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Integrated spatial analysis of
gene mutation and gene
expression for understanding
tumor diversity in formalin-
fixed paraffin-embedded
lung adenocarcinoma
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Introduction: A deeper understanding of intratumoral heterogeneity is

essential for prognosis prediction or accurate treatment plan decisions in

clinical practice. However, due to the cross-links and degradation of

biomolecules within formalin-fixed paraffin-embedded (FFPE) specimens, it is

challenging to analyze them. In this study, we aimed to optimize the

simultaneous extraction of mRNA and DNA from microdissected FFPE tissues

(j = 100 µm) and apply the method to analyze tumor diversity in lung

adenocarcinoma before and after erlotinib administration.

Method: Two magnetic beads were used for the simultaneous extraction of

mRNA and DNA. The decross-linking conditions were evaluated for gene

mutation and gene expression analyses of microdissected FFPE tissues. Lung

lymph nodes before treatment and lung adenocarcinoma after erlotinib

administration were collected from the same patient and were preserved as

FFPE specimens for 4 years. Gene expression and gene mutations between

histologically classified regions of lung adenocarcinoma (pre-treatment tumor

in lung lymph node biopsies and post-treatment tumor, normal lung, tumor

stroma, and remission stroma, in resected lung tissue) were compared in a

microdissection-based approach.

Results: Using the optimized simultaneous extraction of DNA and mRNA and

whole-genome amplification, we detected approximately 4,000–10,000

expressed genes and the epidermal growth factor receptor (EGFR) driver
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gene mutations from microdissected FFPE tissues. We found the differences in

the highly expressed cancer-associated genes and the positive rate of EGFR

exon 19 deletions among the tumor before and after treatment and tumor

stroma, even though they were collected from tumors of the same patient or

close regions of the same specimen.

Conclusion: Our integrated spatial analysis method would be applied to

various FFPE pathology specimens providing area-specific gene expression

and gene mutation information.
KEYWORDS

spatial transcriptome, non-small cell lung cancer (NSCLC), tyrosine-kinase inhibitors
(TKIs), drug resistance, formalin-fixed paraffin-embedded specimens, tumor
microenvironment, intratumoral heterogeneity (ITH), cancer therapy
Introduction

Lung cancer is the leading cause of cancer-related deaths

worldwide. Among them, non-small cell lung cancer (NSCLC)

accounts for approximately 80% of all lung cancers (1). The

epidermal growth factor receptor tyrosine kinase inhibitors

(EGFR-TKI) show a high response rate in NSCLC patients

with driver gene mutations (2). However, the problem is that

most patients eventually develop drug resistance (3). The

mechanisms of resistance acquisition to EGFR-TKI are

various, including EGFR somatic mutations (T790M and

V843I), amplification of receptor genes alternative for EGFR

(MET and HER2), mutations in downstream genes of the EGFR

pathway (PIK3CA and BRAF), and phenotype changes

associated with epithelial-mesenchymal transition (EMT) (4).

Several sources of resistance acquisition have been attributed to

intratumoral heterogeneity of gene mutations, gene expression

or interactions between tumor cells, and stroma in the tumor

microenvironment (5). Therefore, understanding cellular

diversity before and after drug treatment is essential for

elucidating drug resistance mechanisms and determining

prognostic factors in NSCLC.

Tumors have a unique tumor microenvironment different

from normal tissues, consisting of tumor stroma that promotes

the survival, proliferation, and invasion of tumor cells (6–9). The

single-cell RNA-seq (scRNA-seq) has revealed intratumor

cellular diversity, including 14 constituent cell types in NSCLC

and their involvement in immune status (10), as well as cell–cell

interactions correlated with tumor phenotypes in human

melanoma (11). In recent single-cell scRNA-seq studies,

single-cell barcode technology, droplet-based high-throughput

platforms (12), and Chromium single-cell gene expression (10×

Genomics) automate the process from single-cell isolation to

sequence library preparation, making it possible to analyze
02
thousands of cells at once. However, scRNA-seq does not

provide spatial information for specific gene expression. In a

study comparing the molecular characteristics of four different

regions in the histology and stage of lung adenocarcinoma,

tumor mutation burden, gene expression profiles, and DNA

chemical modifications differed by region even within the same

tissue (13), thus indicating the importance of transcriptome and

genome analysis integrated with tissue spatial information.

Spatial transcriptome (ST) analysis is a method of assigning

gene expression data to a spatial location within the tissue (14)

and has been used to investigate intratumoral heterogeneity (15,

16). Various ST methods have been reported, such as the tissue

microdissection-based approach (17, 18), spatial barcode-based

approach (19–21), and imaging-based approach (22). However,

a method for simultaneously extracting DNA and RNA from

specific tissue areas has not yet been integrated with ST and gene

mutation analyses. Pathological tissues collected in clinical

practice are generally preserved as formalin-fixed paraffin-

embedded (FFPE) specimens. In FFPE specimens, methylene

cross-links are formed between nucleic acids and proteins,

making it more challenging to extract and amplify the nucleic

acids. If the integrated spatial analysis of gene mutation and

expression of FFPE specimens becomes possible, we will be able

to obtain the data from the estimated 500 million FFPE

specimens linked to clinical information stored worldwide

(23). It would elucidate tumor heterogeneity for understanding

new molecular mechanisms and the discovery of biomarkers in

specific areas in tumor tissues.

Here, we developed a method for simultaneous mRNA and

DNA extraction from the microdissected FFPE tissue (100 mm in

diameter and 10 mm in thickness) and established a technique

for simultaneous analysis of ST and gene mutation in

pathological tissues. We investigated the gene expression

profile and the diversity of gene mutations before and after the
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administration of EGFR-TKI at the tumor microenvironment

level. Using the microdissection punching system (24), we

collected microdissected tissues of five regions from the 4-year

preserved FFPE lung adenocarcinoma specimens. Different

expression levels of NSCLC tumor markers, fibroblast markers,

and myofibroblast markers were observed in the adjacent tumor,

tumor stroma, and remission stromal regions on the same tissue

section. The microdissected tissues positive for EGFR exon 19

deletion (a driver gene mutation of EGFR-TKI) was scattered in

the same tumor site. Our validation suggested that the integrated

ST and gene mutation analysis could be applied to valuable FFPE

pathological tissue specimens stored in medical institutions for a

long time and contribute to revealing tumor heterogeneities.
Materials and methods

Sample acquisition

The tumor used for this analysis was provided by the

Department of Human Pathology, Juntendo University School

of Medicine. All tissue samples were fixed in 10% neutral-buffered

formalin for 24h at room temperature, embedded in paraffin after

routine processing. The biopsy sample was examined for EGFR

exon 19 deletion with cobas® EGFR Mutation Test v2 (25) and

tested positive. The procedures involving human participants

were approved by the regional ethical committee at Juntendo

University School of Medicine (no. 2018090). The study

conformed with the 1964 Helsinki declaration and its

amendments or comparable ethical standards.

All mice (ICR, male, > 10 months old, Tokyo Laboratory

Animals Science Co. Ltd., Tokyo, Japan) used for the

optimization of mRNA and DNA extraction and whole-

genome amplification (WGA) methods were treated according

to the protocols approved by the Committee for Animal

Experimentation of the School of Science and Engineering at

Waseda University (No. 2017-A056 and No. 2018-A067) and in

accordance with the law (No. 105) passed by and notification

(No. 6) of the Japanese Government. Sliced FFPE tissues were

prepared as described previously (26).
Tissue sectioning, staining, and imaging

FFPE material was sectioned at 10 mm with a microtome

(Yamato, Saitama, Japan), and then, the tissue sections were

transferred on an LMD film II (SECTION-LAB, Hiroshima,

Japan). We conducted de-paraffinization of the tissue section

soaking in Hemoclear, and the tissue section was stained using

hematoxylin and eosin. Whole images of tissue sections were

captured as described previously (27). According to the tiled

images of tissue, we had morphologically classified the
Frontiers in Oncology 03
anatomical areas of interest and collated them with gene

expression data individually indexed in the RNA-seq library.
Total RNA and DNA extraction from the
tissue section

Total RNA and DNA were extracted from FFPE specimens of

lung adenocarcinoma using RNeasy mini kit (QIAGEN, Hilden,

Germany) or DNeasy blood and tissue kit (QIAGEN) according to

the manufacturer’s protocol and stored at -80°C. The RNA integrity

number equivalent (RINe) and DNA integrity number (DIN) were

measured using the Tapestation 4200 (Agilent, Tokyo, Japan). The

RNA concentration was measured using Qubit (Thermo Fisher

Scientific, Waltham, MA, USA).
Tissue microdissection with the tissue
microdissection punching system

These steps have previously been reported (24). Briefly, the

microdissected tissue with a diameter of 100 mmwas punched from

the tissue section using the tissue microdissection punching system

with the hollow punching needle (Frontier Biosystems, Tokyo,

Japan). The collected position was manually selected while

observing the tissue with a microscope and monitor, and the

punching operation was carried out continuously.
Simultaneous extraction of mRNA and
DNA from the microdissected tissue and
library preparation

FormRNA extraction from tissuemicrodissections, we used the

method using oligo dT magnetic beads as previously reported (27).

In short, tissues were lysed using Proteinase K followed by poly (A)

RNA purification using oligo dT magnetic beads. For FFPE

specimens, tissue lysis was followed by decross-linking treatment

at 85°C for 5 min. The purified mRNA was directly processed

according to Smart-seq2 (28). DNAwas purified using 1.5 times the

amount of SPRI beads (Beckman coulter, Brea CA, USA) from the

supernatant after the annealing poly (A) RNA with oligo dT. For

FFPE specimens, decross-linking treatment at 90°C for 5 min was

performed before DNA purification. The purified DNAwas directly

used forWGA using the GenomePlex® Complete WGA kit (Sigma

Aldrich, St. Louis, MO, USA).
Detection of EGFR exon 19 deletion

The EGFR exon 19 sequence was amplified by polymerase

chain reaction (PCR), using specific primers (Supplementary
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https://doi.org/10.3389/fonc.2022.936190
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yamazaki et al. 10.3389/fonc.2022.936190
Tables S1 and S2). One microliter of whole genome amplified

DNA was mixed with 0.2 ml of forward and reverse PCR primers,

5 ml of PyroMark PCR Master Mix (QIAGEN) and 3.6 ml of
nuclease-free water. The reaction mixture was incubated at 95°C

for 15 min, followed by 40 cycle of 94°C for 30 sec, 62°C for 30

sec, and 72°C for 30 sec. It was ended with a final extension at

72°C for 10 min. Library size distribution was checked on DNA

1000 chip (Agilent Bioanalyzer) with undiluted PCR amplicons.
Sequencing and data analysis

Sequencing and data analysis was carried out as described

previously (27). Amplified cDNA (0.25 ng) was used to prepare

the sequencing library using the Nextera XT DNA library prep

kit. Paired-end sequencing was performed on the MiSeq, with 75

bases for read 1 (R1) and 75 bases for read 2 (R2). We trimmed

the adapter sequences in all the sequence reads using flexbar

3.3.0. The trimmed sequence reads were aligned to the Ensembl

human reference genome (GRCh38 ver. 96) for human tumor

samples, including the ERCC sequences using hisat 2 2.1.0 with

the default parameters. The gene expression levels, given as

transcript per million (TPM), were calculated using samtools 1.7

with a transcriptome reference obtained from Ensembl. The

detection of differentially expressed genes was conducted using

edgeR normalized count.
Quantification and statistical analysis

Statistical analyses were performed using the Rstudio

(v2021.09.2+382) within R version 4.1.2. All statistical details,

including the statistical tests, a represented number of samples,

dispersion, and precision measures, can be found in the results

and legends of the respective figures when noted appropriately.
Results

Overview of simultaneous analysis of
spatial transcriptomics and gene
mutation with the lung adenocarcinoma
before and after EGFR-TKI treatment

We studied lung lymph node biopsies before erlotinib

administration and resected lung adenocarcinoma after

administration in one identical patient. The patient was

treated with erlotinib as a neoadjuvant therapy because of

EGFR exon19 deletion (ex19del)-positive in the gene mutation

test of the lung lymph node biopsy (Figure 1A). The patient

underwent surgical resection of the tumor site after erlotinib

administration but relapsed approximately 9 months later, and

the treatment was switched to the administration of gefitinib
Frontiers in Oncology 04
instead. Approximately 2 months later, resistance mutation

(T790M) of the first-generation molecular target drugs

(erlotinib and gefitinib) was detected. The treatment was then

changed to the second-generation molecular target drug

(Osimertinib), and the patient is currently alive. The lung

specimens before and after erlotinib administration were

collected on 25 July 2017 and 18 October 2017 and,

subsequently, FFPE and stored at room temperature for

approximately 4 years. The DIN and RINe showed a state of

progressive degradation in DNA and DNA extracted from a lung

tissue section after erlotinib administration (RINe: 1.1 ± 0.1,

DIN: 5.9 ± 0.3) (Supplementary Tables S3, S4) (29).

The specimens before and after erlotinib administration

were thinly sectioned to a thickness of 10 µm, and pathologists

analyzed HE-stained histological images to diagnose histological

regions (Supplementary Figure S1). We used these annotations

for classification during the analysis of differentially expressed

genes. Tissue microdissections (100 mm in diameter) were

collected from the histologically classified regions (pre-

treatment tumor in lung lymph node biopsies and post-

treatment tumor, normal lung, tumor stroma, and remission

stroma, in resected lung tissue). DNA and RNA were

continuously extracted from each tissue microdissection

(Figures 1B, 2A and Table 1). The tissue microdissections were

decross-linked using Proteinase K and heat treated. The mRNA

was then purified using oligo dT magnetic beads (27). DNA was

purified from the supernatant after mRNA separation using

AMPure beads. The purified mRNA was used for RNA-seq, and

the purified DNA was used for mutation detection.
Optimization of mRNA and DNA
extraction and WGA methods for
microdissected FFPE tissues

Most of the pathological tissues collected in clinical practice

are preserved in FFPE specimens. FFPE specimens are more

difficult to extract nucleic acids than fresh-frozen specimens.

The decross-linking treatment is necessary for breaking the

methylene cross-links formed between nucleic acids and

proteins to extract DNA and RNA from FFPE specimens. The

decross-linking treatment has to be the optimal condition that

minimizes damage to nucleic acids and maximizes the yield of

nucleic acids. Since RNA degrades more easily than DNA, the

decross-linking condition must be suitable. We optimized

decross-linking conditions to extract RNA and DNA

simultaneously from the microdissected FFPE tissue. The

decross-linking treatment for RNA purification was performed

at 85°C for 5 min (26). The number of genes detected in tissue

microdissections (TPM > 0) differed by morphological

classification (pre-treatment tumor: 6,160 ± 1,340; post-

treatment tumor: 9,690 ± 918; normal lung: 6,694 ± 1,472;
frontiersin.org

https://doi.org/10.3389/fonc.2022.936190
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yamazaki et al. 10.3389/fonc.2022.936190
tumor stroma: 6,262 ± 1,616; remission stroma: 3,908 ± 1,254)

(Student’s t-test, statistically significant at values of P < 0.001)

(Figures 2B, C); 99% of the genes detected in the whole tissue

section of lung adenocarcinoma after erlotinib administration

were also detectable in tissue microdissections (Figure 2B). The

number of detected genes in tissue microdissections was similar

to that in a tissue section (tissue microdissection: 6,571 ± 2,448;

whole tissue section: 8,372 ± 1,382) (Figure 2C).

The supernatant after mRNA purification was further

decross-linked, and DNA was purified using AMPure beads.

The optimal decross-linking condition for DNA extraction was

evaluated using mouse liver microdissected FFPE tissues. The

microdissected FFPE tissues were decross-linked under four

different conditions (85°C for 30 min, 90°C for 5 min, 90°C

for 10 min, and 90°C for 15 min). We compared the yield of the

WGA product of purified DNA. The decross-linking condition

at 90°C for 5 min showed the highest yield of WGA product
Frontiers in Oncology 05
among the four conditions (34.4 ± 3.3 ng/µl at 90°C for 5 min,

9.0 ± 4.3 ng/µl at 90°C for 10 min, 8.9 ± 6.6 ng/µl at 90°C for

15 min, and 4.1 ± 0.2 ng/µl at 85°C for 30 min) (Supplementary

Figure S2A). Using this procedure, we established a workflow for

the simultaneous extraction of mRNA and DNA from the same

tissue microdissection.

We detected EGFR ex19del from the microdissected FFPE

tissue using our DNA extraction technique. The WGA is

necessary for gene mutation analysis from a small amount of

DNA. Amplification bias is likely to occur during WGA in FFPE

specimens, because nucleic acids are more degraded in FFPE

specimens than in fresh-frozen specimens. In this study, we

evaluated two WGA methods (PCR-based WGA: GenomePlex

kit and multiple displacement amplification [MDA]-based

WGA: REPLI-g kit) regarding the attribution rate to the

reference genome and uniformity of coverage. The attribution

rate to the reference genome was higher in the PCR-based WGA
A

B

FIGURE 1

Overview of spatial transcriptome and gene mutation analysis with lung adenocarcinoma before and after erlotinib administration. (A) The
medical history of the patients analyzed in this study. By punch biopsy, lung lymph nodes were collected before erlotinib administration and
used for gene mutation testing. The patient was treated with erlotinib 150 mg/day for 26 days, withdrawn due to side effects such as anemia,
and then started on erlotinib 100 mg/day after symptoms improved. The lung tumor was surgically removed about 70 days after starting the
medication. After that, the disease recurred, and the patient was treated with gefitinib 250 mg/day, but EGFR ex19del and T790M were
detected, so the dosage was changed to osimertinib 80 mg/day on 9 October 2019, and he is alive now. (B) Workflow of simultaneous analysis
of transcriptome and gene mutation from tissue microdissections in lung adenocarcinoma. 1: Morphological classification of adenocarcinoma
by the experienced pathologist. 2: Micro-area with a diameter of 100 µm of the tumor, tumor stroma, remission stroma, and normal lung are
collected from lung adenocarcinoma after erlotinib administration by microdissection punching system. In the pre-treatment lung lymph node,
the micro-area in the tumor is collected. 3: The tissue microdissections lysed with proteinase K followed by the mRNA extraction with oligo dT
magnetic beads. Extracted mRNA is decross-linked by incubation at 85 °C for 5 min and used for RNA-seq. After mRNA purification, DNA was
extracted with carboxyl-coated magnetic beads from the supernatant. Extracted DNA was decross-linked by incubation at 90°C for 5 min and
used for the detection of EGFR driver gene mutation.
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(36.7 ± 5.8%) than that in the MDA-based method (16.0 ±

23.1%) for the microdissected FFPE tissue (Supplementary

Figure S2B). We evaluated the whole genome sequence

coverage in the Lorenz curve’s cumulative percentage of

sequence reads. The PCR-based WGA showed a Lorenz curve

closer to the diagonal than the MDAmethod, indicating a higher

uniformity of coverage (Supplementary Figure S2C). We used

the PCR-based WGA to analyze FFPE specimens of lung

adenocarcinoma with the above results. The PCR-based WGA

products of the microdissected FFPE tissue met the requirement

for gene mutation detection (≤ 10 ng) as described in the

Regulations for the Handling of Tissue Specimens for
Frontiers in Oncology 06
Genomic Medicine (The Japanese Society of Pathology) (30)

(Supplementary Figure S2D). To detect gene mutation, a portion

of the WGA products was used for PCR amplification of the

EGFR ex19del region. The PCR products were compared by

length using electrophoresis to determine negative or positive

gene mutation (Figure 2D). The tissue microdissection of the

normal lung showed only one peak (103 bp), indicating a

negative gene mutation. In contrast, positive control (H1650

extracted DNA) and the tissue microdissection of the pre-

treatment tumor showed a short peak (86 or 89 bp) indicating

EGFR ex19del positivity with the peak (103 bp) indicating the

presence of wild type.
A

B D

C

FIGURE 2

RNA-seq and EGFR exon 19 deletion detection from microdissected FFPE tissues of lung adenocarcinoma. (A) Spatial distribution of sampling
locations. Left: tumor in pre-treatment lung lymph node; middle: tumor, tumor stroma, and remission stroma in post-treatment lung
adenocarcinoma; right: normal lung in post-treatment lung adenocarcinoma. (B) Venn diagram of the genes detected from tissue microdissections
or the whole tissue section of post-treatment lung adenocarcinoma. The genes detected from tissue microdissections were merged by histological
classification (post-treatment tumor, normal lung, tumor stroma, and stroma in remission). (C) The number of genes detected from tissue
microdissections. Comparison of the number of detected genes between areas with different histological classifications. Student’s t-test, ***P <
0.001. (D) Results of EGFR ex19del detection. The EGFR ex19del region was PCR amplified, and Bioanalyzer DNA1000 measured the length of the
PCR amplified product. The 15 bp and 1500 bp peaks indicate lower and upper markers, respectively. The peak at 86–89 bp is deletion positive, and
the peak at 103 bp is wild type (The peaks at 131–170 bp represent the by-products generated by PCR amplification).
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Site-specific gene expression analysis of
lung adenocarcinoma

Tumors are composed of a variety of cells. Gene mutations

and gene expression of cells vary according to spatial location

and histology, even within the same tissue (31, 32). We

performed RNA-seq on the tissue microdissections collected

from five regions (pre-treatment tumor, post-treatment tumor,

normal lung, tumor stroma, and remission stroma). First, we

compared the gene expression profiles of each tissue

microdissection. Based on the hierarchical clustering analysis

of the top 40 most expressed genes, the tissue microdissections

were classified into three clusters: pre-treatment tumor, post-

treatment lung tissue (post-treatment tumor and normal lung),

and post-treatment stroma (tumor stroma and remission

stroma) (Figure 3A and Supplementary Figure S3). The result

showed that the expression profiles differed according to

histological classification and erlotinib administration.

Next, we analyzed differentially expressed genes among the

histologically distinct regions (post-treatment tumor, normal

lung, tumor stroma, and remission stroma) in the lung

adenocarcinoma after erlotinib administration (p < 0.05, |

log2foldchange| > 1). We found that 3,730 genes including

lung adenocarcinoma biomarkers NPC2 (33) and NAPSA (34)

were differentially expressed between normal lung (n = 11) and

post-treatment tumor (n = 11) (Supplementary Table S5 and

Supplementary Figure S4A). NAPSA was highly expressed in all

tissue microdissections of post-treatment tumors regardless of

the sampling location in the tissue sections. It was low in tumor

stroma and remission stroma around post-treatment tumor,

indicating a specific tumor marker (Figure 3B).

Between the tumor stroma (n = 11) and the remission

stroma (n = 13), classified as cluster 3 stroma, 2,371 genes

were extracted (Supplementary Table S6). In the tumor stroma,

genes associated with immunodeficiency states favor cancer cell

growth (35), and genes related to PD-L1 expression and PD-1

checkpoints, such as T cell receptor signaling pathway and

al lograf t re ject ion , were predominant ly expressed

(Supplementary Figure S4B). In the comparison of tumor

stroma with adjacent remission stroma, SGK1 (36), associated

with lung lymph node metastasis, distant metastasis, and poor

prognosis in NSCLC, was predominantly expressed in the tumor

stroma, whereas the tumor suppressor gene CSRP1 (37) was

predominantly expressed in the remission stroma (Figure 3B).

The tumor stroma and the remission stroma were histologically

similar, but differentially expressed genes had different effects on

the tumor.

We inferred cell types contained in each tissue

microdissection from the marker gene expression of lung

constituent cells, including AT cells, Clara cells, fibroblasts,

myofibroblasts, ciliated cells, and immune cells. The subtypes
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of immune cells included B cells, DC (Dendritic cells), T cells,

mast cells, monocytes/macrophages, and endothelial cells

(Figure 3C). AT1 and AT2 cell markers (38, 39) and

endothelial cell markers were highly expressed in normal lung.

In the pre-and post-treatment tumors, the marker of cells

considered the origin of adenocarcinomas, such as AT2

composing the alveolar space and Clara cells composing

the bronchioles (40), were highly expressed. Cancer-

associated fibroblast (CAF) markers in cancer growth and

invasion (41) were highly expressed in tumor stroma.

Conversely, myofibroblast markers (42), fibroblast activated

and differentiated during wound healing, involved in tissue

repair in collaboration with other stroma, and mast cell

markers were highly expressed in the remission stroma. Most

immune cell markers were not specific to histological

classification. Their expression levels differed among tissue

microdissections within the same histological classification.
Analysis of gene mutations and
expression in lung adenocarcinoma
before and after erlotinib administration

We examined changes in gene expression and mutations

between tumors before and after erlotinib administration.

Between pre-treatment tumor (n = 11) and post-treatment

tumor (n = 11), 3,809 genes with variable expression were

detected (Supplementary Table S7). Cancer cell invasion and

proliferation genes were predominantly expressed in post-

treatment tumors, such as the IL-17 signaling pathway and

ECM-receptor interaction (43, 44). Moreover, the PI3K-Akt

signaling pathway (45) downstream of EGFR, activated in drug-

resistant cancer cells with loss of EGFR driver gene mutation, was

highly expressed in post-treatment tumors (Supplementary Figure

S4C). Previous research has studied the expression level of

immediate early genes (IEGs) expressed by cells in response to

stress and extracellular stimuli as a prognostic factor in cancer. In

some cancers, co-expression of IEGs, such as FOS, JUN, and

EGR1, was positively correlated with poor survival (46). Here, we

detected the site-specific expression of these genes. The oncogenic

transcription factors FOS (Figure 4C) and JUN (Supplementary

Figure S5A), highly expressed in post-treatment tumors, were also

upregulated in the stroma (tumor stroma and remission stroma)

around post-treatment tumors. In contrast, EGR1, a tumor

suppressor gene, was predominantly expressed in post-

treatment tumors, and its expression was lower in the stroma

around the post-treatment tumor (Figure 4C).

The lung lymph node collected before treatment has

detected EGFR ex19del in gene mutation testing. In this study,

EGFR ex19del was detected in 6/11 (54%) of pre-treatment

tumors, 2/11 (18%) of post-treatment tumors, and 1/11 (9%) of
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tumor stroma. Tissue microdissections positive for EGFR

ex19del had no positional specificity. They were scattered on

the tissue section (Figure 4B). Between EGFR ex19del positive

tissue microdissections (n = 8) and negative tissue
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microdissections (n = 14) in pre-and post-treatment tumors,

1,341 genes with variable expression were extracted. Most of

them were genes related to ECM (Supplementary Table S8

and Figure 4C).
A B

C

FIGURE 3

Spatial comparison of transcriptome and EGFR driver gene mutation in lung adenocarcinoma. (A) The specific distribution of tissue
microdissections in the classification of treatment or histology in PCA. Each shape represents a result of hierarchical clustering using the top 40
genes in average expression level. (B) The spatial distribution of site-specific genes in lung adenocarcinoma after erlotinib administration
(NAPSA, tumor site-specific gene; SGK1, tumor stroma site-specific gene; CSRP1, stroma in remission site-specific gene). (C) Heatmap of
marker genes within cell types of lung adenocarcinoma (AT1 cell: PDPN, AGER, and CAV1; AT2 cell: SETPD, SETPB, SETPC, and SETPA1; Clara:
SCGB3A1, and SCGB3A2; CAFs: THY1, and COL1A1, and CAL1A2; Fibroblasts: DCN; Myofibroblasts: TAGLN, ACTA2, ACTG2, MYH11, and MYLK;
Ciliated: FOXJ1 and CAPS; B cell: CD19, CD79A, and CD79B; DC: CCL17, CCL22, CD207, CD1C, and CD1A; T cell: CD2, CD27, CD28, CD3D,
CD3E, CD3G, and CD69; Mast: CPA3, CLU, TPSAB1, TPSB2, and MS4A2; Monocytes/Macrophages: ECGR1A, CCR2, MCFMP1, MARCO, CX3CR1,
ITGAX, ITGAM, FCGR3A, CD163, CSF1R, MSR1, CD14, MRC1, and APOE; Endothelial: CLDN5 and PECAM1).
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Interaction between tumor and tumor
stroma in the tumor microenvironment

Tumor cells attract fibroblasts, extracellular matrix, and

inflammatory cells to form the tumor microenvironment.

Those stromal cells interact with tumor cells in ligand-receptor

interactions and are involved in tumor growth and invasion.

Here, we investigated how tumor and tumor stroma function in

cancer survival, growth, and invasion in lung tissue

after erlotinib administration. In post-treatment tumors, genes

related to drug metabolism-cytochrome P450 were

predominantly expressed (Supplementary Figure S4D). In

tumor stroma, pathways involved in cancer cell invasion and

proliferation were activated, such as the TGF-beta signaling

pathway (47) and MAPK signaling pathway (Supplementary

Figure S4D). Most genes considered tumor specific in previous

studies (tumor suppressor genes: SOCA3, KLF6, and PTGDS

[48–50]; tumor enhancer genes: SLC38A2 [51, 52], DUSP1 [53],

and FGF7 [54]) were expressed predominantly in tumor stroma

or remission stroma than that in pre-treatment tumors

(Figure 5A and Supplementary Figure S5B).

We then predicted the interactions involved in the

invasion and proliferation of tumor tissue in pre-treatment
Frontiers in Oncology 09
tumors and tumor stroma by the expression levels of ligands

and receptors. We calculated the ligand-receptor interaction

score (11) by calculating the product of the average

expression of the ligand in pre-treatment and tumor stroma

and the expression of the receptor in other regions (pre-

treatment tumor, post-treatment tumor, normal lung, tumor

stroma, and remission stroma). We examined all ligand-

receptor pairs involving tumor cells (55, 56) and identified

the specifically co-expressed pairs in post-treatment tumors

and tumor stroma (Figures 5B, C). Stromal cells are the

primary source of ligands. Therefore, there were more pairs

with high ligand-receptor interaction scores when the tumor

stroma was the ligand (Figure 5B). Among the interactions

involved in tumor invasion and growth, extracellular matrix

interaction scores were higher between tumor stroma and

post-treatment tumor (tumor stroma ligand: COL1A1,

COL1A2, and COL3A1; post-treatment tumor receptor:

ITGA2). After that, we mapped the expression level of the

pair co-expressed between post-treatment tumors and tumor

stroma (COL3A1; ECM ligand and ITGA2; ECM receptor) on

the tissue section. ITGA2 was highly expressed in the spots

adjacent to the tumor stroma expressing COL3A1 of post-

treatment tumors (Figure 5D).
A

B C

FIGURE 4

Gene mutations and gene expression in lung adenocarcinoma. (A) The genes highly expressed in post-treatment tumors compared with pre-
treatment tumors. The oncogenic transcription factor FOS was highly expressed in post-treatment tumors, tumor stroma, and remission stroma.
EGR1, a tumor suppressor gene, was highly expressed only in post-treatment tumors. (B) The spatial distribution of the EGFR ex19del. Left:
tumor in pre-treatment lung lymph node; Right: tumor in post-treatment lung adenocarcinoma. Bottom: normal lung in post-treatment lung
adenocarcinoma. The area surrounded by the black line is the tumor. (C) The enriched pathways in EGFR ex19del- negative or EGFR ex19del-
positive tissue microdissections. Asterisk(*) related to ECM.
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Discussion

We achieved simultaneous extraction of mRNA and DNA

from tissue microdissections using two types of magnetic beads.

The mRNA purification using oligo dT magnetic beads is an

efficient method for RNA-seq analysis of small amounts of RNA

(27). It could separate mRNA from other cellular components in

tissue microdissections. Here, DNA was purified from the

fractions after mRNA purification using carboxyl-coated

magnetic beads (AMPure beads XP), commonly used for DNA

purification. Pathological specimens are often preserved as FFPE

specimens, which are difficult to extract nucleic acids because of

the cross-linking between proteins and nucleic acids. Therefore,

we established a method of mRNA and DNA extraction method

for microdissected FFPE tissues that minimized damage and

increased the yield by optimizing decross-linking treatment. The

nucleic acids in FFPE specimens are more degraded than fresh-
Frontiers in Oncology 10
frozen specimens cryopreserved immediately after collection.

The MDA-based WGA (REPLI-g kit) is a WGA method using

Phi29 polymerase and random primers with a low error

insertion rate. It is used for the WGA method with the lowest

rate of amplification bias and insertion of artifactual mutations

for fresh-frozen specimens (57). However, for FFPE specimens,

the PCR-based WGA (GenomePlex kit) showed much lower

amplification bias and variant allele frequency (VAF) than the

MDA-based WGA (Supplementary Figure S2), as shown in a

previous study (58). The process fragmented DNA to around

200 bp, which was then PCR amplified to reduce the bias of

genome amplification. Using the optimized methods of DNA

and mRNA extraction and WGA, we detected about 4,000 to

10,000 expressed genes and EGFR driver gene mutations from

tissue microdissections of FFPE specimens stored for four years.

Results from RNA-seq of tissue microdissections showed

that gene expression profiles differed according to histological
A B

D

C

FIGURE 5

Interaction between tumor and tumor stroma in the tumor microenvironment after erlotinib administration. (A) The spatial distribution of the
tumor marker gene. KLF6 is more highly expressed in stroma than in the tumor on the tissue section. (B) Interaction scores between ligands
expressed in tumor stroma and receptors expressed in other regions, showing pairs of tumor stroma and post-treatment tumor interaction
scores greater than 35. (C) Interaction scores between ligands expressed on post-treatment tumor and receptors expressed in other sites,
showing pairs of post-treatment tumor and tumor stroma interaction scores greater than 35. (D) The spatial distribution of ligand-receptor pairs
related to ECM cell–cell interaction on the tissue sections. The ECM ligand COL3A1 is highly expressed in the tumor stroma, and the ECM
receptor ITGA2 is highly expressed in the tumor.
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classification. In post-treatment tumors, genes such as FOS,

JUNB, COL1A2, and DUSP1 have shown to favor cancer

proliferation and invasion (46, 53) and were predominantly

expressed compared with pre-treatment tumors. In lung

adenocarcinoma after erlotinib administration, bypass

pathways that activate cell proliferation and invasion, such as

the MAPK signaling pathway (tumor stroma) and PI3K-Akt

signaling pathway (post-treatment tumor), were activated.

CAFs, a significant component of the tumor stroma, directly

interact with tumor cells and induce EMT, contributing to

resistance acquisition, cancer invasion, and metastasis (59).

Our data showed tumor stroma predominantly expressed

genes that promote cancer growth, such as genes indicating

immunodeficiency and genes involved in cell-matrix interaction,

compared with remission stroma. SLC38A2, DUSP1, and FGF7

expressed predominantly in tumor sites than that in normal lung

in previous studies (51, 52); however, they were expressed

predominantly in the tumor stroma in this study. These

results revealed that even in the same tumor tissue, different

microstructures have different properties in cancer. After drug

administration, it is desirable to analyze at the microdissection

level to study tissue diversity. Currently, there are no prognostic

factors established for neoadjuvant therapy. Some cases

estimated the efficacy prediction by the tumor cells remaining

in the tissues after treatment (60). Based on the results of this

study, it might be necessary to evaluate not only the tumor cells

remaining after drug administration but also the tumor stroma.

The detection of EGFR driver mutation is necessary for

predicting drug efficacy, but its low detection sensitivity is a

problem (61). It is difficult to collect the tumor site area during

biopsy collection specifically. We could not genetically test some

specimens, because the number of tumor cells in the biopsy

tissue is too small to detect. In such cases, re-biopsy burdened

the patient. This study detected EGFR ex19del from

microdissected FFPE tissues. This method is considered more

sensitive than detecting gene mutations in a single section,

because it can detect gene mutations from the tissue

microdissection collected from the specific area gathering

tumor cells. However, some tissue microdissections of biopsy

with positive EGFR mutation turned out to be negative for the

mutation (Figure 4A). These results reiterated the difficulty in
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ensuring the accuracy of clinical diagnoses, such as selecting the

biopsy collection site and assuring results by collecting multiple

sites. Tumors are composed of cells with diverse gene mutations.

If gene mutation testing is performed from tissue

microdissections with high cancer cell density, detecting gene

mutations in multiple tissue microdissections within the same

tissue is necessary. It would be performed gene mutation testing

without overlooking drug-sensitive tumors. In this study, the

loss of EGFR mutations was confirmed in the tumor sites after

EGFR-TKI administration. It might relate to the prognosis,

worsening of the disease condition, and acquisition of

resistance to the administered drugs (45). However, this study

analyzed only one specimen. It is necessary to verify the results

in other specimens in future research.

We established a method to simultaneously extract mRNA

and DNA from tissue microdissections of lung adenocarcinoma

stored as FFPE specimens for 4 years. Our method enables

simultaneous detection of gene expression profiles and gene

mutation with spatial information of biological tissues. We

performed RNA-seq and EGFR driver gene mutation detection

in the tumor microenvironment of lung adenocarcinoma before

and after EGFR-TKI administration. Using RNA-seq analysis,

we detected genes with variable expression among tissue

microdissections with different treatment courses and

histological classifications. Our spatial gene expression

technique revealed that the expression distribution of invasive

and proliferative genes of cancer cells differed among adjacent

regions (post-treatment tumor, tumor stroma, and remission

stroma) on the same tissue section. Activation of cell

proliferation pathways and higher expression of cancer-related

genes were observed in the tumor stroma, positively affecting

cancer invasion, survival, and proliferation, than that in post-

treatment tumors. Gene mutation analysis detected different

positive rates of EGFR ex19del in lung adenocarcinoma before

and after erlotinib administration. There was no area specificity

in EGFR ex19del-positive tissue microdissections. Using our

method, we detected diverse micro-regions in gene expression

and mutation in lung adenocarcinoma after drug administration

and different statements of cancer-related genes in tumors and

tumor stroma. This method could be applied to pathological

specimens stored in medical institutions for a long time to
TABLE 1 Description of processed samples.

Collection Tissue Gene mutation testing Treatment Histological classification Replicate

Biopsy Lung lymph EGFR exon19 Non- Pre-treatment tumor 11

(25 July 2017) node Deletion positive treatment

Surgical Lung Not Erlotinib Post-treatment tumor 11

resection conducted administration Tumor stroma 11

(18 October 2017) Normal lung 11

Remission stroma 13
fro
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construct a database. It would significantly contribute to

identifying molecular markers that can determine drug

sensitivity and predict prognosis.
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