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Background: Thyroid Cancer (TC) is the most common malignant disease of

endocrine system, and its incidence rate is increasing year by year. Early

diagnosis, management of malignant nodules and scientific treatment are

crucial for TC prognosis. The first aim is the construction of a classification

model for TC based on risk factors. The second aim is the construction of a

prediction model for metastasis based on risk factors.

Methods: We retrospectively collected approximately 70 preoperative

demographic and laboratory test indices from 1735 TC patients. Machine

learning pipelines including linear regression model ridge, Logistic

Regression (LR) and eXtreme Gradient Boosting (XGBoost) were used to

select the best model for predicting deterioration and metastasis of TC. A

comprehensive comparative analysis with the prediction model using only

thyroid imaging reporting and data system (TI-RADS).

Results: The XGBoost model achieved the best performance in the final thyroid

nodule diagnosis (AUC: 0.84) and metastasis (AUC: 0.72-0.77) predictions. Its

AUCs for predicting Grade 4 TC deterioration and metastasis reached 0.84 and

0.97, respectively, while none of the AUCs for Only TI-RADS reached 0.70.

Based on multivariate analysis and feature selection, age, obesity, prothrombin

time, fibrinogen, and HBeAb were common significant risk factors for tumor

progression and metastasis. Monocyte, D-dimer, T3, FT3, and albumin were

common protective factors. Tumor size (11.14 ± 7.14 mm) is the most

important indicator of metastasis formation. In addition, GGT, glucose,

platelet volume distribution width, and neutrophil percentage also

contributed to the development of metastases. The abnormal levels of blood

lipid and uric acid were closely related to the deterioration of tumor. The dual
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role of mean erythrocytic hemoglobin concentration in TC needs to be verified

in a larger patient cohort. We have established a free online tool (http://www.

cancer-thyroid.com/) that is available to all clinicians for the prognosis of

patients at high risk of TC.

Conclusion: It is feasible to use XGBoost algorithm, combined with

preoperative laboratory test indexes and demographic characteristics to

predict tumor progression and metastasis in patients with TC, and its

performance is better than that of Only using TI-RADS. The web tools we

developed can help physicians with less clinical experience to choose the

appropriate clinical decision or secondary confirmation of diagnosis results.
KEYWORDS

machine learning, thyroid cancer, thyroid nodule, risk prediction, metastasis
Introduction

Thyroid Cancer (TC) is one of the most common malignant

tumors of the endocrine system, with the ninth highest incidence

worldwide, and three times the incidence in women than in men

(1, 2). Neck ultrasound is the first choice for the clinical

diagnosis and identification of TC, which can reveal smaller

masses that are difficult to detect on palpation. Due to the

complexity and overlapping nature of thyroid nodule

echograms, ultrasound features may not be sufficient to

accurately and reliably distinguish malignant tumors from

benign nodules (3). Surgical resection is the primary

treatment, and the extent of thyroidectomy depends on the

pathologic type of TC and metastasis of lymph nodes (4).

Although the majority of patients TC have a good prognosis, a

subset of patients develops lymph node metastasis, whose five-

year survival rate is substantially reduced. Regional lymph node

metastasis in patients with differentiated thyroid cancer,

especially of a papillary type, has been frequent. For example,

papillary thyroid carcinoma (PTC) has a 24.1%-64.1%

probability of developing central lymph node metastasis

(CLNM) despite its slow progression, while the detection rate

of CLNM by ultrasound is low (5, 6). The incidence of lateral

cervical lymph node metastasis (LLNM) was second only to

CLNM. American college of radiology thyroid imaging reporting

and data system (ACR TI-RADS) has shown well concordance

with in-needle aspiration and is recommended for clinical

diagnosis of benign and malignant thyroid nodules (7). In the

TI-RADS classification standard, there is only TI-RADS 4.

However, the further detailed definitions are used in clinical

practice, which is 4a (one suspicious US feature), 4b (two

suspicious US features), 4c (three or four suspicious

US features).
02
Obesity, smoking, and hormones are all possible causes of

TC, and environmental factors, especially ionizing radiation, are

currently considered to be recognized risk factors for TC (8).

Early diagnosis, management of malignant nodules and

scientific treatment are crucial for TC prognosis. More and

more attention has been paid to the investigation of the

influencing factors of prognosis (9). As medical database

management improves, medical information is integrated and

standardized, and computing power increases, artificial

intelligence (AI), especially ML and deep learning, grows in its

potential use in medicine (10–14) Also, in many countries,

including China, Clinical follow-up observation is often used

for thyroid nodules with TI-RADS 3, and surgery is often used

for TI-RADS 5 and above. The choice of treatment for TI-RADS

4 (especially TI-RADS 4a) is controversial. Therefore, we

focused on the prediction of thyroid nodules with TI-RADS 4.

Timely and effective evaluation of preoperative risk factors

allows accurate differentiation of benign and malignant

thyroid nodules and screening of patients most likely to

metastasize. In general, the first aim is the construction of a

classification model for TC based on risk factors. Our second

aim is the construction of a prediction model for metastasis

based on risk factors.
Materials and methods

Participants

This retrospective study was approved by the Ethics

Committee of Shanghai Ruijin Rehabilitation Hospital. All the

procedures were implemented based on the principles of the

Declaration of Helsinki. Since this is a retrospective research and
frontiersin.org
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anonymized data were evaluated, patient consent was waived by

our institutional ethic committee. Each patient underwent

ultrasonography before surgery by the same group of five

ultrasound specialists (more than five years of clinical

experience). The TI-RADS classification was performed

according to the Guidelines for the diagnosis and treatment of

thyroid cancer (National Health Commission of the People’s

Republic of China, 2018.). All patients basically undergo US-

FNAB before the surgery, except for the following cases, huge

thyroid nodule (the diameter > 3 cm), sign of tracheal

compression and typical sign of lymph node metastasis.

All patients were diagnosed by pathologists based on

preoperative and postoperative specimens. Malignant patients

with non-papillary carcinomas have been excluded based on

postoperative pathological findings. Most patients’ diagnosis and

treatment process is shown in Supplementary Figure 1. The

target being predicted in this paper included, benign/malignant

thyroid nodules, benign/malignant thyroid nodules defined as

TI-RADS 4 or as TI-RADS 4a, central or lateral lymph node

metastases in the neck, etc. In addition, in our study, the

prediction targets are represented in binary (0: negative, 1:

positive). In the model construction of this study, we used the

Synthetic Minority Oversampling Technique (SMOTE)

algorithm to balance the training set. Meanwhile, AUC

calculation of TI-RAD score/level is based on the order grade

of TI-RAD ranking, and detailed stratification is shown in

Supplementary Table 1.
Data pre-processing and
feature selection

Our structured database initially contains approximately

70 clinical variables (Supplementary Table 2). First, features

with more than 30% missing were excluded. Similarly,

patients with missing features higher than this threshold

would also be removed from model construction Then, the

missing values of the categorical variables were filled by the

mode, and the continuous variables were filled by the

Missforest method (15). In order to reduce the influence of

the range difference of the features on the model construction,

the noncategorical data was processed by mean and SD.

Categorical data were further transformed into binary

dummy variables.

We used the LassoCV algorithm, which employs the leave-

one-out method, and then calculates the optimal l according to

the algorithm formula (16). The purpose of feature selection is

to determine the best subset of features that can be used to

predict each outcome variable. We used machine learning

method lasso regularization to construct feature subsets. The

predicted outcomes were benign or malignant diagnosis and

metastasis. The result diagram of each category includes AUC
Frontiers in Oncology 03
curve, PR curve, and factor importance diagram after feature

screening of Lasso. The top features selected by lasso which

contributed to each outcome was analyzed by using unpaired

Student’s t-test or Mann-Whitney U test for continuous

variables and Chi-squared or Fisher ’s exact test for

categorical variables between the positive and negative group,

as appropriate.
Development of ML-based models

Model development includes linear model Ridge, LR and

XGBoost machine learning models (17–19). The model was

trained in the training set using 10-fold cross-validation and

the grid search method was used to adjust the parameters of

each algorithm. Hyper-parameter tuning range of each

machine learning algorithm is shown in Supplementary

Table 3. In this procedure, the training data set is randomly

divided into 10 equal folds, each containing the same number

of events. Ten validation experiments are then performed, with

each fold used in rotation as the validation set, and the

remaining 9 folds as the training set. Therefore, each

hyperparameter combination was trained and tested for 10

times, the average values of 10 experimental models were

calculated to select the optimal global hyperparameter

measurement results. In order to quantify the model’s

discrimination, a test set was applied to evaluate the model.

Finally, we developed an online tool for XGBoost-based

malignant tumor TC diagnosis and metastasis. We used TI-

RADS alone to predict it for comprehensive comparison. The

data set was divided according to TI-RADS, including two

categories, namely, TI-RADS patients with 4a and all category

4 of TI-RADS. Figure 1 showed the study flowchart.
Statistical analysis

Continuous variables are expressed as mean ± SD for

normally distributed data. Categorical variables are presented as

frequency. Continuous variables were compared using analysis of

two-tailed Student’s t-tests for normally distributed data, and the

Mann–Whitney U-test or Kruskal–Wallis H-test for non-

normally distributed data. Categorical variables were compared

using the Chi-square test or the Fisher exact test. Test for the

assumptions of normality distribution and variance homogeneity

have been performed properly. Statistical analysis was performed

with R platform. P-values< 0.05 were considered statistically

significant. The evaluation index of categorical dependent

variable includes AUC, sensitivity (recall), specificity, accuracy,

FP Rate, precision, AP (Average precision), and F1. In addition,

the factor weight of the linear model is taken as the Importance of

the factor.
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Results

Patients’ characteristics

As shown in Table 1, our retrospective study cohort

consisted of 1304 (75.16%, including 691 TC and 613

benign thyroid nodules) females and 431 (24.84%, including

247 malignant TC and 184 benign thyroid nodules) males,

with a mean age of 44.58 ± 13.09 years, mean BMI of 23.33

± 3.45.
Predictive performance of
ML-based models

Predictive models for TC determining benign/malignant

and types of metastasis were developed based on these

algorithms. The predictive performance of the models is

shown in Table 2, including AUC, sensitivity, specificity,

accuracy, FP Rate, precision, AP, and F1. There are

significant performance differences between the different

models. All models we developed performed significantly

better than only TI-RADS. The AUC value of XGBoost

models is the most prominent in terms of all prediction (all

AUC values above 0.70).
Frontiers in Oncology 04
Predictive model for distinguish between
benign and malignant

All models have excellent performance in benign/malignant

prediction, and the accuracy rate is up to 0.75. Among them,

XGBoost obtains the highest AUC value of 0.84, and the

accuracy rate is 0.77 (Figure 2A). We use the AP value as the

criterion for the PR curve. AP value, a weighted mean of

precisions when achieved at a certain threshold.

AP =on(Rn − Rn−1)Pn

Where Pn (precision) and Rn (recall) are at the nth

threshold. (Rk, Pk) denotes an operating point.

It can be seen that the aPs of XGBoost models is 0.85 in

benign/malignant prediction (Figure 2B). The confusion matrix

(rounding) was also calculated for these models (Table 3). After

a comprehensive comparison, we think XGBoost is more

suitable for TC prediction. Feature importance was calculated

by the sum of the decrease in error when split by a variable,

reflecting each variable’s contribution to prediction. The

important features of the predictive model for benign/

malignant, as were shown in Figure 2C and Supplementary

Figure 2. The features, such as high-density lipoprotein,

fibrinogen quantification, BMI, and hepatitis B virus surface

antibody are risk factors (P< 0.05). The protective factors include

T3, age, monocyte, hepatitis B virus e antibody, aspartate

aminotransferase, FT3, and D dimer (P< 0.05).

Predictive model for lymph node metastasis
XGBoost obtains the highest AUC value of 0.72, and the AP

is 0.66 in lymph node metastasis prediction (Figures 2D, E). As

shown in Figure 2F and Supplementary Figure 3, size,

neutrophil, hepatitis B virus e antibody, and prothrombin time

all increase the likelihood of lymph node metastasis (P< 0.05).

On the contrary, age, monocyte, and eosinophil reduces this

possibility (P< 0.05).

Predictive model for central area metastasis
XGBoost obtains the highest AUC value of 0.72, and the AP

is 0.66 in lymph node metastasis prediction (Figures 3A, B). As

shown in Figure 3C and Supplementary Figure 4, size,

neutrophil, weight, and hepatitis B virus e antibody all

increase the likelihood of lymph node metastasis (P< 0.05). On

the contrary, age and monocyte reduces this possibility

(P< 0.05).

Predictive model for cervical metastasis
XGBoost obtains the highest AUC value of 0.77, and the AP

is 0.55 in lymph node metastasis prediction (Figures 3D, E). TC

patients with cervical metastasis tend to have an uneven echo

distribution. and is more likely to develop right cervical

lymphatic metastases (Supplementary Figure 5A). As shown in

Figure 3F and Supplementary Figures 5B, C, total bile acid, size,
FIGURE 1

Study flowchart.
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TABLE 1 Baseline characteristics of included patients.

Total (n=1735) Malignant (n=938) Benign (n=797) P-value

Age

Mean (SD) 44.58 ± 13.09 43.29 ± 12.72 46.10 ± 13.35 <0.01

BMI

Number of subjects 1668 895 773

Mean (SD) 23.33 ± 3.45 23.54 ± 3.70 23.08 ± 3.12 <0.01

Missing 67 (3.9%) 43 (4.6%) 24 (3.0%)

Gender

Number of subjects 1734 938 796

Female 1304 (75.16 %) 691 (73.67 %) 613 (76.91 %) 0.12

Male 431 (24.84 %) 247 (26.33 %) 184 (23.09 %)

Height

Number of subjects 1671 896 775

Mean (SD) 163.61 ± 7.62 163.78 ± 8.01 163.41 ± 7.14 0.31

Missing 64 (3.7%) 42 (4.5%) 22 (2.8%)

Weight

Number of subjects 1678 902 776

Mean (SD) 62.64 ± 11.39 63.31 ± 11.78 61.86 ± 10.88 <0.01

Missing 57 (3.3%) 36 (3.8%) 21 (2.6%)

TSH

Number of subjects 1479 792 687

Mean (SD) 2.32 ± 3.06 2.35 ± 1.95 2.27 ± 3.98 0.64

Missing 256 (14.8%) 146 (15.6%) 110 (13.8%)

FT3

Number of subjects 1470 787 683

Mean (SD) 4.94 ± 0.75 4.89 ± 0.72 5.00 ± 0.77 <0.01

Missing 265 (15.3%) 151 (16.1%) 114 (14.3%)

FT4

Number of subjects 1469 786 683

Mean (SD) 17.52 ± 3.65 17.49 ± 2.71 17.55 ± 4.49 0.78

Missing 266 (15.3%) 152 (16.2%) 114 (14.3%)

PTH

Number of subjects 1465 784 681

Mean (SD) 5.95 ± 9.85 5.57 ± 3.72 6.39 ± 13.88 0.14

Missing 270 (15.6%) 154 (16.4%) 116 (14.6%)

Ca

Number of subjects 1575 847 728

Mean (SD) 2.43 ± 0.26 2.43 ± 0.33 2.43 ± 0.14 0.58

Missing 160 (9.2%) 91 (9.7%) 69 (8.7%)

Gu et al. 10.3389/fonc.2022.938292
and prothrombin time all increase the likelihood of lymph node

metastasis (P< 0.05). On the contrary, monocyte, eosinophil, T3,

and albumin reduces this possibility (P< 0.05).

Predictive model for benign/malignant and
metastasis in classification All 4 (4a + 4b + 4c)
and 4a

The predictive power of benign/malignant and metastasis

for TI-RADS 4a and all category 4 of TI-RADS was developed

based on the three algorithms (all AUC values above 0.70) and
Frontiers in Oncology 05
was better than that identified by TI-RADS score alone (all AUC

values below 0.70) (Figures 4, 5). The performance of XGBoost is

still in the best position, and the AUC in predicting metastasis 4a

even reaches 0.97. In the model for predicting benign/malignant

in all category 4 of TI-RADS, the TI-RADS category was helpful

in identifying tumor progression, followed by BMI, creatinine,

prothrombin time, and thrombin time. When the ML model is

trained, the AUC is affected by the inclusion of TIRADS in the

features used. The AUC is improved when the predictors include

TIRADS. Partial thromboplastin time, monocyte, and T3 were
frontiersin.org
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TABLE 2 Performance summary.

Models AUC 95%CI sensitivity (recall) specificity accuracy FP rate precision AP F1

Lower bound Upper bound

Benign or Malignant

LR 0.82 0.77 0.86 0.86 0.69 0.78 0.31 0.76 0.83 0.81

Ridge 0.82 0.77 0.86 0.83 0.72 0.78 0.28 0.78 0.80 0.80

XGBoost 0.84 0.80 0.88 0.76 0.79 0.77 0.21 0.81 0.85 0.78

Lymph Node Metastasis

LR 0.68 0.58 0.78 0.43 0.88 0.70 0.12 0.71 0.64 0.54

Ridge 0.69 0.58 0.79 0.67 0.72 0.70 0.28 0.62 0.65 0.65

XGBoost 0.72 0.62 0.82 0.72 0.69 0.70 0.31 0.61 0.66 0.66

Central Area Metastasis

LR 0.67 0.57 0.77 0.84 0.49 0.63 0.51 0.52 0.55 0.64

Ridge 0.67 0.57 0.77 0.91 0.41 0.61 0.59 0.50 0.56 0.65

XGBoost 0.72 0.62 0.82 0.67 0.72 0.70 0.28 0.61 0.66 0.64

Cervical Metastasis

LR 0.76 0.57 0.95 0.80 0.77 0.77 0.23 0.30 0.35 0.43

Ridge 0.75 0.56 0.94 0.80 0.67 0.69 0.33 0.23 0.37 0.36

XGBoost 0.77 0.57 0.96 0.80 0.69 0.70 0.31 0.24 0.55 0.36

Benign / Malignant_All 4 (4a + 4b + 4c)

LR 0.78 0.75 0.82 0.67 0.76 0.71 0.24 0.8 0.84 0.73

Ridge 0.78 0.75 0.82 0.66 0.77 0.71 0.23 0.81 0.83 0.73

XGBoost 0.84 0.81 0.87 0.75 0.79 0.77 0.21 0.84 0.88 0.79

Benign / Malignant_4a

LR 0.72 0.67 0.77 0.74 0.63 0.68 0.37 0.58 0.61 0.65

Ridge 0.72 0.67 0.77 0.72 0.62 0.66 0.38 0.56 0.61 0.63

XGBoost 0.78 0.73 0.82 0.86 0.57 0.68 0.43 0.57 0.67 0.69

Metastasis_All 4 (4a + 4b + 4c)

LR 0.82 0.77 0.88 0.81 0.74 0.77 0.26 0.72 0.8 0.76

Ridge 0.81 0.76 0.87 0.78 0.72 0.75 0.28 0.70 0.79 0.74

XGBoost 0.84 0.78 0.89 0.74 0.80 0.78 0.20 0.76 0.82 0.75

Metastasis_4a

LR 0.95 0.91 0.99 1.00 0.8. 0.90 0.20 0.83 0.94 0.91

Ridge 0.94 0.89 0.99 0.96 0.84 0.90 0.16 0.86 0.92 0.91

XGBoost 0.97 0.95 1.00 0.96 0.92 0.94 0.08 0.92 0.97 0.94

Only TI-RADS

Benign or Malignant 0.79 0.75 0.84 0.76 0.73 0.75 0.27 0.77 0.76 0.77

Lymph Node Metastasis 0.50 0.41 0.60 0.89 0.15 0.45 0.85 0.41 0.40 0.56

Central Area Metastasis 0.55 0.45 0.64 0.93 0.22 0.50 0.78 0.44 0.41 0.59

Cervical Metastasis 0.62 0.49 0.75 0.89 0.41 0.46 0.59 0.14 0.12 0.24

Benign / Malignant_All4 0.69 0.66 0.72 0.66 0.72 0.68 0.28 0.77 0.71 0.71

Benign / Malignant_4a 0.50 0.49 0.51 1.00 0.00 0.41 1.00 0.41 0.40 0.58

Metastasis_All4 0.64 0.57 0.70 0.3 0.89 0.62 0.11 0.70 0.56 0.42

Metastasis_4a 0.50 0.47 0.53 1.00 0.00 1.00 0.50 0.50 0.67 1.00

Gu et al. 10.3389/fonc.2022.938292
negatively correlated factors (Figure 4C). In the model for

predicting benign/malignant in 4a category, the positive

correlation factors were white blood cell count, creatinine,

diastolic pressure, and the negative correlation factor were

partial thromboplastin time, monocyte, blood calcium,

lipoprotein etc. (Figure 4F). In the model for predicting
Frontiers in Oncology 06
metastasis in all category 4 of TI-RADS, the tumor size, TI-

RADS, and neutrophil% were risk factors in tumor metastasis.

Eosinophil, monocyte, age, and FT3 were negatively correlated

factors (Figure 5C). In the model for predicting metastasis in 4a

category, the large platelet ratio, size, and platelet count were risk

factors in tumor metastasis. Urea, eosinophil, monocyte,
frontiersin.org
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TABLE 3 Confusion matrices of predictive models.

Model Actual Predictive

Negative Positive

Benign or Malignant

LR Negative 109 50

Positive 26 162

Ridge Negative 114 45

Positive 32 156

XGBoost Negative 126 33

Positive 46 142

Lymph Node Metastasis

LR Negative 60 8

Positive 26 20

Ridge Negative 49 19

Positive 15 31

XGBoost Negative 47 21

Positive 13 33

Central Area Metastasis

LR Negative 34 35

Positive 7 38

Ridge Negative 28 41

Positive 4 41

XGBoost Negative 50 19

(Continued)
Frontiers in Oncology
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FIGURE 2

Evaluation of the malignant and lymph node metastasis predictive models. (A, D) The average ROC curves from of XGBoost and Only TI-RADS
models in the validation sets. (B, E) The average PR curves, indicating the tradeoff between precision and recall. (C, F) The histogram describes
the important features of the XGBoost predictive model for malignant and lymph node metastasis.
tiersin.org
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TABLE 3 Continued

Model Actual Predictive

Negative Positive

Positive 15 30

Cervical Metastasis

LR Negative 64 19

Positive 2 8

Ridge Negative 56 27

Positive 2 8

XGBoost Negative 57 26

Positive 2 8

Benign/Malignant_All 4 (4a + 4b + 4c)

LR Negative 246 79

Positive 152 315

Ridge Negative 251 74

Positive 159 308

XGBoost Negative 258 67

Positive 118 349

Benign/Malignant_4a

LR Negative 147 86

Positive 41 118

Ridge Negative 145 88

Positive 45 114

XGBoost Negative 132 101

Positive 23 136

Metastasis_All 4 (4a + 4b + 4c)

LR Negative 94 33

Positive 20 85

Ridge Negative 92 35

Positive 23 82

XGBoost Negative 102 25

Positive 27 78

Metastasis_4a

LR Negative 40 10

Positive 0 50

Ridge Negative 42 8

Positive 2 48

XGBoost Negative 46 4

Positive 2 48

Only TI-RADS

Benign or Malignant Negative 116 43

Positive 44 143

Lymph Node Metastasis Negative 10 57

Positive 5 40

Central Area Metastasis Negative 15 53

Positive 3 41

Cervical Metastasis Negative 34 49

Positive 1 8

Benign/Malignant_All 4 Negative 233 92

(Continued)
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hemoglobin, and thrombin time were negatively correlated

factors (Figure 5F).
Online tool for XGBoost-based
malignant tumor diagnosis
and metastasis

We developed an online tool (Cancer-thyroid.com) for

diagnosis of malignant thyroid cancer using biochemical

indicators (Figure 6). It is available for free at http://www.

cancer-thyroid.com/. By input patients ’ preoperative

eigenvalue can diagnose TC malignancy (AUC: 0.84) and

metastasis (AUC: 0.72) with excellent accuracy.
Frontiers in Oncology 09
Discussion

In this study, we collected about 70 kinds of pre-operational

indicators from 1735 patients with thyroid nodules, including

demographics, pre-operational blood tests, and ultra sound data.

Three ML models were developed and compared, namely Ridge,

LR, and XGBoost. The XGBoost model achieved the best

performance in the final TC benign/malignant diagnosis

(AUC: 0.84) and metastasis (AUC: 0.72-0.77) predictions. We

also compared ML prediction with Only TI-RADS for the

identification of high-risk thyroid nodules. We believe that the

XGBoost-based model is more convincing in predicting people

at high risk for TC because its AUCs for predicting Grade 4 TC

progression and metastasis reached 0.84 and 0.97, respectively,
TABLE 3 Continued

Model Actual Predictive

Negative Positive

Positive 159 308

Benign/Malignant_4a Negative 0 233

Positive 0 159

Metastasis_All 4 Negative 113 14

Positive 73 32

Metastasis_4a Negative 0 50

Positive 0 50
fron
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C

FIGURE 3

Evaluation of the central area and cervical metastasis predictive models. (A, D) The average ROC curves from of XGBoost and Only TI-RADS
models in the validation sets. (B, E) The average PR curves, indicating the tradeoff between precision and recall. (C, F) The histogram describes
the important features of the XGBoost predictive model for central area and cervical metastasis.
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FIGURE 4

Predictive models of evaluation of the benign/malignant nodules of all 4th category of TI-RADS and only 4th category. (A, D) The average ROC
curves from of XGBoost and Only TI-RADS models in the validation sets. (B, E) The average PR curves, indicating the tradeoff between precision
and recall. (C, F) The histogram describes the important features of the XGBoost predictive model for benign/malignant nodules of all 4th

category of TI-RADS.
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FIGURE 5

Predictive models of metastasis evaluation for benign/malignant nodules of all 4th category of TI-RADS and only 4th category. (A, D) The
average ROC curves from of XGBoost and Only TI-RADS models in the validation sets. (B, E) The average PR curves, indicating the tradeoff
between precision and recall. (C, F) The histogram describes the important features of the XGBoost predictive model for metastasis in all 4th

category of TI-RADS and only 4th category.
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while none of the AUCs for Only TI-RADS reached 0.70.

XGBoost as an open-source package, has shown excellent and

consistent performance in several recent ML prediction disease

and data mining challenges, such as COVID-19 mortality risk

(20), oropharyngeal cancer recurrence risk prediction (21), etc.

The observed model performance suggested that it was feasible

to derive effective ML prediction models of TC progression

diagnosis, which may play a significant role in predicting

etiologies of patients with suspected malignant tumors. In

addition, we have developed a web tool (http://www.cancer-

thyroid.com/) for clinical practice that can be widely used to

assess benign and malignant thyroid nodules (Only For Research

Use). Clinicians can visit the system website to enter the desired

clinical model by inputting the biochemical indicators of

patients, and then obtain the system’s prediction results based

on ML.

Statistical analysis of the electronic medical records included

in this study revealed that the risk of TC was approximately

three times higher in women than in men, which is consistent

with previous reports (22). Although the deterioration and

metastasis of TC did not seem to have gender difference, it

was associated with obesity (BMI: 23.54 ± 3.70), and tended to be

younger (43.29 ± 12.72). Prothrombin time (PT), fibrinogen

quantification, hepatitis B virus e antibody (HBeAb) were also

positively correlated with tumor progression and metastasis.

Monocyte, D-dimer, T3, FT3 and albumin were the common

protective factors to prevent the deterioration and metastasis of

TC. The link between thyroid disorders and hemostatic system is

well known and well established (23). Fibrinogen is an important

protein involved in coagulation and hemostasis. The presence of

fibrinogen can affect the growth and metastasis of malignant
Frontiers in Oncology 11
tumor cells. It has been known that the assessment of plasma

fibrinogen and fibrinolytic products is helpful for cancer

diagnosis, treatment effect and prognosis (24). Studies have

shown that cancer patients with HBeAb+ show unique clinical

characteristics, which is an independent risk factor affecting the

prognosis of the disease (25). Levothyroxine suppression

treatment for benign thyroid nodules alters coagulation

showed that D-dimer level increased after treatment (26).

Tumor size (11.14 ± 7.14mm) is the most significant index of

metastasis. In addition, gamma glutamyl transpeptidase (GGT),

glucose, platelet volume distribution width and neutral% are also

important risk factors. GGT levels have been shown in several

studies to play a role in cancer progression and to be an

important poor prognostic factor, such as increasing the

metastatic growth of B16 melanoma cells in the mouse liver

and increasing the likelihood of recurrence after hepatectomy in

patients with liver metastases from colorectal cancer (27, 28).

Neutrophils create a fertile soil for metastasis, but how they are

activated at the site of metastasis still needs to be explored (29).

Triglyceride and uric acid (UA) are unique risk indicators for

malignant TC tumors. Aspartate aminotransferase is a unique

protective indicator of TC deterioration. The level of blood lipid is

related to the outcome of many kinds of cancer, and TC patients

also have dyslipidemia (30). Binary logistic regression

demonstrated that female differentiated thyroid cancer patients

had higher risks of developing hyperlipidemia than male patients

(31). UA is the end product of purine metabolism in the human

body which has been found to be one of the most important parts

of metabolic syndrome. It is closely related to coronary heart

disease, type 2 diabetes mellitus, and hypertension (32).

Interestingly, the increase of mean erythrocytic hemoglobin
A B

DC

FIGURE 6

Web-based tools for diagnosis of malignant and metastasis TC using preoperative laboratory tests and demographic characteristics (http://www.
cancer-thyroid.com/). (A) Main page. (B) Diagnosis page. (C) Metastasis page. (D) Supplementary files and source codes.
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concentration indicates a high probability of TC deterioration, but

it is a protective factor of metastasis. Whether mean erythrocytic

hemoglobin concentration has a dual role in TC needs to be

verified in a larger patient cohort.

This study also has some limitations: first, because the data

are from the same database and the patients are all Chinese,

there may be potential bias. Secondly, a small number of patients

lost part of the information. Finally, the prognosis and survival

of patients with TC were not discussed in this study, and our

team will make further analysis in the future plan.
Conclusion

The advantage of this study is that ML model is used to

predict the possibility of TC deterioration and transfer for the

first time. Several most important risk and protective factors are

listed and compared with traditional TI-RADS. At the same

time, a free online tool for all clinicians to predict patients with

high TC risk has been established, which can act as a virtual

assistant to improve the efficiency and accuracy of diagnosis.
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