tumor-derived ADP and initiates specific downstream signaling

cascades to induce platelet activation (13). Among P2Y12 receptor

antagonists, clopidogrel is the most widely used drug for the

treatment of vascular disease, whereas prasugrel and ticagrelor are

more potent and have a faster onset of action (156). In an

orthotopic mouse model of pancreatic cancer, clopidogrel at a

dose of 8 mg/kg completely inhibited ADP-induced platelet

aggregation, thus inhibiting cancer-related thrombosis and

tumor development and metastasis (157). In a mouse model of

ovarian cancer, transgenic knockout of P2Y12 in platelets or

treatment with ticagrelor resulted in a >60% reduction in the

growth of orthotopic (158). Despite these beneficial effects of

P2Y12 inhibition in a mouse cancer model, another trial showed

no difference in cancer rates between the clopidogrel and

prasugrel treatments (159). P2Y12 receptor antagonists and

PAR1 inhibitors may increase cancer risk, possibly because of

impairment of platelet natural barrier function, which can lead to

increased vascular permeability and extravasation of tumor cells

through circulation or metastatic sites (160). Long-term treatment

with clopidogrel and ticagrelor also showed a significant increase

in cancer-related deaths in the DAPT (dual antiplatelet therapy)
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and PEGASUS-TIMI 54 (Prevention of Cardiovascular Events in

Patients with Prior Heart Attack Using Ticagrelor Compared to

Placebo on a Background of Aspirin-Thrombolysis in Myocardial

Infarction 54) trials (161).
5.2 Platelet-based targeted drug
delivery platform

Platelet-mediated drug delivery systems consist of

nanoparticles that target platelet cell adhesion molecules to

bind to platelets; nanoparticles delivering antithrombotic or

anti-cancer drugs in this manner can act as powerful targeted

therapies (162). Major modalities include PM coating, platelet

engineering, synthetic platelets, and platelet-triggered drug

release (163).

Synthetic silica particles with PM coating specifically induce

tumor cell apoptosis through TNF-related apoptosis-inducing

ligand (TRAIL) on the surface (164). In addition, a PM-coated

core-shell nanocarrier (TRAIL-Dox-PM-NV) carrying TRAIL

and doxorubicin can aggregate on the surface of CTCs and

inhibit their survival and metastasis via P-selectin interaction

with CD44 (165). PM-coated core-shell nanocarriers carrying

doxorubicin and indocyanine green effectively inhibited growth

and metastasis of breast cancers with adequate blood supply but

were ineffective in ischemic pancreatic cancer (166). PM-

camouflaged magnetic nanoparticles trigger ferroptosis, which

induces tumor-specific immune responses and also effectively

repolarize macrophages from an immunosuppressive M2 to an

anti-tumor M1 phenotype, crucial in metastatic tumors.

Sustained tumor elimination was achieved in a murine

model (167).

Platelet engineering includes processes such as platelet

phagocytosis, platelet surface modification, and drug loading

through genetic manipulation (163). The TME promotes platelet

activation and release of platelet-derived microparticles. Platelets

conjugated to programmed death-ligand 1 (PD-L1), a

checkpoint inhibitor, by implanting hyaluronic acid hydrogels,

when released into the tumor lumen of mice with resected

subcutaneous melanoma tumors successfully inhibited local

tumor recurrence as well as distant tumor growth (168).

Platelet PD-L1 can also inhibit CD4+ and CD8+ T cells.

The data suggest that platelet PD-L1, reflective of the collective

tumor PD-L1 expression, plays an important role in the immune

evasion of tumor cells. This method of platelet engineering

overcomes the limitations of histological quantification of PD-

L1 expression within the often-heterogeneous tumors and can

help predict the immunotherapy response in non-small cell lung

cancer (169). Recombinant platelets expressing PD-1

constructed through platelet engineering technology can

effectively aggregate at surgical resection sites and inhibit

tumor recurrence via PD-1/PD-L1 interaction and thrombus
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formation. Cyclophosphamide carried by recombinant platelets

promotes the anti-cancer effects of CD8+ T cells (170, 171).

Designed using genetic manipulation technology, vadimezan

carried by platelets containing anti-PD-1 antibodies can

activate the immune system to express anti-tumor effects by

disrupting blood vessels at tumor sites (172).
6 Conclusion

In this review, by analyzing studies reporting macroscopic

blood signature changes to microscopic molecular mechanisms,

we elucidate the contribution of platelets at different stages of

tumor progression and their interactions with immune cells in

the TME. Future investigations should further evaluate the

underlying mechanism of the interaction between platelets and

tumor cells to find new platelet-targeted anti-tumor strategies as

adjuvant therapies for surgery. Circulating tumor DNA, CTCs,

extracellular vesicles, and TEPs may serve as valuable

biomarkers for cancer screening and diagnosis, and further

clinical trials are needed to validate the cancer types closely

associated with these features. TEP-based liquid biopsy is

currently a commonly used diagnostic tool, and its reliability

needs to be further demonstrated. Although many experimental

studies have identified platelet-dependent tumor metastasis

mechanisms, antiplatelet drugs have not been routinely used

in clinical settings to prevent and treat tumor metastasis.

Experimental validation of different drug-susceptible tumor

types is required, and effects on hemostasis and immune

responses need to be evaluated to choose treatments that

effectively block tumor metastasis with minimal potential

adverse effects.
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